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1 Introduction
Hudzik and Maligranda [] defined the s-convex function as: A function f : [,∞) → R is
said to be s-convex or f belongs to the class Ki

s , if for all x, y ∈ [,∞) and μ,ν ∈ [, ], the
following inequality holds:

f (μx + νy) ≤ μsf (x) + νsf (y),

for some fixed s ∈ (, ].
Note that, if μs + νs = , the above class of convex functions is called s-convex functions

in first sense and represented by K 
s and if μ + ν = , the above class is called s-convex in

second sense and represented by K
s .

It may be noted that every -convex function is convex. In [], they also discussed a few
results connecting with s-convex functions in second sense and some new results about
Hadamard’s inequality for s-convex functions are discussed in [], while on the other hand
there are many important inequalities connecting with -convex (convex) functions [].
The Simpson’s inequality is very important and well known in the literature. This in-

equality is stated as: If f : [a,b]→ R be four times continuously differentiable mapping on
(a,b) and ‖f ‖∞ = Supx∈(a,b) |f (x)| <∞. Then

∣∣∣∣ 
[
f (a) + f (b)


+ f

(
a + b


)]
–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ 
,

∥∥f ∥∥∞(b – a).

Recently, many others [–] developed and discussed error estimates of the Simpson’s
inequality interms of refinement, counterparts, generalizations and new Simpson’s type
inequalities.
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In [], Dragomir et al. proved the following recent developments on Simpson’s inequality
for which the remainder is expressed interms of lower derivatives than the fourth.

Theorem . Suppose f : [a,b] → R is a differentiable mapping whose derivative is con-
tinuous on (a,b) and f ′ ∈ L[a,b]. Then

∣∣∣∣ 
[
f (a) + f (b)


+ f

(
a + b


)]
–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ b – a


∥∥f ′∥∥
, (.)

where ‖f ′‖ =
∫ b
a |f ′(x)|dx.

Note that the bound of (.) for L-Lipschitzian mapping is 
L(b – a) [].

Theorem . Suppose f : [a,b] → R is an absolutely continuous mapping on [a,b] whose
derivative belongs to Lp[a,b]. Then the following inequality holds:

∣∣∣∣ 
[
f (a) + f (b)


+ f

(
a + b


)]
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ 



[
q+ + 
(q + )

] 
q
(b – a)


q
∥∥f ′∥∥

p, (.)

where 
p +


q =  and p > .

In [], Kirmaci established the following Hermite-Hadamard type inequality for differ-
entiable convex functions as the following.

Theorem . Let f : I ⊂ R → R be a differentiable function on I (interior of I), where
a,b ∈ I with a < b. If the mapping |f ′| is convex on [a,b], then

∣∣∣∣ 
b – a

∫ b

a
f (x)dx – f

(
a + b


)∣∣∣∣ ≤ b – a


[∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣]. (.)

For generalizations of (.), we refer to [–].
In [] and [], Dragomir and Fitzpatrick presented the following inequalities.

Theorem . [] Let f : [a,b] → R be a L-Lipschitzian mapping on [a,b]. Then

∣∣∣∣
∫ b

a
f (x) –

(b – a)


[
f (a) + f (b)


+ f

(
a + b


)]∣∣∣∣ ≤ 


L(b – a). (.)

Theorem . [] Suppose that f : [,∞) → [,∞) is a convex function in the second sense,
where s ∈ (, ) and let a,b ∈ [,∞), a < b. If f ∈ L[a,b], then

s–f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx ≤ f (a) + f (b)

s + 
. (.)

The constant k = 
s+ is the best possible in the second inequality in (.).The above inequal-

ities are sharp.

In [], Mishen presented the class of (α,m)-convex functions as the following.
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Definition . A function f : [,b) → R is said to be (α,m)-convex, where (α,m) ∈ [, ],
if for every x, y ∈ [,b] and λ ∈ [, ], the following inequality holds:

f
(
λy +m( – λ)x

) ≤ λαf (y) +m
(
 – λα

)
f (x),

where (α,m) ∈ [, ], for some fixedm ∈ (, ].

