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Abstract

Background: Thousands of landslides were triggered by the Hokkaido Eastern Iburi earthquake on 6 September
2018 in Iburi regions of Hokkaido, Northern Japan. Most of the landslides (5627 points) occurred intensively
between the epicenter and the station that recorded the highest peak ground acceleration. Hundreds of
aftershocks followed the major shocks. Moreover, in Iburi region, there is a high possibility of earthquakes occurring
in the future. Effective prediction and susceptibility assessment methods are required for sustainable management
and disaster mitigation in the study area. The aim of this study is to evaluate the performance of an autoencoder
framework based on deep neural network for prediction and susceptibility assessment of regional landslides
triggered by earthquakes.

Results: By applying 12 sampling sizes and 12 landslide-influencing factors, 12 landslide susceptibility maps were
produced using an autoencoder framework. The results of the model were evaluated using qualitative and
quantitative assessment methods. The ratios of the sampling sizes on the non-landslide points randomly generated
from the combination zone including plain and mountain (PM) and a mountainous only zone (M) affected different
prediction abilities of the model’s performance.

Conclusions: The 12 susceptibility maps, including the landslide susceptibility index, indicated the various spatial
distributions of the landslide susceptibility values in both PM and the M. The highly accurate models explicitly
distinguished the potential areas of landslide from stable areas without expanding the spatial extent of the
potential landslide areas. The autoencoder is proved to be an effective and efficient method for extracting spatial
patterns through unsupervised learning for the prediction and susceptibility assessment of landslide areas.
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Introduction
A magnitude (Mj) 6.7 earthquake occurred on 6 Septem-
ber 2018 at a depth of approximately 35 km in the cen-
tral and eastern Iburi regions of Hokkaido in Northern
Japan. The reported damage included 41 fatalities, 691
injured persons, and 1016 severely collapsed houses. The
Japan Meteorological Agency (JMA) designated this
earthquake the 2018 Hokkaido Eastern Iburi Earthquake
(Fujiwara et al. 2019). Most of the landslides occurred
between the epicenter and the highest peak ground ac-
celeration recording station (No HKD 127, Japan).
Various landslide susceptibility methods have evaluated

regional landslide areas for spatial prediction and suscepti-
bility assessment by applying different techniques, such as
logistic regression (Lee 2005; Ayalew and Yamagishi 2005;
Bai et al. 2010; Aditian et al. 2018), decision trees (Saito
et al. 2009; Yeon et al. 2010), analytical hierarchy process
(Vijith and Dodge, 2019), knowledge driven statistical
models (Roy and Saha, 2019), naïve Bayes (Tien Bui et al.
2012; Tsangaratos and Ilia. 2016), support vector ma-
chines (Yao et al. 2008; Yilmaz 2010; Xu et al. 2012; Balla-
bio and Sterlacchini 2012; Zhou and Fang 2015), random
forest (Alessandro et al. 2015; Trigila et al. 2015; Hong
et al. 2016), and artificial neural networks (Pradhan et al.
2010; Arnone et al. 2016).
Recently, with the rapid development of deep neural

networks, state-of-the-art learning approaches in the field
of deep learning have been successfully applied in land-
slide susceptibility mapping, landslide deformation predic-
tion, and landslide time series displacement, including the
following techniques: the adaptive neuro-fuzzy inference
system (Park et al. 2012); recurrent neural networks (Chen
et al. 2015); deep belief networks (Huang and Xiang
2018); long short-term memory (Xiao et al. 2018; Yang
et al. 2019); and convolutional neural networks (Wang
et al. 2019) since the classification capability of a neural
network to fit a decision boundary plane has become sig-
nificantly more reliable (LeCun et al. 2015).
In the field of landslide hazard assessment, unsuper-

vised learning methods have been focused mainly on
landslide inventory detection and landuse classification
for image analysis using interferometric synthetic-
aperture radar (Mabu et al. 2019) and high-resolution
satellite imaging (Liu and Wu 2016; Romero et al. 2016;
Lu et al. 2019) in deep learning.
In deep learning, the autoencoder is one type of un-

