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Abstract

Artificial intelligence has been widely studied on solving intelligent surveillance
analysis and security problems in recent years. Although many multimedia security
approaches have been proposed by using deep learning network model, there are
still some challenges on their performances which deserve in-depth research. On the
one hand, high computational complexity of current deep learning methods makes
it hard to be applied to real-time scenario. On the other hand, it is difficult to obtain
the specific features of a video by fine-tuning the network online with the object
state of the first frame, which fails to capture rich appearance variations of the
object. To solve above two issues, in this paper, an effective object tracking method
with learning attention is proposed to achieve the object localization and reduce the
training time in adversarial learning framework. First, a prediction network is
designed to track the object in video sequences. The object positions of the first ten
frames are employed to fine-tune prediction network, which can fully mine a specific
features of an object. Second, the prediction network is integrated into the
generative adversarial network framework, which randomly generates masks to
capture object appearance variations via adaptively dropout input features. Third, we
present a spatial attention mechanism to improve the tracking performance. The
proposed network can identify the mask that maintains the most robust features of
the objects over a long temporal span. Extensive experiments on two large-scale
benchmarks demonstrate that the proposed algorithm performs favorably against
state-of-the-art methods.

Keywords: Surveillance, Deep learning, Object tracking, Generative adversarial
learning

1 Introduction
Nowadays, multimedia content (in particular image and video data) is being widely

shared over the Internet due to the rapid development of network technologies and ad-

vent of high-end devices. Emerging technologies such as Cloud, Fog, Edge, SDN, Big

Data, Internet of Things (IoT), and Deep Learning provide scalability, flexibility, agility,

and ubiquity in terms of data acquisition, data storage, data management, and commu-

nications. Although a large number of multimedia forensic and security techniques

have been proposed to protect multimedia data and devices and to support investiga-

tions of multimedia-related criminal cases and security incidents, a number of
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multimedia security issues have also emerged correspondingly, such as intelligent

analysis for surveillance, copy-move forgery in digital images and videos, and

biometric spoofing.

In recent year, artificial intelligence has been widely studied on solving a variety of diffi-

cult problems using deep learning network model, such as convolution neural networks

for steganalysis and forensics, and generative adversarial networks for coverless stegana-

graphy. Surveillance technology for intelligent multimedia hiding and forensics has been a

hot topic in multimedia security community. It is the basis of advanced video processing

tasks such as follow-up steganography [1], data hiding [2], JPEG compressed [3], and ob-

ject recognition [4] and is a necessary prerequisite for implementing high-level intelligent

behavior analysis. Object tracking is one of the fundamental tasks in intelligent surveil-

lance technology. The aim is to localize the object in a video sequence with a bounding

box of the object at the first frame of the video. Although object tracking has made great

progress in recent years and some effective algorithms have been proposed to solve chal-

lenging problems in specific scenarios, there are still exist many issues such as occlusion

and illumination changes. So the topic deserves in-depth investigation, which is important

in both academia and industry. Figure 1 shows intelligent surveillance applications.

Currently, most of the trackers based on deep learning network model use a large-

scale benchmark datasets [6, 7] to train the network offline, and the sample of the first

frame is used to fine-tune the parameters of network online. However, training deep

network model online is challenging due to the limited training samples which cannot

capture the diversity of the object appearance variations, and offline pre-training is very

time consuming. In addition, the quality of the image is also an important factor for

the training process. The existing tracking methods utilize the sampling scheme around

the object state to obtain the training samples, such as KCF [8], DLT [9], and MCPF

[10]. However, the positive samples extracted from each frame are highly overlapped,

and they fail to capture rich appearance variations. In this work, we use the first ten

frames of a video sequence to fine-tune the parameters of deep network model. But

manual annotating the object positions from the first ten frames is always impractical

and time consuming. To solve the abovementioned problems, we exploit the advan-

tages of the pre-trained network on a large-scale benchmark datasets to predict the ob-

ject position. The parameters of deep network have been pre-trained on large-scale

datasets. Then we use the prediction network to track the object in the video sequences

and automatically obtain the object positions of the first ten frames. The generative ad-

versarial network has great advantages in augmenting training samples. Furthermore,

the positive and negative samples are extracted from the first ten frames. Therefore,

the positive and negative samples are obtained to fine-tune the generative adversarial

network online. The proposed tracking algorithm can capture the changes of the object

appearance in the video sequences. During the tracking, the generative model is used

to occlude the image features through a randomly generated mask to enhance the di-

versity of positive samples. The discriminative model employs its discriminative per-

formance to identify the object. These features are robust enough to address the

challenges of object tracking. Adversarial learning network can identify masks that re-

tain the most robust features of the object appearance. In terms of tracking accuracy,

our approach obtains a relative gain of 5.9% compared to other deep learning-based

tracking approaches. In this paper, the proposed tracking method can be applied to
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solve the multimedia forensics and security problems. In other words, it is possible to

explore object tracking techniques for various real-time multimedia security applica-

tions, such as real-time information hiding and digital forensics. We summarize the

main contributions of this work as follows:

