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Abstract
In this paper we obtain some new bounds for Chebyshev polynomials and their
analogues. They lead to the results about zero distributions of certain sums of
Chebyshev polynomials and their analogues. Also we get an interesting property
about the integrals of certain sums of Chebyshev polynomials.
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1 Introduction
Let Tn(x) andUn(x) be the Chebyshev polynomials of the first kind and of the second kind,
respectively. These polynomials satisfy the recurrence relations

T(x) = , T(x) = x, Tn+(x) = xTn(x) – Tn–(x) (n≥ )

U(x) = , U(x) = x, Un+(x) = xUn(x) –Un–(x) (n≥ ).
()

Chebyshev polynomials are of great importance in many areas of mathematics, particu-
larly approximation theory. Many papers and books [, ] have been written about these
polynomials. Chebyshev polynomials defined on [–, ] are well understood, but the poly-
nomials of complex arguments are less so. Reported here are several bounds for Cheby-
shev polynomials defined on C including zero distributions of certain sums of Chebyshev
polynomials. Moreover, we will introduce certain analogues of Chebyshev polynomials
and study their properties. Also we get an interesting property about the integrals of cer-
tain sums of Chebyshev polynomials.
Other generalized Chebyshev polynomials (known as Shabat polynomials) have been

introduced in [] and they are studied in the theory of graphs on surfaces and curves over
number fields. For a survey in this area, see [].
For n≥  and  – ε >  + ε ≥ , i.e.,  ≤ ε < /, we let

Tn,ε(z) := ( + ε)
(
Tn(z) – Tn()

)
+ Tn(),

Un,ε(z) := ( – ε)
(
Un(z) –Un()

)
+Un().

In detail,

Tn() =Un() =

⎧⎨
⎩
 if n is odd,

(–)n/ if n is even,

T,ε(z) =U,ε(z) = T(z) =U(z) = ,
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and it is easy to show that for an odd integer n,

Tn+,ε(z) = zTn,ε(z) – Tn–,ε(z),

Un+,ε(z) = zUn,ε(z) –Un–,ε(z).

Since Tn,(z) = Tn(z), we may apply results about Tn,ε(z) to those about Tn(z). ButUn,(z) =
Un(z) and ε was a nonnegative real number less than /, and so properties of Un(z) will
be investigated separately from those of Un,ε(z).

2 New results
In this section we list some new results related to the bounds of Chebyshev polynomials
Tn(z), Un(z) and their analogues Tn,ε(z), Un,ε(z) defined on C including zero distributions
of certain sums of Chebyshev polynomials and their analogues. And we will get an inter-
esting property about the integrals of certain sums of Chebyshev polynomials. We first
begin with properties about bounds of Tn(z), Un(z), Tn,ε(z) and Un,ε(z). We may compute
that for n≥ ,

Tn,ε(z) =

⎧⎪⎪⎨
⎪⎪⎩
( + ε)Tn(z) if n is odd,

( + ε)Tn(z) – ε if n is even and  | n,
( + ε)Tn(z) + ε if n is even and  � n,

and

Un,ε(z) =

⎧⎪⎪⎨
⎪⎪⎩
( – ε)Un(z) if n is odd,

( – ε)Un(z) –  + ε if n is even and  | n,
( – ε)Un(z) +  – ε if n is even and  � n.

Proposition  Suppose that z is a complex number satisfying |z| ≥ . Then for n≥ ,

∣∣Un(z)
∣∣ – ∣∣Un–(z)

∣∣ ≥ 

and

∣∣Un(z)
∣∣ – ∣∣Tn(z)

∣∣ ≥ . ()

Also

∣∣Un,ε(z)
∣∣ – ∣∣Un–,ε(z)

∣∣ ≥  ()

and

∣∣Un,ε(z)
∣∣ – ∣∣Tn,ε(z)

∣∣ >
⎧⎨
⎩
 + ε if n is odd,

ε if n is even.
()

Proposition  will be used in the proofs of Theorems  and .
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Remarks For a complex number z with |z| ≥ , we may follow the procedure of the proof
of () to obtain

∣∣Tn(z)
∣∣ – ∣∣Tn–(z)