supervised learning method, in which a pre-training algo-
rithm is used to address the problem of backpropagation
in the absence of a teacher. The input data are used as the
teacher in a neural network that is trained to be symmet-
rical from input to output for dimensionality reduction
and feature extraction (Yu and Príncipe 2019). The en-
coder and decoder are the main frameworks for unsuper-
vised deep learning. In some techniques used in the field

of deep learning, there is a lack of an encoder or a de-
coder. It is costly to compute an encoder and decoder to
optimize algorithms for finding a code or sampling
methods to achieve a framework. An autoencoder can
capture both an encoder and a decoder in its structure by
training landslide influencing factors.
The purpose of this study is to evaluate performance

of an autoencoder framework for the susceptibility as-
sessment of regional landslides triggered by earthquakes
in Iburi region of Hokkaido in Northern Japan. The two
primary contributions of this work were as follows. First,
12 different models were set up by various sampling
methods using a large amount of data to prevent overfit-
ting while avoiding sampling strategy issues. Second, the
autoencoder framework for feature extraction and di-
mensionality reduction was used for landslide suscepti-
bility mapping. An autoencoder that transforms inputs
into outputs with the least possible amount of distortion
was pre-trained for feature extraction through dimen-
sionality reduction. Subsequently, landslide susceptibility
maps were produced using a deep neural network by su-
pervised learning. To assess the effectiveness of the auto-
encoder based on a deep neural network, qualitative and
quantitative assessment methods were used to measure
the imbalanced data.

Study area
The study area was located in tectonically active regions
between the Pacific, North American, Eurasian, and
Philippine plates, where exist the deepest trenches, such
as the Northeast Honshu Arc-Japan Trench and the
Kuril Arc-Trench (Kimura 1994; Tamaki et al. 2010).
These trenches are mainly composed of sedimentary
Quaternary deposits and Neogene rocks, and the soil
layers consist of pyroclastic tephra deposits mainly de-
rived from Tarumae caldera, including pumice, volcanic
ash, and clay, which were found distributed over a wide
area (Tajika et al. 2016). The total thickness of the pyro-
clastic tephra deposits is about 4–5m in and around the
epicentral area. The highest elevation is less than 700 m.
The elevation of the terrain that was affected the most
ranges from 100 to 200 m, with slope gradients of 25–
30°. After a powerful typhoon (No 21, “Jebi”), the Iburi
earthquake occurred. However, some reports claimed
that typhoons did not pass directly through the landslide
areas and that the average cumulative rain was signifi-
cantly lower than in the month before the earthquake
(Zhang et al. 2019).

Spatial data setting
The landslide inventory map was generated using aerial
photographs of the study area, which were taken after
the landslides. Then a detailed landslide inventory map
incorporating 5627 points of individual landslides was
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created from the landslide polygon data using a centroid
technique in the ArcGIS environment. Twelve factors
that influence landslides were selected from three cat-
egories: topography, hydrology, and seismic data.

Landslide inventory mapping
Aerial photographs (ortho-photographs) of the entire
area affected by the earthquake were quickly taken by
the Geographical Survey Institute, Japan (GSI) as well as
several aerial surveying companies. The photographs
were posted with analyzed satellite images on the Web
as public information. The original polygon shape of
3307 landslide sites was released by the GSI several days
after the main shock (Fujiwara et al. 2019). Further re-
construction was carried out to remodify the landslide
polygon based on valley lines, ridgelines, hill shade,
slope, and aspect, which was generated by a resolution
of 10 m. Finally, a detailed landslide inventory map in-
corporating 5627 points of individual landslides was cre-
ated by extracting the centroids of the landslide
polygons (Fig. 1). This technique has been widely
adopted in many landslide susceptibility methods be-
cause it is efficient in simplifying landslide data (Tsan-
garatos et al. 2017). There is no guiding principle for
selecting the boundaries of study areas. According to
Zhang et al. (2019), the directional distribution tool

(Standard Deviational Ellipse) in ArcGIS 10.6 indicates
ellipses containing certain percentages of the features
through standard deviations in the landslide areas. The
tool could be useful to guide the deployment of disaster
relief operations and mitigation strategies. In the present
study, to select the boundaries of the study area, an el-
lipse corresponding to standard deviations was generated
by the directional distribution tool to indicate the gen-
eral trend of the features. The tool may also be useful in
the field of landslide susceptibility mapping for designat-
ing the boundaries of the study area, especially the area
of landslides triggered by an earthquake as well as active
faults in and around the epicenter.