(1) We propose an end-to-end the prediction network model for object tracking to

improve the tracking accuracy and the computational complexity of training

process, which can jointly train the prediction network and spatial attention model

in generative adversarial network framework.

(2) An effective spatial attention mechanism is developed, which can adaptively

generate the response maps. The feature representations are employed to online

tracking process to alleviate over-fitting. In addition, the positive and negative

samples are augmented in the feature space to capture a variety of appearance

changes over a temporal span by using generative adversarial network.

(3) We conduct the extensive experiments on two popular benchmarks, which

demonstrate the proposed object tracking method with learning attention

significantly outperforms state-of-the-art methods.

The rest of the paper is organized as follows. In Section 2, we review related work of

existing object tracking algorithms. Section 3 introduces the motivation. In Section 4, we

introduce our object tracking approach for intelligent surveillance analysis. The experi-

mental settings are presented in Section 5. In Section 6, we present experimental results

and discussion in two tracking benchmarks. Finally, Section 7 concludes this paper.

2 Related work
Object tracking is one of the fundamental tasks in computer vision and has been exten-

sively studied over the last decade. There are extensive surveys of object tracking in the

Fig. 1 Object tracking technique for intelligent surveillance analysis, tracking results of the proposed tracker
(red), and the VITAL tracker [5] (black) on the OTB2015 benchmark
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literature [11–13]. Before the emergence of the object tracking algorithms based on

deep learning, most tracking algorithms used particle filter framework for object track-

ing, such as Kalman filter [14] and particle filter [15]. However, the disadvantage of

these methods is that the number of particles limits the tracking speed. In this section,

we review the related advances in three research streams for visual object tracking.

2.1 Correlation filter-based tracking

In recent years, correlation filters (CF) have been widely used in numerous applications

such as object detection and recognition. It transfers operations into the Fourier do-

main as element-wise multiplication. Correlation filters [8, 16–19] have attracted con-

siderable attention due to its computational efficiency and competitive performance.

Correlation filter trackers regress all the circular shifted versions of the input features

to a Gaussian function. We arrange correlation filter tracking algorithms in a hierarchy

and classify them into three categories: Basic correlation filter trackers, regularized cor-

relation filter trackers, and combination of deep learning and correlation filter trackers.

Some basic correlation filter (CF) trackers have been developed to boost performance

in tracking by using scale estimation. Bolme et al. [16] propose a minimum output sum

of squared error (MOSSE) tracker for object tracking on grayscale images, which en-

codes object appearance through an adaptive correlation filter by optimizing the output

sum of squared error. MOSSE can achieve several hundreds of frames per second. In

2012, Henriques et al. [20] propose the CSK algorithm based on the improvement of

MOSSE, which solves the problem of a small number of training samples in the object

tracking process through the cyclic matrix and further improves the tracking accuracy

of the algorithm by using the kernel technique. However, the above two algorithms

adopt simple grayscale features, which are easily disturbed by the external environment,

resulting in inaccurate tracking results. They are further improved by the kernelized

correlation filters (KCF) [8] with HOG features in a Fourier domain. KCF performs well

in OTB50 [4] benchmark in terms of tracking speed and accuracy. Scale change is also

a common problem in object tracking. In [21], the DSST tracker learns adaptive multi-

scale correlation filters using HOG features to handle the scale and translation changes

of the objects.

Regularized correlation filter trackers can improve the detection range by using dif-

ferent filter size and patch size. The SRDCF method [22] reduces the boundary effect

problem by weighting the weight space of CF. However, its optimization is complicated

and the tracking speed is slow. To improve its weakness, the CSR-DCF method [23]

adds feature channel and space stability constraints based on SRDCF and uses the aug-

mented Lagrangian scheme to facilitate fast FFT solution, which greatly improves the

tracking accuracy and speed. The C-COT method [24] proposes a strategy for training

continuous convolution filters, which facilitates the integration of multi-scale CNN fea-

tures and achieves sub-pixel level tracking accuracy. However, the tracking model

framework still adopts the SRDCF method and the computational complexity is high.