Note that (α,m) ∈ {(, ), (α, ), (, ), (,m)(, ), (α, )}. One receives the following
classes of functions respectively: increasing, α-starshaped, starshaped, m-convex, con-
vex and α-convex. Denote by Kα

m(b), the set of all (α,m)-convex function on [,b] with
f () ≤ . For recent results and generalizations referring m-convex and (α,m)-convex
functions, we refer to [, ] and [].
In this paper, we establish some new inequalities of Simpson’s type based on (α,m)-

convexity for differentiable mappings. This contributes to new better estimates than pre-
sented already. Some applications for special means of real numbers and error estimates
for some numerical quadrature rules are also given. By using these results, without dis-
cussing the higher derivatives, which may not exist, not be bounded and may be difficult
to investigate, we find the error estimate of Simpson’s formula.

2 Main results
Before proceeding toward our main theorem regarding generalization of Simpson’s in-
equality using (α,m)-convex function, we begin with the following lemma.

Lemma . Let f : I ⊂ R→ R be differentiable mapping on I (interior of I), where a,b ∈ I
such that a < b. Then we have the following inequality:




[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

= (b –ma)
∫ 


k(λ)f ′(λb +m( – λ)a

)
dλ, (.)

where

k(λ) =

⎧⎨
⎩λ – 

 , λ ∈ [,  ],

λ – 
 , λ ∈ [  , ].

Proof Consider

I =
∫ 


k(λ)f ′(λb +m( – λ)a

)
dλ

=
∫ /



(
λ –




)
f ′(λb +m( – λ)a

)
dλ

+
∫ 

/

(
λ –




)
f ′(λb +m( – λ)a

)
dλ.
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Using integration by parts, we have

I =
(

λ –



)
f (λb +m( – λ)a)

b –ma

∣∣∣∣




–

∫ 




f (λb +m( – λ)a)
b –ma

dλ

+
(

λ –



)
f (λb +m( – λ)a)

b –ma

∣∣∣∣


–
∫ 




f (λb +m( – λ)a)
b –ma

dλ

=


(b –ma)

[
f (ma) + f

(
ma + b



)
+ f (b)

]
–

∫ 



f (λb +m( – λ)a)
b –ma

dλ.

Let we substitute, x = λb + m( – λ)a, and dx = (b –ma)dλ, which gives (b –ma). I =

 [f (ma) + f (ma+b

 ) + f (b)] – 
b–ma

∫ b
ma f (x)dλ. This proves as required. �

In the following result, we have another refinement of the Simpson’s inequality via
(α,m)-convex functions.

Theorem . Let f be defined as in Lemma .. If the mapping |f ′| is (α,m)-convex on
[a,b], for (α,m) ∈ [, ]. Then we have the following inequality:

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

[
v

∣∣f ′(b)
∣∣ +mv

∣∣f ′(a)
∣∣], (.)

where v = –α–()–α+()α+()–α+α–
(α+)(α+) and v = ( 

 – v).

Proof Using Lemma . and (α,m)-convexity of |f ′|, we have
∣∣∣∣ 

[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

∫ 



∣∣k(λ)∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

≤ (b –ma)
∫ 





∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

+ (b –ma)
∫ 




∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

≤ (b –ma)
∫ 





∣∣∣∣λ –



∣∣∣∣λα
∣∣f ′(b)

∣∣ +m
(
 – λα

)∣∣f ′(a)
∣∣dλ

+ (b –ma)
∫ 




∣∣∣∣λ –



∣∣∣∣λα
∣∣f ′(b)

∣∣ +m
(
 – λα

)∣∣f ′(a)
∣∣dλ.

By simple calculations, we have

∫ /


λα

∣∣∣∣λ –



∣∣∣∣dλ +
∫ 

/
λα

∣∣∣∣λ –



∣∣∣∣dλ =
–α – ()–α + ()α+()–α + α – 

(α + )(α + )
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/158


Qaisar et al. Journal of Inequalities and Applications 2013, 2013:158 Page 5 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/158

Also,

∫ /



(
 – λα

)∣∣∣∣λ –



∣∣∣∣dλ +
∫ 

/

(
 – λα

)∣∣∣∣λ –



∣∣∣∣dλ

=



–
–α – ()–α + ()α+()–α + α – 

(α + )(α + )
.

The proof is completed. �

Now, we conclude the following corollaries.

Corollary . Let f be defined as in Theorem .. If the mapping |f ′| is (α,m)-convex on
[a,b], (α,m) ∈ [, ]. Then we have the following inequality:

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)


[
m

∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣]. (.)

Observation  It is observed that the above midpoint inequality (.) is better than the
inequality (.) presented by Dragomir [].