Landslide influencing factors
The pixel size of the factors that influenced the land-
slides was set to 10 m × 10m regardless of the resolution
of the original data source (Zhu et al. 2018). In landslide
susceptibility modeling, a landslide may reoccur under
conditions similar to past landslides (Westen et al. 2003;
Lee and Talib, 2005; Dagdelenler et al. 2016). There is
no common guideline for selecting the factors that influ-
ence landslides (Ayalew and Yamagishi. 2005; Yalcin
2008) In this study, 12 factors were selected to evaluate
landslide susceptibility: elevation, slope angle, the nor-
malized difference vegetation index (NDVI), distance to

Fig. 1 Epicenter and inventory map of landslides triggered by the earthquake in Iburi region of Hokkaido, Northern Japan. (Modified from Zhang
et al. 2019)
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stream, stream density, plan curvature, profile curvature,
lithology of geology, age of geology, distance to faults,
distance to epicenter, and peak ground acceleration
(PGA).
Elevation and slope angle are key factors that have

been widely employed in landslide susceptibility mod-
eling (Colkesen et al. 2016; Althuwaynee et al. 2016).
The elevation values in the study area were divided
into equal intervals of 100 m: 0–100 m, 100–200 m,
200–300 m, 300–400 m, 400–500 m, and more than
500 m (Fig. 2a) The slope angle values were extracted
from the DEM and classified into six groups at inter-
vals of 10°: 0–10°, 10–20°, 20–30°, 30–40°, 40–50°,
and 50–60° (Fig. 2b). The NDVI was used to qualita-
tively evaluate the conditions of vegetation coverage
on slope surfaces, which were calculated from the
near-infrared and the red band of Landsat 8 OLI
(Chen et al. 2019). The NDVI values were arranged
into five classes: (− 0.141)–(0.191), 0.191–0.268,
0.268–0.325, 0.325–0.388, and 0.388–0.584 (Fig. 2c).
The distance to stream and stream density were eval-
uated as the role of the runoff and the influence on
the slope erosion process by streams in landslides.
Previous studies showed that the distance to stream is
an important factor that controls landslide occurrence
(Devkota et al. 2013; Guo et al. 2015). The distance
to stream (Meten et al. 2015) was calculated for each
pixel. The streams were classified as follows: 0–100 m,
100–200 m, 200–300 m, 300–400 m, and more than
400 m (Fig. 2d). The stream density was determined
from the terrain hydrographic network: 0–1m, 1–2m, 2–
3m, 3–4m, and 4–5m (Fig. 2e). The plan curvature
values represented the steep degrees of slopes that influ-
enced the characteristics of surface runoff contributing to
terrain instability (Chen et al. 2019). The plan curvature
values were derived from the DEM and classified accord-
ing to the natural break method into five groups: (−
17.246)–(− 3.024), (− 3.024)–(− 0.806), (− 0.806)–(0.368),
0.368–1.803, and 1.803–16.025 (Fig. 2f). Profile curvature
is the curvature in the vertical plane parallel to the
slope direction (Yilmaz et al. 2012). The profile curva-
ture values acquired through DEM were divided into five
classes using the natural break method: (− 19.381)–(−
2.218), (− 2.218)–(− 0.618), (− 0.618)–(0.690), 0.690–2.726,
and 2.726–17.708 (Fig. 2g). The geological map of the
study area was obtained from the Geological Survey of
Japan, AIST, and the lithology map was categorized as
follows (Fig. 2h):

(1) higher terrace;
(2) lower terrace;
(3) mafic plutonic rocks;
(4) marine and non-marine sediments;
(5) marine sedimentary rocks;

(6) non-alkaline pyroclastic flow volcanic rocks;
(7) swamp deposits;
(8) ultramafic rocks;
(9) water.