ECO [25] method further proposes a factorization convolution scheme to reduce the

computational complexity of the tracking model. The UPDT [26] proposes a novel

adaptive fusion approach that leverages the complementary properties of deep and

shallow features to improve both robustness and accuracy. In [27], the STRCF
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introduces temporal regularization to SRDCF with single sample. The formulation of

this method can not only serve as a reasonable approximation to SRDCF with multiple

training samples, but also provide a more robust appearance model than SRDCF in the

case of large appearance variations. Although these approaches achieve a satisfied per-

formance in some constrained scenarios, they have an inherent limitation that they re-

sort to low level hand-crafted features, which are vulnerable in dynamic situations

including illumination changes, occlusion, deformations, and background clutter.

Inspired by the success of deep learning model in object detection, recognition, and

classification tasks, researchers have started to focus on combining of deep learning

and correlation filter. In HCF [28] and HDT [29], deep feature is used to extract the

object features instead of handcrafted features. It is worth noting that CFNet [30] and

DCFNet [31] achieve an end-to-end representation learning.

2.2 Deep learning-based tracking

Features’ representations are important for object tracking. Experiments prove that the

features designed manually (e.g., haar-like features, histogram, HOG features) are not

necessarily suitable for all the objects. Deep learning in the tracking uses the adaptive

selection scheme of object features instead of hand-crafted features. The popular trend

is to design the deep network structures and pre-train them in order to learn object-

specific features.

The main problem of deep learning in the tracking is the lack of training data [32,

33]. The object tracking only provides the object information of the first frame as train-

ing data. In this case, it is difficult to train the deep network model with small data. In

[9], Wang proposes the idea of off-line pre-training deep network model and online

fine-tuning tracking model called DLT tracker, which greatly solves the problem of in-

sufficient training samples in the tracking. SO-DLT [34] continues the strategy of DLT

and also greatly improves the problems of DLT by using CNN as a network model for

extraction deep features and classifications. In FCNT [35], authors analyze the perform-

ance of CNN features pre-trained on ImageNet [36] and design the subsequent net-

work structure based on the analysis results. In [37], the authors utilize a two-layer

convolution neural network to learn hierarchical features from auxiliary video se-

quences, which takes the complex object motion and object appearance changes into

account.

In recent years, the Siamese Networks [38, 39] have received more and more atten-

tion due to its two stream identical structure. In the offline training phase, a matching

score function is trained through the structure of the Siamese Network. Then the

matching score function is used to determine the similarity between the current object

candidate state and the object template of the first frame during the tracking, which

improves the tracking efficiency. In recent years, the generative adversarial network

(GAN) has been widely used in many fields, such as object detection [40] and intelli-

gent recommendation system [41]. GAN is first proposed by Ian Goodfellow in 2014,

which was originally used to generate realistic-looking images [42]. The main idea be-

hind GAN is to have two competitive neural network models. One takes noise as input

and generates samples called a generator. Another model is called discriminator which

receives samples from the generator and tries to discriminate true object between two
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sources. The generator and the discriminator are trained simultaneously by competing

with each other. Realizing that there is a huge difference between image classification

and tracking, TADA [43] identifies the importance of each convolutional filter and se-

lects the object-aware features based on activations for the object representation. Then,

the object-aware features are integrated into a Siamese matching network for visual

tracking. Different from the existing approaches using extensive annotated data for su-

pervised learning, UDT [44] is trained on large-scale unlabeled videos in an unsuper-

vised manner. UDT tracker achieves the baseline accuracy of fully supervised trackers

which require complete and accurate labels during the training.

In this work, we apply adversarial learning to augment training samples in the feature space

to capture appearance variations in temporal domain. In addition, we can exploit robust fea-

tures over the long temporal span instead of the discriminative features in individual frames.

2.3 Attention mechanisms

Attention mechanisms were first introduced in neuroscience area [45]. They have

spread to image classification, multi-object tracking, etc. DAVT [46] employs a discrim-

inative spatial attention scheme for visual tracking. CSR-DCF [47] utilizes color histo-

grams to construct a foreground spatial map in the correlation filter framework, which

learns the attention via an end-to-end deep network model. ACFN [48] chooses a sub-

set from the associated correlation filters as an attention mechanism for visual tracking.