∣∣ ≥  (n≥ )

and

∣∣Un(z)
∣∣ ≥ n +  (n≥ )

that is best possible since |Un()| = n + . There seem to be larger lower bounds than  for
|Un(z)| – |Tn(z)| in (). First, we observe that

min|z|≥

(∣∣Un(z)
∣∣ – ∣∣Tn(z)

∣∣) ≤ n

because |Un()|– |Tn()| = (n+)– = n. Deciding in some general situations exactly where
the minimum occurs seems to be extremely difficult. For example, machine calculation
suggests that for n = , |U(z)| – |T(z)| takes its minimum . . . . in |z| ≥  at four
modulus  roots ±. . . .± i. . . . of the polynomial

x – x + x – x + x

– x + x – x + .

But we may conjecture that, by numerical computations, the value

min|z|≥

(∣∣Un(z)
∣∣ – ∣∣Tn(z)

∣∣)

occurs in |z| =  and lies between n–/ and n, where n–/ can be replaced by something
larger. We now ask naturally what the minimum is for |z| = t > . If one simply looks at the
case z = t, it seems that |Un(z)| – |Tn(z)| is close to its minimum at z = t. But

∣∣Un(t)
∣∣ – ∣∣Tn(t)

∣∣ =Un(t) – Tn(t)

is the coefficient of xn– in the power series expansion of t/( – tx + t). In fact,

tx
 – tx + x

=


 – tx + x
–

 – tx
 – tx + x

=
∞∑
n=

Un(t)xn –
∞∑
n=

Tn(t)xn =
∞∑
n=

(
Un(t) – Tn(t)

)
xn.

For |z| ≥ , |Un(z)| ≥ |Tn(z)| +  by (). In the following proposition, we obtain an upper
bound for arbitrary z = cos θ , θ /∈R.

Proposition  Let z = cos θ , where θ = α + iβ and β �= . Then, for n ≥ ,

∣∣Un(z)
∣∣ ≤ ( + cothβ cothnβ)

∣∣Tn(z)
∣∣. ()
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Remarks With the same notations with Proposition , it follows from

|z| = | cos θ | = 

(cosα + coshβ)

that, for |z| large, |β| is large. But cothβ cothnβ >  and

lim
β→±∞ cothβ cothnβ = .

These imply that the upper bound

( + cothβ cothnβ)
∣∣Tn(z)

∣∣
is greater than |Tn(z)|, but for |z| large, it is close to |Tn(z)|. Also by machine computa-
tions (e.g., n =  and z =  + i), we may check that the inequality () is sharp.

It is natural to ask about the bounds on the unit circle.

Proposition  For |z| = , we have


n + 

∣∣Un(z)
∣∣ ≤ ∣∣Tn(z)

∣∣ < ∣∣Un(z)
∣∣. ()

Remarks The right inequality in () will be shown in Section  by using (). So obtaining
a better lower bound than  in () can improve this inequality. The left inequality in () is
best possible in the sense that


n + 

∣∣Un(±)
∣∣ = ∣∣Tn(±)

∣∣ = .

For |z| = , it is easy to see

∣∣Tn,ε(z)
∣∣ < ∣∣Un,ε(z)

∣∣
by (), and it seems to be true that


n + 

∣∣Un,ε(z)
∣∣ ≤ ∣∣Tn,ε(z)

∣∣. ()

The proof of () will be given in Section  by using a well-known identity Un(z) = Tn(z) +
zUn–(z). ButUn,ε(z) = Tn,ε(z) + zUn–,ε(z) does not hold. So we cannot use this to prove ()
if it is true.

All zeros of the polynomial Tn(z) +Un(z) lie in (–, ). More generally the convex com-
bination of Tn(z) and Un(z) has all its zeros in (–, ). This will be proved in Proposi-
tion  below. So one might ask: where are the zeros of polynomials like Tn(z) + zkUn(z)
or Un(z) + zkTn(z) around |z| = ? The next theorem answers this for Tn(z) + zkUn(z).