The geological age map was divided into 12 classes as
follows (Fig. 2i):

(1) Early Miocene to Middle Miocene;
(2) Early to Middle Miocene;
(3) Late Cretaceous;
(4) Late Eocene to Early Oligocene;
(5) Late Miocene to Pliocene;
(6) Late Pleistocene;
(7) Late Pleistocene to Holocene;
(8) Middle Eocene;
(9) Middle Pleistocene;
(10)Middle to Late Miocene;
(11)Present;
(12)Unknown age.

The distance to fault was computed by a buffer oper-
ation. The distance to fault was classified by the geomet-
rical interval function: 1–2.947 km, 2.947–5.545 km,
5.545–9.008 km, 9.008–13.627 km, 13.627–19.786 km,
and more than 19.786 km (Fig. 2j). The distance to epi-
center was divided according to natural breaks: 1–6 km,
6–11 km, 11–15 km, 15–19 km, 19–23 km, 23–27 km,
27–31 km, and 31–38 km (Fig. 2k). The values of PGA
were divided into 10 categories using the geometrical
interval function: 184–466 gal, 466–604 gal, 604–671 gal,
671–703 gal, 703–719 gal, 719–752 gal, 752–819 gal,
819–956 gal, 956–1238 gal, and 1238–1817 gal (Fig. 2l).
The values of PGA were acquired from K-NET station,
Japan (http://www.kyoshin.bosai.go.jp/).

Methodology
The methodological hierarchy in this work was based on
the autoencoder framework, and 12 sampling sizes were
considered for landslide susceptibility mapping. The final
prediction results obtained from the autoencoder model-
ing were evaluated using the testing data set based on
qualitative and quantitative analyses to validate the per-
formance of the models. A flowchart of the proposed
autoencoder framework is illustrated in Fig. 3. Related
techniques are introduced in the following subsections.

Sampling size
The sampling process is the key step in constructing
landslide (events) and non-landslide points (non-events)
for the database used in landslide susceptibility mapping.
Several sampling strategies, such as extracting from seed
cell (or gridded) points around a polygon of the land-
slide area (Meusburger and Alewell 2009; Van Den
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Eeckhaut et al. 2010) and increasing the number of non-
events in the non-landslide area (King and Zeng 2001;
Raja et al. 2017), have been proposed to improve model’s
performance, predictive capability, and reduction of

statistical errors. According to King and Zeng (2001),
the non-event sample size must not be large but should
be two to five times greater than the events because of
the disproportionate cost and effort in acquiring data on

Fig. 2 Thematic maps of landslide-influencing factors in Iburi region of Hokkaido, Northern Japan: a elevation [m], b slope angle [degree], c NDVI,
d distance to stream [m], e stream density [m], f plan curvature, g profile curvature, h lithology, i geological age, j distance to fault [km], k
distance to epicenter [km], l PGA [gal]
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many variables, and observations that are not related
to the target phenomenon (Heckmann et al. 2014).
These studies were conducted mainly to evaluate lo-
gistic regression (LR) and rare events LR susceptibility
models. Melchiorre et al. (2008) states that un-labeled
data sets with a small number of positive examples
(events) and a large number of negative examples
(non-events) negatively affect the discrimination cap-
abilities of the trained classifier. In this study, to ad-
dress these issues, 12 different sampling sizes were
selected in both the PM and M. Landslide points
(event points, 1) and non-landslide points (non-event
points, 0) were classified and assigned ratios of ap-
proximately 1: 1 (5627: 5627), 1: 2 (5627: 11254), 1: 3
(5627: 16881), 1: 4 (5627: 22508), 1: 5 (5627: 28135),
and 1: 10 (5627: 56270) in both areas.