3 Motivation
The generative adversarial network (GAN) [42] has been widely used in object detec-

tion and semantic segmentation. The generative adversarial networks mainly consist of

the generative model and discriminative model. The generative model takes a noise as

an input, and the discriminative model takes samples from generative model or training

data and outputs the classification probability. This learning process can be written as:

L ¼ min
G

max
D

Ex�pdata xð Þ logD xð Þ½ � þ Ez�pnoise zð Þ log 1 −D G zð Þð Þð Þ½ � ð1Þ

where G denotes the generative model, D represents the discriminative model, E is

the mean operation, and x and z are two vectors from two distributions Pdata(x) and

Pnoise(z), respectively.

However, the original GAN is not feasible. In our work, G will predict a weight mask

which operates on the extracted features. The mask is randomly set at the beginning

and gradually identifies the discriminative features by using adversarial learning. The

mask is generated by G network as G(I). We denote the predicted mask as M̂ and the

value of the element (i, j) as M̂ij. We define the input image as I, and the value of elem-

ent (i, j, k) on image I as Iijk. The dropout operation is written as follows:

I0ijk ¼ IijkM̂ij ð2Þ

where I0ijk denotes the image I after the dropout operation and passed onto the

classifier.
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4 Proposed object tracking method
4.1 Problem formulation

The existing trackers based on deep learning are performed as off-line training and

online fine-tuning for surveillance analysis, and only use the object information of the

first frame to fine-tune online the learned deep network parameters. However, it is

difficult to capture previously unseen object features from one or few examples. In

addition, the positive samples in each frame are highly spatially overlapped and they fail

to capture rich appearance variations. On the other hand, amount of positive and

negative samples for training deep learning network model are nearly impossible to

meet up in real world.

In this section, a novel attention generative adversarial network is given at first to de-

scribe the overall training architecture. The proposed generative model takes VGG net-

work as input, which is mainly used to capture the object appearance variations of

continuous video frames. The discriminative model is introduced as a supervisor and

provides guidance on the advantages of the generated object appearance details. To

stabilize the training of the generative adversarial networks, we present the mean

squared loss to punish the classification error for each pixel. In order to improve the

tracking performance, a novel spatial attention mechanism is developed to adapt the

offline learned deep model to online object tracking. The VGG network is used to

sense the tracked object and decode the object features into the attention response

maps. At last, online tracking is described consisting of model updating and scales. The

object attention maps are captured by inputting the object appearance information pro-

vided in the first ten frames and remaining video frames into the generative model.

The score with maximum response score is regarded as the tracking result. This

process will be continued for video frames until the end of the video sequences. Figure

2 shows the flowchart of the proposed tracker.

In Fig. 2, the generative model of GAN follows the encoder-decoder framework

which attempts to encode the input of the object appearance into feature representa-

tion and decode it into corresponding outputs. The discriminative model is a standard

convolutional neural network.

Fig. 2 The architecture of the proposed object tracking algorithm
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4.2 Network architecture

The network includes two branches, and in the lower part of the architecture which

utilizes the first ten frames of a video sequences as input, which is called the prediction

network. We use the prediction network to track the one to ten frames of a video se-

quence to obtain the object position of each frame. These features extracted from the

predicted object location will be used to fine-tune the fully connected layers of the net-

work located in the top half of the architecture. The object feature of each frame is

taken as input of the network from the frame 11 to the end of video. The weight masks

are applied to adaptively dropout input features. Adversarial learning identifies the

weight mask that maintains the most robust features over a long temporal span while

removing the discriminative features from individual frames.

It is worthy to note that the deep learning model is initialized with the weights of a

VGG-16 model pre-trained on the ImageNet benchmark for object classification. Most

Fig. 3 Foreground response maps predict using different VGG feature maps. (a) Input image. (b) Using Conv4-1
feature only. (c) Using the concatenation of Conv4-2 and Conv4-3 feature with the proposed adversarial learning
with attention
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of deep learning-based trackers use this offline learned network and then utilize the

first frame to fine-tune the network parameters during the tracking. However, it is diffi-

cult to obtain the object specific feature of a video by training the deep network model

only with the sample of the first frame. On the other hand, if the deep learning network

is fine-tuned by using the first n frames of a video, manually labeling the object position

will be expensive and impractical. Therefore, a prediction network is introduced into

deep learning framework, which can automatically predict the position of the object in

the video sequence. The network structure is shown in Fig. 2, which has three convolu-

tion layers and two fully connected layers. The architecture of the prediction network

is depicted in the lower part of Fig. 2. We directly use a VGG-M [49] model pre-

trained in the classification task from ImageNet [36], and the parameters of the convo-

lution layers are fixed and only the fully connected layers are fine-tuned online. The

cross-entropy loss is adopted for fine-tuning network parameters online. The prediction

network is optimized by minimizing the cross-entropy loss function with SGD as

follows:

arg min
1
N

XN
i¼1

−
X2
j¼1

p jð Þ log q jð Þð Þ
 !