Theorem  Let P(z) := Tn(z) + zkUn(z) for positive integers n and k. Then P(z) has all its
zeros in |z| < . Furthermore, for k even, P(z) has at least n real zeros, and for k odd, P(z)
has at least n –  real zeros.

http://www.journalofinequalitiesandapplications.com/content/2012/1/167
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Remarks Let P(z) :=Un(z) + zkTn(z) for positive integers n and k. We can use the same
method as in the proof of Theorem  to show that P(z) has at least n real zeros in (–, ).
Furthermore, for k even, there is no real zero outside [–, ], and for k odd, there is one
more real zero on z < –.

Proposition  The polynomial

( – λ)Tn(z) + λUn(z) ( ≤ λ ≤ )

has all zeros in (–, ).

Using analogues of Tn(z) andUn(z), we consider analogues of P(z) and investigate their
zero distributions. Define

P,ε(z) := Tn,ε(z) + zkUn,ε(z).

Theorem  P,ε(z) has all its zeros in |z| < .

Finally, we get an interesting property about the integrals of sums of Chebyshev polyno-
mials. Observe that

∫ π


Tn

(
eiθ

)
dθ =

∫ π


Un

(
eiθ

)
dθ = Tn() · π =

⎧⎨
⎩
(–)n/ if n is even,

 if n is odd

and

∫ π



∣∣Tn
(
eiθ

)∣∣ dθ

(
or

∫ π



∣∣Un
(
eiθ

)∣∣ dθ

)

equals

π · sum of the squares of all coefficients of Tn(z) (or Un(z)).

For example, from T(z) = z –z +  andU(z) = z –z +z –  we can calculate

∫ π



∣∣T
(
eiθ

)∣∣ dθ = π
(
 +  + 

)
= π ,

∫ π



∣∣U
(
eiθ

)∣∣ dθ = π
(
 +  + 

)
= π

and we see that these two integrals are different. But for P(z) = Tn(z)+ zkUn(z) and P(z) =
Un(z) + zkTn(z), the integrals have the same value.

Proposition  For z = eiθ ,

∫ π



∣∣P(eiθ )
∣∣ dθ =

∫ π



∣∣P(eiθ )
∣∣ dθ .

http://www.journalofinequalitiesandapplications.com/content/2012/1/167
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Remark It seems to be true that for k large, z = eiθ ,

∫ π



∣∣P
(
eiθ

)∣∣dθ ≈
∫ π



∣∣P
(
eiθ

)∣∣dθ ,

but

lim
k→∞

∫ π



∣∣P
(
eiθ

)∣∣dθ = lim
k→∞

∫ π



∣∣P
(
eiθ

)∣∣dθ .

These remain open problems.

3 Proofs

Proof of Proposition  Suppose that z is a complex number satisfying |z| ≥ . Using (), for
n≥ , we have

∣∣Un+(z)
∣∣ ≥ 

∣∣Un(z)
∣∣ – ∣∣Un–(z)

∣∣
and

∣∣Un+(z)
∣∣ – ∣∣Un(z)

∣∣ ≥ ∣∣Un(z)
∣∣ – ∣∣Un–(z)

∣∣.
Then by recurrence,

∣∣Un(z)
∣∣ – ∣∣Un–(z)

∣∣ ≥ ∣∣U(z)
∣∣ – ∣∣U(z)

∣∣ = |z| –  ≥ . ()

By () and the identity

Tn(z) =


(
Un(z) –Un–(z)

)
,

we have

∣∣Tn(z)
∣∣ ≤ 


∣∣Un(z)

∣∣ + 

∣∣Un–(z)

∣∣
≤ 


∣∣Un(z)

∣∣ + 

(∣∣Un(z)

∣∣ – 
)

=
∣∣Un(z)

∣∣ – . ()

Next we prove the results aboutUn,ε(z) and Tn,ε(z). For n odd and  | n– , it follows from
the definition of Un,ε(z) and () that

∣∣Un,ε(z)
∣∣ – ∣∣Un–,ε(z)

∣∣ = ∣∣( – ε)Un(z)
∣∣ – ∣∣( – ε)Un–(z) – ( – ε)

∣∣
≥ ∣∣( – ε)Un(z)

∣∣ – ∣∣( – ε)Un–(z)
∣∣ – ( – ε)

= ( – ε)
(∣∣Un(z)