Autoencoder modeling
The autoencoder, which is a special type of multi-layer
perceptron, is an artificial neural network. It is a type of
unsupervised learning algorithm that has an asymmet-
ric structure, in which the middle layer represents the
encoding of the input data in the bottleneck layer (Yu
and Príncipe 2019). The bottleneck constrains the
amount of information that can traverse the full net-
work, forcing the learned compression of the input
data. The autoencoder is trained to reconstruct input of
landslide influencing factors onto the output layer for
feature representation, which prevents the simple copy-
ing of the data and the network. The middle layer has a
lower dimension or a higher dimension based on the
desired properties, and it can have as many layers as
necessary (Charte et al. 2018). An undercomplete

Fig. 3 Flow chart of the research process
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autoencoder employing a lower dimension learns a
nonlinear dimensionality reduction (Hinton and Sala-
khutdinov 2006) and anomaly detection by taking ad-
vantage of the nonlinear dimensionality reduction
ability. In this study, an undercomplete autoencoder
combined with back propagation neural network was
processed for a lower dimension of features than the
input data have, which can be used for learning the
most important features of the data. Furthermore, in
undercomplete representation, an autoencoder with a
linear activation function is equivalent to principle
component analysis (PCA) in a nonlinear version. The
autoencoder models based on the deep neural net-
work were coded in R language on RStudio using
H2O packages. These algorithms were performed
using hyperbolic tangent function (i.e., the tanh function) in
every hidden layer which was used to encode and decode
the input to the output in the undercomplete autoencoder.
In the H2O library, five hidden layers with encoders and
decoders were designed by using the tanh activation func-
tion in each layer, which was composed of 10-5-2-5-10
(Fig. 4). The dataset was divided into two separate training
sets for unsupervised and supervised learning and one inde-
pendent test set for the final model comparison. Forty per-
cent of the landslide and non-landslide points were used as
training samples for unsupervised learning. The remaining
60% were randomly selected and then used as an independ-
ent data set for supervised learning (40%) and for testing
the predictive potential (20%) of the autoencoder model to
check the performance of the pre-trained model. This study
was performed using the following main steps: (1) the un-
supervised neural network model was trained based on
deep learning autoencoders with the bottleneck algorithm,

where the hidden layer in the middle reduced the dimen-
sionality of the input data; (2) based on the autoencoder
model that was previously trained, the input data were re-
constructed, and the mean squared error between the ac-
tual value and the reconstruction was calculated in each
instance; (3) the autoencoder model as pre-training input
for the supervised model was performed by using a deep
neural network and the weights of the autoencoder for
model fitting; (4) to improve the model, different hidden
layers were evaluated by performing a grid search by means
of hyperparameter tuning, returning to the original features,
and trying different algorithms; (5) the area under the
curve, such as precision and recall, TPR and TNR, TPR
and FPR, and accuracy, were used to measure the model’s
performance because of the severe bias toward non-event
models of randomly generated non-landslide points.

Modeling validation
Several commonly used classification performances were
measured based on the confusion matrix, which is
employed to evaluate model performance. Each grid cell of
the landslide susceptibility map had a unique value repre-
senting the landslide susceptibility value. All grid cells were
determined as one of four elements: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
Precision gives the percentage of true positives as a ratio
over all cases that should have been true (1). Recall or the
true positive rate (TPR) measures the number of cases that
were predicted as positive that should indeed be positive
(2). The true negative rate (TNR) measures the proportion
of actual negatives that are correctly identified (3). The false
positive rate (FPR) is calculated as the ratio between the
number of negative events wrongly categorized as positive

Fig. 4 Architecture of autoencoder based on deep neural network with five hidden layers used in this study
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(false positives) and the total number of actual negative
events (4). Accuracy is the overall percentage of samples
that are correctly predicted as defined in (5).

Precision ¼ TP= TPþ FPð Þ ð1Þ

Recall true positive rate or sensitivityð Þ
¼ TP= TPþ FNð Þ ð2Þ

TNR true negative rate or specificityð Þ
¼ TN= TNþ FPð Þ ð3Þ

FPR ðfalse positive rateÞ ¼ FP=ðFPþ TNÞ ð4Þ

Accuracy ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ ð5Þ

The precision and recall curve presents the relation-
ship between correct landslide predictions and the pro-
portion of landslides detected. The TPR (sensitivity) and
TNR (specificity) curve indicates the relationship be-
tween the correctly identified classes in both labels
(Zhang and Wang 2019).