ð3Þ

where p and q denote training samples and corresponding labels, respectively; N is

the number of training samples.

The object features are extracted from the convolution layer and fed to the fully con-

nected layer for classification. Figure 3 reports the foreground response maps predicted

by using different VGG feature maps. Figure 3 is the foreground response maps pre-

dicted by using different VGG feature maps. Foreground response maps are predicted

using different VGG feature maps. Conclusion of Fig. 3 is that shallow layer feature

(Conv4-1 feature) focuses on object details; deep layer feature (Conv4-2 and Conv4-3)

is semantic features.

Finally, the sample with the highest response score in each frame is regarded as the

tracking result. This prediction network is interpreted as a generative network in gen-

erative adversarial network framework, and the samples drawn from the predicted loca-

tion will be used to fine-tune the fully connected layers of the generative model.

The discriminative model is employed to make the generative model produce atten-

tion response map that is robust to occlusion, deformation, background clutter, etc. In

this work, the attention response map and corresponding RGB frame of a video se-

quence are considered as the input of discriminative model.

4.3 Training

In our work, mean squared error (MSE) is utilized to measure the difference between

estimated attention response map and ground truth map. Given an image I, and its di-

mension is N = W × H. The mean squared loss can be formulated as:

LMSE ¼ 1
N

XN
j¼1

S j − Ŝ j
� �2 ð4Þ

where Ŝ and S denote the attention response maps and its corresponding ground

truth, respectively.
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However, mean squared loss function focuses on pixel-level features, and learned

deep network can produce a coarse attention response maps. Therefore, training the

network with the adversarial loss can be further improved the tracking performance.

We iteratively train G and D, and the adversarial loss function is written as:

LAL ¼ min
G

max
D

E C;Mð Þ�P C;Mð Þ logD M � Cð Þ½ �
þEC�P Cð Þ log 1 −D G Cð Þ � Cð Þð Þ½ � þ λE C;Mð Þ�P C;Mð Þ G Cð Þ −Mk k2 ð5Þ

where C is the input image feature, G(C) is the mask generated by the G network, and M

is the actual mask identifying the discriminative feature. The dot is the dropout operation

on the feature C. As described in Eq. (5), G is used to predict a weight mask G(C) which

operates on the extracted features. The mask is randomly initialized at the beginning and

each mask represents a specific type of appearance variation. Through the adversarial learn-

ing process, G will gradually identify the mask that degrades the performance of classifier.

In each iteration of the training process, object features of the input frames are ex-

tracted from convolutional layers and fed into G network to obtain the predicted mask

m*. Then, obtained deep features are multiplied by the predicted mask m* and sent into

D network. We keep the labels unchanged and train D through supervised learning

method. D is trained to discriminate features from individual frames relying on more ro-

bust features over a long temporal span. Thus, it avoids the overfitting issue. G is used to

predict different masks according to different input deep features. It enables D to focus on

the temporal robust features without discriminative feature interference from single

frame. Given an input image, multiple output features based on several random masks are

created. Diversified features are performed through the dropout operation, which are sent

to D for classification, and we choose the one with the highest loss. The corresponding

mask of the selected feature is effective in decreasing the impact of the discriminative fea-

tures. We set this mask as M in equation (5) and update G accordingly.

Finally, we combine the MSE loss with adversarial loss to obtain more stable and fast

convergence for GAN model. The final loss function for the adversarial training can be

formulated as:

LGAN ¼ LAL DðC;G Cð ÞÞ; 1ð Þ þ λLMSE ð6Þ

where λ is a trade-off parameter, and we experimentally set it as 1/20 in our

implementation.

Fig. 4 Spatial attention response map
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4.4 Spatial attention

Attention from the training samples can be captured to share a common attention. In prac-

tical sceneries, some attention maps are obtained by the initialization of matrix of ones. They

are too restrictive to constrain all samples and the object to share a single deep network struc-

ture. Therefore, we propose a spatial attention scheme to model attention response map in

Fig. 4.