∣∣ – ∣∣Un–(z)
∣∣) – ( – ε)

≥  – ε –  + ε = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/167


Kim Journal of Inequalities and Applications 2012, 2012:167 Page 7 of 10
http://www.journalofinequalitiesandapplications.com/content/2012/1/167

This inequality

∣∣Un,ε(z)
∣∣ – ∣∣Un–,ε(z)

∣∣ ≥ 

for other three cases (i.e., n odd and  � n– , n even and  | n– , n even and  � n– ) can
be proved in the same way. Finally, for n odd, by  – ε >  + ε and (), we have

∣∣Un,ε(z)
∣∣ – ∣∣Tn,ε(z)

∣∣ = ( – ε)
∣∣Un(z)

∣∣ – ( + ε)
∣∣Tn(z)

∣∣
> ( + ε)

(∣∣Un(z)
∣∣ – ∣∣Tn(z)

∣∣) ≥  + ε.

In the same way, we can check that for n even,

∣∣Un,ε(z)
∣∣ – ∣∣Tn,ε(z)

∣∣ > ε. �

Proof of Proposition  Using the identity Un(z) = Tn(z) + zUn–(z), for z = cos θ we have

∣∣∣∣Un(z)
Tn(z)

∣∣∣∣ =
∣∣∣∣ + z

Un–(z)
Tn(z)

∣∣∣∣ =
∣∣∣∣ + cos θ

tannθ

sin θ

∣∣∣∣
= | + cot θ tannθ | ≤  + | cot θ tannθ |.

If we set θ = α + iβ , α,β ∈R, then

sin θ = sinα coshβ + i cosα sinhβ ,

cos θ = cosα coshβ – i sinα sinhβ .

Since z̄ = cos θ̄ , it suffices to consider the case β > . The above implies

| tan θ | = sin α cos α + sinh β cosh β

(cos α + sinh β)
≤ sinh β cosh β

sinh β
.

So

| tannθ | ≤ cothnβ . ()

Also

| sin θ | = sin α cosh β + cos α sinh β

≥ (
sin α + cos α

)
sinh β

and

| cos θ | = cos α cosh β + sin α sinh β

≤ (
sin α + cos α

)
cosh β ,

and so

| cot θ | ≤ cothβ . ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/167
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Now we see with () and () that

| cot θ tannθ | ≤ cothβ cothnβ . �

Proof of Proposition  Suppose that z is a complex number satisfying |z| = . First, it follows
from () that

∣∣∣∣Tn(z)
Un(z)

∣∣∣∣ < .

Using the identity Un(z) = Tn(z) + zUn–(z), we have
∣∣∣∣Tn(z)
Un(z)

∣∣∣∣ =
∣∣∣∣ – z

Un–(z)
Un(z)

∣∣∣∣ ≥  –
∣∣∣∣Un–(z)
Un(z)

∣∣∣∣
and so it is enough to show that

∣∣∣∣Un–(z)
Un(z)

∣∣∣∣ ≤  –


n + 
=

n
n + 

.

We use induction on n. For n = ,
∣∣U(z)
U(z)

∣∣ = ∣∣ 
z

∣∣ = 
 . Assume the result holds for k. Then

∣∣∣∣Uk+(z)
Uk(z)

∣∣∣∣ =
∣∣∣∣z – Uk–(z)

Uk(z)

∣∣∣∣ ≥  –
∣∣∣∣Uk–(z)
Uk(z)

∣∣∣∣ ≥  –
k

k + 
=
k + 
k + 

,

and
∣∣∣∣ Uk(z)
Uk+(z)

∣∣∣∣ ≤ k + 
k + 

. �

Proof of Theorem  All zeros of Tn(z) andUn(z) are real and lie in (–, ) and for ≤ k ≤ n,

Tn

(
cos

(k – )π
n

)
= , Un

(
cos

kπ
n + 

)
= .