Fig. 5 Landslide susceptibility assessment on sampling strategies of non-landslide points randomly generated in the combination zone including
plain and mountain (PM): a PM 1, b PM 2, c PM 3, d PM 4, e PM 5, and f PM 6
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Results
The model performance for the landslide prediction and
the susceptibility assessment were evaluated according
to accuracy and the area under the curve. The predictive
capability of all the factors that influenced the landslides
was evaluated to better understand the spatial patterns
based on a variable importance analysis. In the study
area, each grid cell was assigned a susceptibility index
using the test dataset. After assigning weights to the fac-
tor classes, the landslide susceptibility maps were gener-
ated in an ArcGIS environment. Finally, using the equal
interval function, the indices were reclassified for better

visualization into five classes: very low, low, moderate,
high, and very high.

Landslide susceptibility assessment and validation
The 12 landslide susceptibility maps derived from the
autoencoder framework are shown in Figs. 5 and 6. It
was observed that the accuracy increased with an in-
crease in the sampling ratio, but the precision and recall
curve decreased (Table 1). The 12 susceptibility maps
showed different spatial distributions in landslide sus-
ceptibility. Both the PM 1 (Fig. 5a) model and the M 1
(Fig. 6a) model were predicted to be prone to landslides

Fig. 6 Landslide susceptibility assessment on sampling strategies of non-landslide points randomly generated in the mountainous only zone (M):
a M 1, b M 2, c M 3, d M 4, e M 5, and f M 6
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in most of the study area, indicating the over-estimation
of landslide susceptibility and low capacity in distin-
guishing landslide-prone areas from stable areas. The
PM 1 and M 1 models had the same accuracy of 89.2%
by means of confusion matrix, while the precision and
recall curve showed that the M 1 model had a perform-
ance of 94.1%, which was higher than the 93.7% of the
PM 1 model. Regarding the PM 2 (Fig. 5b) and M 2
(Fig. 6b) models, the PM 2 model had an accuracy of
91.1% and a precision and recall curve of 93.8%, which
was better than the M 2 model, indicating an accuracy
of 89.4% and a precision and recall curve of 89.7%. In
the PM 2 model and the M 1 model, the area under the
curve of TPR and TNR, and TPR and FPR showed good
performance. The PM 2 model with a sampling ratio of
1:2 had the best performance in both distinguishing
landslide-prone areas and producing sound information
on landslide susceptibility values. The M 1 model sam-
pled on the mountainous zone showed lower accuracy
performance compared with the PM 2 model sampled
on the combination including plain and mountainous
zone. However, the precision and recall curve had the
best performance with high accuracy. Regarding the area
under the curve on TPR and TNR, and TPR and FPR, the
PM 3 model (Fig. Fig. 5c), the PM 4 model (Fig. 5d), the
PM 5 model (Fig. 5e), and the PM 6 model (Fig. 5f) distin-
guished the potential landslide areas from the stable areas
without expanding the spatial extent of the potential land-
slide areas. The M 3 model (Fig. 6c), the M 4 model
(Fig. 6d), the M 5 model (Fig. 6e), and the M 6 model
(Fig. 6f) generated in the mountainous zone tended to de-
tect stable areas as landslide susceptibility areas even
though there were no source areas that caused landslides
to be triggered by earthquakes. As shown in Fig. 7, the

final landslide susceptibility index mapped five categories
for the PM 2 model (Fig. 7a) and the M 1 model (Fig. 7b),
which were the best models selected regarding accuracy
and the area under the curve in precision and recall, TPR
and TNR, and TPR and FPR.