The proposed attention mechanism can capture the general features and distinct the

object from the background in the video. It can encode the global information of the

object and has a low computational load. The output of attention module is passed

through a global pooling layer to produce a channel-wise descriptor. Then three fully

connected (FC) layers are added, in which learned for each channel by a self-gating

mechanism based on channel dependence. This is followed by reweighting the original

feature maps to generate the output of attention module. The cosine similarity is uti-

lized to measure the similarity between current frame features φt (p) and the features

φt-1 (p) extracted from t-1 frame.

wt pð Þ ¼ SoftMax
ϕt pð Þ � ϕt − 1 pð Þ
ϕt pð Þ �j jϕt − 1 pð Þj j

� �
ð7Þ

If the current frame features is close to the features of the last frame, it is prone to

the foreground object and assigned with a larger weight, otherwise, a smaller weight is

assigned to background pixel.

4.5 Online tracking

In this subsection, we illustrate how our tracker works for visual object tracking. We

involve the generative model during the training and remove it in the tracking stage.

We first draw the samples from the first ten frames of a video sequence to fine-tune

generative model online. Then, we track the object in all videos. Given an input frame,

we generate multiple candidate proposals and extract their deep features. Deep features

of the candidate proposals are fed into the classifier to obtain the probability scores.

During the online update, we employ these training samples jointly train the generative

model and the discriminative model. The object tracking result is obtained by finding

the maximum response score in the attention map.

Object appearance model updating plays a critical role in object tracking, and most

of trackers update their appearance model in each frame or at a fixed interval. How-

ever, this updating strategy may introduce background information into the object ap-

pearance model when the tracking result is inaccurate due to occlusion or illumination

variations.

In this paper, we need to update the object appearance model with the recently ob-

tained object results. First, we define a fixed length sequence L to store the tracking re-

sult of each frame. When the length of L reaches a fixed number of elements, we

update object appearance once. In addition, model updating is performed when the

number of iteration or maximum value of response map is satisfied. The maximum re-

sponse score in L is used to update the object appearance model.

Therefore, the new object appearance model is written as:
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Tu ¼ 1 − βð ÞT f þ βTp ð8Þ

where β is a learning parameter and set empirically; Tu is the updated object appear-

ance model, which is represented by a linear combination of the initial object template

Tf and the last updated object appearance model Tp. To alleviate the drift problem dur-

ing the tracking, the initial template is incorporated into the new observation template.

To handle the scale change, we follow the approach in [21] and use patch pyramid with the

scale factors. The proposed object tracking algorithm can be summarized as Algorithm 1.

5 Experiments
In this section, we introduce the implementation details of the proposed tracking algo-

rithm. We then compare our tracker with state-of-the-art trackers on two benchmarks

for performance evaluation. Our experiments are performed on a workstation by using

MatConvNet toolbox [50] with E5 2.4 GHz CPU and Quadro K2200 GPU.

In this work, the first three convolution layers from the VGG-M model are utilized

as feature extraction network. The network is pre-trained on a large-scale benchmark

datasets. During the adversarial learning, both G and D are learned by the SGD scheme.

The learning rate for training G and D are set to 10−3 and 10−4, respectively. During

the tracking, we draw 256 candidate samples around the object location of each frame

Table 1 Backbone architecture. Details of each building block are reported in square brackets

Block Output size Backbone

Conv1 125 × 125 7 × 7, 64, stride 2

Conv2_x 63 × 63 1� 1; 64
3� 3; 64
1� 1; 256

2
4

3
5� 3

Conv3_x 31 × 31 1� 1; 128
3� 3; 128
1� 1; 512

2
4

3
5� 4

Conv4_x 31 × 31 1� 1; 256
3� 3; 256
1� 1; 1024

2
4

3
5� 6
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for classification. The masks are set randomly and the resolution of each mask is the

same as that of the input features. We update the generative adversarial network using

10 iterations in every 10 frames or the response score of tracked result is less than a

predefined threshold. Backbone architecture is shown in Table 1.

5.1 Benchmarks

We conduct the experiments on two standard benchmarks: OTB-2013 [4] and OTB-

2015 [6]. Video sequences are defined with bounding box annotations. These datasets

cover various challenging aspects in visual tracking task, such as fast motion, back-

ground clutter, deformation, occlusion, illumination variations, and low resolution. The

performance of all the trackers can be well tested by using two benchmarks.