The upper bound of the midpoint inequality for the first derivative is presented as:

Corollary . By substituting f (ma) = f (ma+b
 ) = f (b), in inequality (.), we get

∣∣∣∣ 
b –ma

∫ b

ma
f (x)dx – f

(
ma + b



)∣∣∣∣ ≤ (b –ma)
[
v

∣∣f ′(b)
∣∣ +mv

∣∣f ′(a)
∣∣], (.)

where v = –α–()–α+()α+()–α+α–
(α+)(α+) and v = ( 

 – v).

Corollary . Putting α = , and m = , in the above inequality (.), we get

∣∣∣∣ 
b – a

∫ b

a
f (x)dx – f

(
a + b


)∣∣∣∣ ≤ (b – a)


[∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣]. (.)

Observation  It is observed that the above midpoint inequality (.) seems better than
the inequality (.) presented by Kiramic [].

By applying Holder’s inequality, we obtain the following theorem.

Theorem . Let f be defined as in Theorem . with 
p +


q = . If the mapping |f ′|p/(p–) is

(α,m)-convex on [a,b], for (α,m) ∈ [, ] and p > . Then we have the following inequality:
∣∣∣∣ 

[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

(
 + p+

p+(p + )

)/p 
(α + )/q

×
[(∣∣f ′(ma)

∣∣q + ∣∣∣∣f ′
(
ma + b



)∣∣∣∣q
)/q

+
(∣∣∣∣f ′

(
ma + b



)∣∣∣∣q + ∣∣f ′(b)
∣∣q)/q]

. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/158
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Proof Using Holder’s inequality and by Lemma ., we get

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

∫ 



∣∣k(λ)∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

≤ (b –ma)
∫ 





∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

+ (b –ma)
∫ 




∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

≤ (b –ma)
(∫ /



∣∣∣∣
(

λ –



)∣∣∣∣p dλ

)/p(∫ /



∣∣f ′(λb +m( – λ)a
)∣∣q dλ

)/q

+ (b –ma)
(∫ 

/

∣∣∣∣
(

λ –



)∣∣∣∣p dλ

)/p(∫ 

/

∣∣f ′(λb +m( – λ)a
)∣∣q dλ

)/q

.

By simple calculations, we get

∫ /



∣∣∣∣
(

λ –



)∣∣∣∣p dλ =
∫ 

/

∣∣∣∣
(

λ –



)∣∣∣∣p dλ =
 + p+

p+(p + )
. (.)

Also the (α,m)-convexity of |f ′|p/(p–) implies that

∫ /



∣∣f ′(λb +m( – λ)a
)∣∣q dλ ≤ |f ′(ma)|q + |f ′(ma+b

 )|q
α + 

, (.)

∫ 

/

∣∣f ′(λb +m( – λ)a
)∣∣q dλ ≤ |f ′(ma+b

 )|q + |f ′(b)|q
α + 

. (.)

Therefore, by combining (.), (.) and (.), we get the required result. The proof is
completed. �

Corollary . Let f be defined as in Theorem .. If the mapping |f ′|p/(p–) is (α,m)-convex
on [a,b], for (α,m) ∈ [, ] with p >  and 

p +

q = . Then we have the following inequality:

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

(
 + p+

p+(p + )

)/p( 



q

)

×
[(∣∣f ′(ma)

∣∣q + ∣∣∣∣f ′
(
ma + b



)∣∣∣∣q
)/q

+
(∣∣∣∣f ′

(
ma + b



)∣∣∣∣q + ∣∣f ′(b)
∣∣q)/q]

. (.)

Corollary . By putting |f ′(ma)| = |f ′(b)| = , in Theorem ., we get

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ 

(b –ma)

(α + )

q

(
 + p+

p+(p + )

)/p∣∣∣∣f ′
(
ma + b



)∣∣∣∣. (.)
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In the following corollary, we have the mid point inequality for powers in terms of the
first derivative.

Corollary . By substituting f (ma) = f (ma+b
 ) = f (b) in Theorem ., we get

∣∣∣∣ 
b –ma

∫ b

ma
f (x)dx – f

(
ma + b



)∣∣∣∣
≤ (b –ma)

(
 + p+

p+(p + )

)/p 
(α + )/q

×
[(∣∣f ′(ma)

∣∣q + ∣∣∣∣f ′
(
ma + b



)∣∣∣∣q
)/q

+
(∣∣∣∣f ′

(
ma + b



)∣∣∣∣q + ∣∣f ′(b)
∣∣q)/q]

. (.)