Variable importance analysis
The predictive capability of all factors that influenced
the landslides was evaluated using the test dataset based
on H2O’s deep learning algorithm (Gedeon 1997), which
is a methodology for computing variable importance.
Tables 2 and 3 lists the results of the analysis of the vari-
able importance of the factors that influenced the land-
slides in H2O’s deep neural network. In general, the
results showed that the earthquake dataset, such as dis-
tance to fault, distance to epicenter, and PGA was of
high importance to the models, whereas the geomorph-
ology, including slope, plan curvature, profile curvature,
stream density, and distance to stream, had lower pre-
dictive capability in both areas. Furthermore, in the PM
1 model, the lithology of the geology dataset as categor-
ical variables indicated the highest importance in the
models.

Discussion
The 12 landslide susceptibility maps produced by the
autoencoder framework were evaluated by the area
under the curve in precision and recall, TPR and TNR,
and TPR and FPR. In the PM 1 and M 1 models, the
spatial distributions of landslide susceptibility were
much higher than in the other models. The susceptibility
values were mainly distributed around the two opposite
extremes between 0 and 1. The PM 2 model had better
precision, recall, sensitivity, specificity, and overall

Table 1 The area under the curve and accuracy of models’ responses in sampling ratios for the combination zone including plain
and mountain (PM) and for the mountainous only zone (M)

Zone Model Sampling ratio
(Sampling numbers)

Area under the curve on test data set Accuracy

Precision & Recall TPR & TNR TPR & FPR

Combination zone including plain and mountain (PM) PM 1 1:1 (5627:5627) 0.937 0.948 0.891 0.892

PM 2 1:2 (5627:11254) 0.938 0.968 0.907 0.911

PM 3 1:3 (5627:16881) 0.903 0.967 0.915 0.920

PM 4 1:4 (5627:22508) 0.833 0.957 0.905 0.916

PM 5 1:5 (5627:28135) 0.854 0.967 0.911 0.932

PM 6 1:10 (5627:56270) 0.754 0.964 0.910 0.943

Mountainous zone (M) M 1 1:1 (5627:5627) 0.941 0.951 0.891 0.892

M 2 1:2 (5627:11254) 0.897 0.952 0.886 0.894

M 3 1:3 (5627:16881) 0.872 0.952 0.887 0.894

M 4 1:4 (5627:22508) 0.845 0.949 0.881 0.910

M 5 1:5 (5627:28135) 0.800 0.949 0.883 0.918

M 6 1:10 (5627:56270) 0.710 0.956 0.893 0.940
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accuracy than other models did. In both regions, the
models with sampling sizes greater than 1:3 showed
poor classification performance (Table 1). The landslide
susceptibility maps were produced differently depending
on the sampling size used and the area selected. The
sampling size and the area selected in PM and M may
have affected various prediction abilities. In this study,
the sampling size and the area resulted in different con-
tributions to the models. In the autoencoder method,

the sampling ratio of 1:2 in the non-landslide points
generated in the PM and M improved the prediction ac-
curacy of landslide susceptibility mapping. The autoen-
coder effectively extracted a feature selection of spatial
patterns using dimensionality reduction, and it signifi-
cantly reduced the number of network parameters. Deep
learning techniques could be used to explore the repre-
sentation needed for making predictions based on raw
data. Therefore, a promising avenue of research is to

Fig. 7 Landslide susceptibility maps of best performance selected from both PM and M models considering the accuracy and the area under the
curve on Precision & Recall, TPR & TNR, and TPR & FPR: a PM 2, b M 1
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explore the probability of applying powerful deep learn-
ing methods to landslide susceptibility mapping (Wang
et al. 2019). Moreover, various sampling strategies
present varying accuracy in landslide susceptibility map-
ping, and it is recommended that sampling strategies be
considered in applying new statistical techniques.