5.2 Evaluation metrics

We follow the standard evaluation metrics [6] from two benchmarks. For the OTB-

2013 and OTB-2015 benchmarks, we use the one-pass evaluation (OPE) with precision

and area-under-the-curve (AUC) success rate criteria. The precision metric measures

the rate of frame locations within a certain threshold distance from those of the ground

truth. The threshold distance is set to 20 for all the trackers. The success rate criterion

measures the overlap ratio between the predicted bounding box and the ground truth

bounding box.

6 Results and discussion
6.1 Quantitative evaluation

We perform quantitative evaluation on two benchmark datasets. The experimental re-

sults of the proposed tracking algorithm are reported as follows.

6.1.1 OTB-2013 benchmark

We use the OTB-2013 benchmark to confirm that our tracker is on par with the

state-of-the-art trackers. The trackers that we compared included the 29 trackers

from the OTB-2013 benchmark and other state-of-the-art trackers included KCF

[8], MUSTer [19], DSST [21], SRDCF [22], C-COT [24], ECO [25], HCF [28],

Fig. 5 Precision and success plots on the OTB-2013 dataset using the one-pass evaluation. The number in
the legend indicates the average precision scores at 20 pixels and the AUC scores
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Fig. 6 The success rate plots of eight challenge attributes: illumination variation, deformation, in-plane
rotation, out-of-plane rotation, background clutter, occlusion, scale variation, and low resolution. The legend
contains the AUC score for each attribute
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Fig. 7 Precision and success rate plots on the OTB-2015 benchmark by using the one-pass evaluation. The
number in the legend indicates the average distance precision scores at 20 pixels and AUC success scores

Fig. 8 Qualitative evaluation of the proposed tracker, CNN-SVM, C-COT, MDNet, and ECO on 12
challenging sequences
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HDT [29], CFNet [30], FCNT [35], SiameFC [38], SINT [39], MDNet [51], LCT

[52], VITAL [5], CREST [53], TCDL [54], Staple [55], MCPF [10], DLS-SVM [56],

CNN-SVM [57], GOTURN [58], SRDCFdecon [59], DeepSRDCF [60], SCT [61],

and ADNet [62].

We evaluate all the trackers on 50 video sequences using the one-pass evalu-

ation with distance precision and overlap success metrics. Figure 5 shows the

tracking results from all compared trackers. We only show the top ten trackers

for presentation clarity. The number listed in the legend indicates the AUC over-

lap success rate and precision score at 20 pixels. Overall, it clearly illustrates that

our tracking method outperforms the state-of-the-art trackers significantly in

both evaluation measures. The OTB-2013 dataset has 11 attributes (e.g., back-

ground clutter, occlusion, deformation, scale variation, illumination variation) to

describe the different challenges in the tracking. These attributes are useful for

analyzing the performance of trackers in different aspects. Figure 6 shows the re-

sults of different tracking algorithms on eight main challenging attributes. It

demonstrates that our tracker can effectively handle the challenges and achieve

Fig. 9 The maps generated by the proposed spatial attention scheme (middle row) and saliency detection
algorithm [63, 64] Deep Saliency (bottom row)

Table 2 Tracking performance and frame per second (FPS) of the state-of-the-art approaches on
OTB-100 benchmark. “-“denotes invalid state; the bold fonts indicate the best results

Algorithms Techinique Code type Precision Success rate FPS

Ours Deep Learning MATLAB & C++ 0.919 0.719 14.8

MUSTer Correlation Filter MATLAB & C++ 0.774 0.575 6.1

DSST Correlation Filter MATLAB & C++ 0.693 0.52 35.5

SiamFC Deep Learning MATLAB & C++ 0.771 0.691 31.2

CCOT Correlation Filter MATLAB & C++ 0.691 0.682 2.6

MDNet Deep Learning MATLAB 0.788 0.678 1.4

SIT Deep Learning MATLAB 0.732 0.575 225.5

PCOM MATLAB & C++ - - 27.6

KCF Correlation Filter MATLAB 0.690 0.477 124.1

CN MATLAB & C++ 65.4

Struck SVM C++ - - 9.6

TLD Boosting MATLAB & C++ - - 2.7

MIL Boosting C++ - - 31.8
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leading performance. The proposed method performs favorably against the state-

of-the-art trackers when evaluating with eight challenging factors.

6.1.2 OTB-2015 benchmark

For more detailed analysis, we also compare our tracker with the state-of-the-art

trackers on the OTB-2015 benchmark. Figure 7 shows that the proposed tracker per-

forms well. Although the ECO tracker has achieved a good performance, the proposed

tracker uses the samples of the first ten frames to train deep network model, so both

precision and success rate are leading.