In the following theorem, we obtain another form of Simpson inequality for powers in
term of the first derivative.

Theorem . Let f be defined as in Theorem .. If the mapping |f ′|q is (α,m)-convex on
[a,b], for (α,m) ∈ [, ] and q ≥ .We have the following inequality:

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

(



)–/q

× [(
u

∣∣f ′(b)
∣∣q +mu

∣∣f ′(a)
∣∣q)/q + (

u
∣∣f ′(b)

∣∣q +mu
∣∣f ′(a)

∣∣q)/q], (.)

where u = (–α )(–α )+(α)(–α )+(–α )
(α+)(α+) ,u = ( 

 – u),u = (α+)(–α )(–α )–(α)(–α )–(–α )+(α)–
(α+)(α+)

and u = ( 
 – u).

Proof From Lemma ., and using power mean inequality, we have

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

∫ 



∣∣k(λ)∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

≤ (b –ma)
∫ 





∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

+ (b –ma)
∫ 




∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

≤ (b –ma)
(∫ 





∣∣∣∣
(

λ –



)∣∣∣∣dλ

)– 
q
(∫ 





∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

) 
q

+ (b –ma)
(∫ 




∣∣∣∣
(

λ –



)∣∣∣∣dλ

)– 
q
(∫ 




∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣dλ

) 
q
.

The (α,m)-convexity of |f ′|q gives that
∫ 





∣∣∣∣λ –



∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣q dλ ≤ u

∣∣f ′(b)
∣∣q +mu

∣∣f ′(a)
∣∣q. (.)
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Also

∫ 

/

∣∣∣∣
(

λ –



)∣∣∣∣∣∣f ′(λb +m( – λ)a
)∣∣q dλ ≤ mu

∣∣f ′(a)
∣∣q + u

∣∣f ′(b)
∣∣q. (.)

By simple calculations, we have

∫ /



∣∣∣∣
(

λ –



)∣∣∣∣dλ =
∫ 

/

∣∣∣∣
(

λ –



)∣∣∣∣dλ =



. (.)

Our required result is obtained by combining inequalities (.), (.) and (.). The
proof is completed. �

Corollary . Let f be as in Theorem . and α = , the inequality holds for s-convex
functions:

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ (b –ma)

(



)–/q[(


,
∣∣f ′(b)

∣∣q + 
,

m
∣∣f ′(a)

∣∣q) 
q

+
(


,

∣∣f ′(b)
∣∣q + 

,
m

∣∣f ′(a)
∣∣q) 

q
]
. (.)

Moreover, if α = , m = , the inequality holds for convex function. If |f ′(x)| ≤ Q, ∀x ∈ I ,
then we have

∣∣∣∣ 
[
f (a) + f

(
a + b


)
+ f (b)

]
–


b – a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b – a)


·Q. (.)

Observation  It is observed that the inequality (.) with m =  gives an improvement
for the inequality (.).

The following corollary gives the refinement of inequality (.).

Corollary . Let f be as in Theorem ., then we have the following inequality:

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ b –ma

((α + )(α + ))

q

(



)–/q[
(v)/q + (v)/q

] × (
m

∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣), (.)

where v = (–α)(–α) + (α)(–α) + (–α), and v = (α+)(–α)(–α) – (α)(–α) –
(–α) + (α) – . Further, if α = , we get

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ [()/q + ()/q]

(,)/q
(b –ma)

(
m

∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣). (.)
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Proof Let us take inequality (.), for p > , q = p/(p – ). Suppose that

ψ = v
∣∣f ′(b)

∣∣q, ξ = vm
∣∣f ′(a)

∣∣q,
ψ = vm

∣∣f ′(a)
∣∣q, ξ = v

∣∣f ′(b)
∣∣q.

Take  < /q < , for q >  and by using the well-known fact,

n∑
j=

(ξj +ψj)r ≤
n∑
j=

ξ r
j +

n∑
j=

ψ r
j ,

we consider  < r < , ξ, ξ, . . . , ξn ≥  and ψ,ψ, . . . ,ψn ≥ . For n = , we have

∣∣∣∣ 
[
f (ma) + f

(
ma + b



)
+ f (b)

]
–


b –ma

∫ b

ma
f (x)dx

∣∣∣∣
≤ [()/q + ()/q]

(,)/q
(b –ma)

(
m

∣∣f ′(a)
∣∣ + ∣∣f ′(b)

∣∣).
The proof is completed. �

3 Application to Simpson’s formula
Suppose D be the partition of the interval [a,b], with hi = (xi+ – xi)/ and suppose that
D : a = x < x < · · · < xn– < xn = b. Since the Simpson’s formula is:

Sn(f ,D) =
n–∑
i=

f (xi) + f (xi + hi) + f (xi+)


(xi+ – xi). (.)