For convenience, by removing ‘cos’ and the constant π , cos (k–)π
n and cos kπ

n+ can be iden-
tified with the ascending chain of rational numbers (k–)

n and k
n+ , respectively. We may

calculate that for n odd
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k–
n < k

n+ <
k+
n ,  ≤ k < n+

 ,
k+
n = k+

n+ , k = n–
 ,

k–
n < k+

n+ <
k+
n , n–

 < k < n – ,
k–
n < k+

n+ , k = n – 

and for n even
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k–
n < k

n+ <
k+
n ,  ≤ k < n

 ,
k–
n < k

n+ <
k+
n+ <

k+
n , k = n

 ,
k–
n < k+

n+ <
k+
n , n

 < k < n – ,
k–
n < k+

n+ , k = n – .

http://www.journalofinequalitiesandapplications.com/content/2012/1/167
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By using the above and denoting � a zero of Tn(z), � a zero of zkUn(z), we see that, for n
even, all zeros between – and  listed in increasing order are of the form

� � � � · · · � � � � �︸︷︷︸ � � � � · · · � � � �,

where the center �︸︷︷︸ is the  that is the zero of zk . For n odd, all zeros listed in increasing
order are of the form

� � � � · · · � � � � ���︸ ︷︷ ︸ � � � � · · · � � � �,

where the center���︸ ︷︷ ︸ means that all those three numbers�,�,� are cos π
 =  and one

� comes from the zero of zk . Now consider sign changes using the above two chains in
increasing order so that for n odd or even we may check that, if k is even, P(z) has at least
n real zeros in (–, ), and if k is odd, P(z) has at least n –  real zeros in (–, ). On the
other hand, the zeros z of P(z) satisfy

∣∣∣∣Tn(z)
Un(z)

∣∣∣∣ = |z|k .

If |z| ≥ , then |Tn(z)| ≥ |Un(z)|, which contradicts (). Thus all zeros of P(z) lie in |z| < .�

‘Bad pairs’ of polynomial zeros were defined in []. It is an easy consequence of Fell []
that, if the all zeros of Tn(z) and Un(z) form ‘good pairs’, their convex combination has all
its zeros real.

Proof of Proposition  Following the proof of Theorem , we may see that for n even, all
zeros Tn(z) and Un(z) between – and  listed in increasing order are of the form

� � � � · · · � � � � � � · · · � � � �.

For n odd, all zeros listed in increasing order are of the form

� � � � · · · � � ��︸︷︷︸ � � � � · · · � � � �,

where the center ��︸︷︷︸ means that both numbers �, � are cos π
 = . Thus we can see

that for n even, all zeros of Tn(z) and Un(z) form good pairs, and for n odd, all pairs from
integral polynomials Tn(z)/z and Un(z)/z are good. It follows that, by Fell [], all zeros of
the convex combination are real and in (–, ). �

Proof of Theorem  The zeros z of P,ε(z) satisfy

∣∣∣∣Tn,ε(z)
Un,ε(z)

∣∣∣∣ = |z|k .

If |z| ≥ , then |Tn,ε(z)| ≥ |Un,ε(z)|, which contradicts (). �

Proof of Proposition  Using |z| = zz̄, we have

∣∣P(z)
∣∣ = (

Tn
(
eiθ

)
+ eikθUn

(
eiθ

))(
Tn

(
e–iθ

)
+ e–ikθUn

(
e–iθ

))

http://www.journalofinequalitiesandapplications.com/content/2012/1/167
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and

∣∣P(z)
∣∣ = (

Un
(
eiθ

)
+ eikθTn

(
eiθ

))(
Un

(
e–iθ

)
+ e–ikθTn

(
e–iθ

))
.

So we only need to show that

∫ π



(
e–ikθTn

(
eiθ

)
Un

(
e–iθ

)
+ eikθTn

(
e–iθ

)
Un

(
eiθ

))
dθ

=
∫ π



(
e–ikθTn

(
e–iθ

)
Un

(
eiθ

)
+ eikθTn

(
eiθ

)
Un

(
e–iθ

))
dθ

and

∫ π



(
– sinkθTn

(
eiθ

)
Un

(
e–iθ

)
+ sinkθTn

(
e–iθ

)
Un

(
eiθ

))
dθ

=
∫ π



(
– sinkθTn

(
e–iθ

)
Un

(
eiθ

)
+ sinkθTn

(
eiθ

)
Un

(
e–iθ

))
dθ .

But this equality follows from just replacing the variable θ by –θ . �
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