Conclusion
This research investigated the application of an autoen-
coder framework and 12 sampling strategies to landslide
susceptibility mapping in Iburi region of Hokkaido in
Northern Japan. The validation of the results was con-
ducted based on the objective measures of the area
under the curve in precision and recall, TPR and TNR,
TPR and FPR, and accuracy. The experimental results
led to the following conclusions. First, various sampling

strategies showed improved accuracy in landslide sus-
ceptibility assessment, which should be analyzed and
compare with precision and recall curve in imbalanced
data. Second, the prediction results obtained using the
proposed autoencoder framework had good performance
in terms of the area under the curve in precision and re-
call, TPR and TNR, TPR and FPR, and accuracy. Third,
in the various models, the best performance by means of
confusion matrix, especially in areas where landslides
were triggered by the earthquake, was to utilize a sam-
pling ratio of 1:2 of landslides and non-landslides gener-
ated in the PM. Finally, the prediction accuracies of
landslide susceptibility mapping using the autoencoder
model can be effectively improved by two strategies: (1)
hyperparameter tuning in constructing the autoencoder
architecture; (2) the selection of the tanh activation

Table 2 Variable importance and ranking for the combination zone including plain and mountain (PM)

Variable factors Variable importance of the combination zone including plain and mountain (PM)

PM 1 Ranking PM 2 Ranking PM 3 Ranking PM 4 Ranking PM 5 Ranking PM 6 Ranking

Elevation 0.065 9 0.104 4 0.098 5 0.058 9 0.073 7 0.057 9

Slope 0.076 7 0.088 5 0.068 8 0.072 8 0.071 8 0.089 5

Plan curvature 0.028 12 0.027 12 0.016 12 0.022 11 0.023 12 0.024 12

Profile curvature 0.041 11 0.040 11 0.031 11 0.020 12 0.034 11 0.024 11

NDVI 0.067 8 0.074 9 0.081 7 0.053 10 0.100 4 0.077 7

Lithology (geology) 0.263 1 0.080 6 0.121 3 0.113 4 0.082 5 0.108 4

Age (geology) 0.096 3 0.077 7 0.084 6 0.118 3 0.041 10 0.087 6

Stream density 0.058 10 0.075 8 0.066 9 0.103 5 0.082 6 0.072 8

Distance to stream 0.085 5 0.045 10 0.042 10 0.085 6 0.056 9 0.049 10

Distance to fault 0.138 2 0.117 3 0.108 4 0.138 2 0.157 1 0.132 2

Distance to epicenter 0.082 6 0.135 2 0.144 1 0.141 1 0.140 2 0.171 1

PGA 0.096 4 0.139 1 0.140 2 0.077 7 0.140 3 0.108 3

Table 3 Variable importance and ranking for the mountainous only zone (M)

Variable factors Variable importance of the mountainous only zone (M)

M 1 Ranking M 2 Ranking M 3 Ranking M 4 Ranking M 5 Ranking M 6 Ranking

Elevation 0.080 7 0.075 6 0.067 7 0.090 5 0.065 9 0.071 7

Slope 0.068 9 0.070 7 0.039 10 0.049 8 0.037 10 0.034 10

Plan curvature 0.021 12 0.032 12 0.025 11 0.034 11 0.027 11 0.031 11

Profile curvature 0.044 11 0.033 11 0.021 12 0.033 12 0.021 12 0.024 12

NDVI 0.099 5 0.113 4 0.074 6 0.111 4 0.129 2 0.095 4

Lithology (geology) 0.085 6 0.104 5 0.105 4 0.082 6 0.091 7 0.095 5

Age (geology) 0.114 2 0.069 8 0.091 5 0.072 7 0.095 5 0.093 6

Stream density 0.072 8 0.058 9 0.058 8 0.045 10 0.089 8 0.067 8

Distance to stream 0.063 10 0.057 10 0.057 9 0.047 9 0.095 5 0.044 9

Distance to fault 0.109 4 0.124 2 0.170 1 0.166 1 0.107 4 0.162 2

Distance to epicenter 0.134 1 0.144 1 0.167 2 0.150 2 0.127 3 0.103 3

PGA 0.110 3 0.120 3 0.126 3 0.121 3 0.149 1 0.181 1
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function. The landslide susceptibility maps produced in
this study could be useful for decision-makers, planners,
and engineers in disaster planning to mitigate economic
losses and casualties. In future research, the accuracy of
the landslide susceptibility maps in this study could be
enhanced by selecting the optimal sampling strategy and
investigating highly efficient deep learning techniques.
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