We know that if the function f : [a,b] → R, is differentiable such that the fourth deriva-
tive of f (x) exists on (a,b) and K =maxx∈(a,b) |f ()(x)| <∞, we have

I =
∫ b

a
f (x)dx = Sn(f ,D) + ES

n(f ,D), (.)

where the error term ES
n(f ,D) of the integral I by Simpson’s formula Sn(f ,D) fulfils the

following:

∣∣ES
n(f ,D)

∣∣ ≤ K


n–∑
i=

(xi+ – xi). (.)

Clearly, (.) cannot be applied, if the fourth derivative of f is not bounded on (a,b).
Some new error estimates for the Simpson’s rule in terms of first and second derivative
are presented as follows.

Proposition . Let f be defined as in Corollary .. If the mapping |f ′| is (α,m)-convex
on [a,b], then for every division D of [a,b], in (.), we have

∣∣ES
n(f ,D)

∣∣ ≤ 


n–∑
i=

(xi+ –mxi)
[∣∣f ′(mxi)

∣∣ + ∣∣f ′(xi+)
∣∣].
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Proof Let D be the division of the subintervals [xi+ – xi] (i = , , . . . ,n – ). By applying
Corollary . on the subintervals, we get

∣∣∣∣ (xi+ –mxi)


(
f (mxi) + f

(
xi+ –mxi



)
+ f (xi+)

)
–

∫ xi+

mxi
f (x)dx

∣∣∣∣
≤ (xi+ –mxi)


[∣∣mf ′(xi)

∣∣ + ∣∣f ′(xi+)
∣∣].

Using the (α,m)-convexity of |f ′|, by summing over i from  to n – , and by triangle in-
equality, we get

∣∣∣∣Sn(f ,D) –
∫ b

a
f (x)dx

∣∣∣∣ ≤ 


n–∑
i=

(xi+ –mxi)
[∣∣mf ′(xi)

∣∣ + ∣∣f ′(xi+)
∣∣].

The proof is completed. �

The proof of following proposition is same as of Proposition . and by using Corol-
lary ..

Proposition . Let f be defined as in Proposition .. If |f ′|p/(p–) is (α,m)-convex on [a,b],
p > , then for every division D of [a,b], in (.), we have

∣∣ES
n(f ,D)

∣∣ ≤
(

 + p+

p+(p + )

)/p( 



q

)

×
n–∑
i=

(xi+ –mxi)
[(∣∣f ′(mxi)

∣∣q + ∣∣∣∣f ′
(
mxi + xi+



)∣∣∣∣q
)/q

+
(∣∣∣∣f ′

(
mxi + xi+



)∣∣∣∣q + ∣∣f ′(xi+)
∣∣q)/q]

.

4 Application to themidpoint formula
Suppose D be the partition of the interval [a,b], with hi = (xi+ – xi)/ and suppose that
D : a = x < x < · · · < xn– < xn = b. Since the midpoint formula is:

M(f ,D) =
n–∑
i=

(xi+ – xi)f
(
xi + xi+



)
. (.)

We know that, if the function f : [a,b] → R, is differentiable such that second derivative
of f (x) on (a,b) exists and K =maxx∈(a,b) |f (x)| < ∞, then

I =
∫ b

a
f (x)dx =M(f ,D) + EM(f ,D). (.)

Where the error term EM(f ,D) of the integral I by the mid point formulaM(f ,D) fulfils
the following:

∣∣EM(f ,D)
∣∣ ≤ K̃



n–∑
i=

(xi+ – xi). (.)
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Here, we derive some new better error estimates for the remainder term EM(f ,D) in
terms of the first derivative which are refined estimates as compared to presented in [].

Proposition . Let f be defined as in Corollary .. If the mapping |f ′| is (α,m)-convex
on [a,b], then for every division D of [a,b], in (.), we have

∣∣EM(f ,D)
∣∣ ≤ 



n–∑
i=

(xi+ – xi)
[∣∣f ′(xi)

∣∣ + ∣∣f ′(xi+)
∣∣].