6.2 Qualitative evaluation

In Fig. 8, we qualitatively report the results of other four state-of-the-art trackers (such

as, CNN-SVM, C-COT, MDNet, ECO) and the proposed tracker on 12 challenging

video sequences.

In most of the video sequences, CNN-SVM is unable to locate the object position

due to the limited performance of SVM classifier. MDNet improves CNN-SVM

through an end-to-end CNN network formulation, and it performs well on deformation

(Trans), low resolution (Skiing), and fast motion (Diving). However, it does not perform

well in handling out-of-plane rotation (Ironman) and occlusion (Human4). The correl-

ation filter-based trackers such as C-COT and ECO use deep features for visual object

tracking, but they fail to exploit more sophisticated deeper architectures. They perform

well in handling occlusion (Human4, Box) and deformation (Trans). However, the

Table 3 Results of different features

ConvLayer 2 3 4 3, 4 2, 3, 4

Precision 0.624 0.705 0.764 0.821 0.795

Success rate 0.502 0.524 0.557 0.587 0.566

Fig. 10 Failure cases of our method on “Jump” and “Coupon”. Green and red bounding means the ground
truth and the results from our tracker, respectively
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tracked object drifts when it undergoes heavy occlusions (Bird1). Overall, our tracker

captures the appearance variations of the object by fine-tuning the network and the ad-

versarial learning scheme enhances the discriminative ability of the classifier. Therefore,

the proposed tracker performs well in estimation both the scale and position of the ob-

ject on these challenging video sequences. The proposed tracker performs favorably

against state-of-the-art.

Moreover, the accurate prediction of spatial attention response map is a key factor in

our tracker. Thanks to the utilization of mean squared loss and adversarial loss, the

predicted attention response maps are robust for most challenging cases. Even if the at-

tention is not precise, the tracking results will not be largely affected in our experi-

ments. Figure 9 shows the robustness of the proposed tracking method. The red

bounding box is our results.

In addition, a major concern of the proposed tracker is its computational efficiency.

Our tracker largely reduces the computational burden in learning and tracking. The pa-

rameters of deep network model can also be pre-computed in the training phase. Its

tracking error grows proportionally as the number of index increases. During the track-

ing, the parameters of deep network model will be updated in a fixed interval time.

This greatly accelerates the tracking process. The runtime of our tracker against other

trackers is shown in Table 2.

6.3 Feature comparison

We compare the feature effects of different layers of deep learning network model on

the OTB-2015 benchmark, which is shown in Table 3. We can see that the combin-

ation of the features extracted from conv3 and conv4 layers achieves the best results,

which verifies the rationality of the feature selection strategy of the proposed tracking

algorithm. The best results are in bold.

6.4 Failure cases

Although the proposed tracking algorithm can achieve a satisfied performance, a few

failure cases occur when object suffers from the long-term occlusions. When the

tracked object reappears and becomes very small, the proposed tracking method fails to

follow the object due to the limited pixels and appearance variations, which can result

in poor tracking performance. A feature selection implementation strategy using the

feature from conv2 is able to track the object, because the features of conv2 layer have

higher resolution than the features from deeper layers. For the Biker sequence, the ob-

ject suddenly moves violently beyond the search area of the proposed tracking method.

Many single object trackers are not able to cope with this challenge problem in this

sequence.

Our tracker fails to track objects when they have very similar appearance (e.g., result

in “Coupon” sequence) and experience dramatic topology changes (e.g., result in

“Jump” sequence) in Fig. 10. Another limitation of our tracker is that the running

speeds (14.8 fps on OTB-100 dataset) are far below real-time usage, which cannot be

easily employed in other products, such as mobile phone and many embedded devices.

We leave these issues for further studies.
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7 Conclusion
In this paper, we propose an effective object tracking method with learning attention.

We design a prediction network which is pre-trained off-line and used to predict the

object positions of a video sequence. The object positions of the first ten frames are

employed to fine-tune prediction network for obtaining rich appearance variations. The

positive and negative samples are also augmented. Furthermore, these object locations

are captured to mine the domain-specific information through fine-tuning the adver-

sarial generative network. We adaptively use dropout to mine the discriminative fea-

tures which are originally diminished during the training process. The adaptive dropout

is achieved via adversarial learning to find discriminative features according to different

inputs. In addition, we present a spatial attention mechanism to improve the tracking

performance. Compared with the state-of-the-art, the proposed tracking method

achieves outstanding performance in two large public tracking benchmarks. Further re-

search directions include applying the spatial attention into multi-modal applications.
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