Proof Let D be the division of the subintervals [xi+ – xi] (i = , , . . . ,n – ). By applying
Corollary . on the subintervals, we get

∣∣∣∣(xi+ – xi)f
(
xi+ + xi



)
–

∫ xi+

xi
f (x)dx

∣∣∣∣ ≤ (xi+ – xi)


[∣∣f ′(xi)

∣∣ + ∣∣f ′(xi+)
∣∣].

Using the (α,m)-convexity of |f ′|, by summing over i from  to n – , and by triangle in-
equality, we get

∣∣EM(f ,D)
∣∣ ≤ 



n–∑
i=

(xi+ – xi)
[∣∣f ′(xi)

∣∣ + ∣∣f ′(xi+)
∣∣].

The proof is completed. �

The proof of following proposition is same as of Proposition ., by putting m =  in
Corollary ..

Proposition. Let f be defined as in Proposition .. If |f ′|p/(p–) is (α,m)-convex on [a,b],
p > , then for every division D of [a,b], in (.), we have

∣∣EM(f ,D)
∣∣ ≤

(
 + p+

p+(p + )

)/p( 



q

)

×
n–∑
i=

(xi+ – xi)
[(∣∣f ′(xi)

∣∣q + ∣∣∣∣f ′
(
xi + xi+



)∣∣∣∣q
)/q

+
(∣∣∣∣f ′

(
xi + xi+



)∣∣∣∣q + ∣∣f ′(xi+)
∣∣q)/q]

.

5 Application to some special means
We now consider the applications of our main theorem to the special means.
(a) The arithmetic mean:

A = A(a,b) :=
a + b


, a,b > .

(b) The logarithmic mean:

L = L(a,b) =

⎧⎨
⎩a, if a = b,

b–a
lnb–lna , if a �= b,

a,b > .
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(c) The p-logarithmic mean:

Lp ≡ Lp(a,b) =

⎧⎨
⎩a, if a = b,

bp+–ap+
(p+)(b–a) , if a �= b,

p ∈ \{–, } : a,b > .

It is well known that LP is monotonic nondecreasing over p ∈ R with L– := L and L := I .
In particular, we have L ≤ A.
Suppose that α ∈ (, ] and ϕ,φ,χ ∈ R. Consider the function g : [,∞)→ [,∞) as

g(t) =

⎧⎨
⎩ϕ, t = ,

φtα + χ , t > 

for φ ≥  and  ≤ χ ≤ ϕ, we have g ∈ K
α []. Thus, by taking ϕ = χ = , φ = , we get

g : [,∞) → [,∞) implies: g(t) = tα , g ∈ K
α .

Consider f : [a,b] → R ( < a < b), f (x) = xα , α ∈ (, ]. Then we have the following
means:


b – a

∫ b

a
f (x)dx = Lα

α(a,b),

f (a) + f (b)


= A
(
aα ,bα

)
,

f
(
a + b


)
= Aα(a,b).

Now using the results of Section , some new inequalities are derived for the above
means.

Proposition . Let f : [a,b] → R,  < a < b and n ∈N . Then we have
∣∣∣∣ A(

aα ,bα
)
+


Aα(a,b) – Lα

α(a,b)
∣∣∣∣

≤ α(b – a)
–α – ()–α + ()α+()–α + α – 

(α + )(α + )
[|a|α– + |b|α–]. (.)

Proof The assertion follows by takingm =  and from inequality (.) applied to the map-
ping f (x) = xα , x ∈ [a,b] with n ∈ N .
Moreover, by setting α =  in inequality (.), we get

∣∣A(a,b) – L(a,b)
∣∣ ≤ 


(b – a). �

Proposition . Let f : [a,b] → R,  < a < b and n ∈N . Then we have
∣∣∣∣ A(

aα ,bα
)
+


Aα(a,b) – Lα

α(a,b)
∣∣∣∣

≤ α(b – a)
(

 + p+

p+(p + )

)/p
α

(α + )/q

× [(∣∣aα–∣∣q + ∣∣Aα–(a,b)
∣∣q)/q + (∣∣Aα–(a,b)

∣∣q + ∣∣bα–∣∣q)/q]. (.)
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Proof The assertion follows by takingm =  and from inequality (.) applied to the map-
ping f (x) = xα , x ∈ [a,b] and n ∈N .
Moreover, by setting α =  in inequality (.), we get

∣∣A(a,b) – L(a,b)
∣∣ ≤ (b – a)

(
 + p+

p+(p + )

)/p

. �
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