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Abstract

In order to protect the intellectual property of neural network, an owner may select
a set of trigger samples and their corresponding labels to train a network, and prove
the ownership by the trigger set without revealing the inner mechanism and
parameters of the network. However, if an attacker is allowed to access the neural
network, he can forge a matching relationship between fake trigger samples and
fake labels to confuse the ownership. In this paper, we propose a novel neural
network watermarking protocol against the forging attack. By introducing one-way
hash function, the trigger samples used to prove ownership must form a one-way
chain, and their labels are also assigned. By this way, an attacker without the right of
network training is impossible to construct a chain of trigger samples or the
matching relationship between the trigger samples and the assigned labels. Our
experiments show that the proposed protocol can resist the watermark forgery
without sacrificing the network performance.
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1 Introduction
The increasing application of neural network in daily life demonstrates that its intellec-

tual property protection is an important issue, and that watermarking is an effective

manner of ownership authentication. The techniques of watermarking neural networks

can be generally classified into two categories: weight-parameter-based methods and

trigger-set-based methods.

The first kind of neural network watermarking methods usually embed watermarks

by slightly modifying weight parameters, and a matrix production between the water-

marked parameters and a key-derived matrix is used to extract the embedded water-

mark. That implies the watermarked neural network must be a white box on

watermark extraction phase. In fact, the owner may train the neural network by

employing a loss function including an additional watermark extraction item for pro-

tection. Due to the large number of weight parameters of the neural network, the em-

bedding positions and forms of specific watermarking scheme are also different.

Uchida et al. [1] put the watermark bit into the parameters of convolutional layers

through a binary cross entropy regularization loss function. When extracting, the

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

EURASIP Journal on Image
and Video Processing

Zhu et al. EURASIP Journal on Image and Video Processing         (2020) 2020:37 
https://doi.org/10.1186/s13640-020-00527-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-020-00527-1&domain=pdf
mailto:zhangxinpeng@fudan.edu.cn
mailto:zhangxinpeng@fudan.edu.cn
http://creativecommons.org/licenses/by/4.0/


average value of the corresponding parameters is multiplied by a pregenerated key

matrix, and the product is the vector with the watermark information. Such kind of

watermarking requires obtaining detailed information inside the neural network, in-

cluding weight parameters, and output of layers, to directly investigate the network for

verifying ownership. Watermark bits often contain identity information and may also

be embedded in the variance of the weight parameters [2] or the output of activation

layers [3].

The second kind of watermarking methods requires to construct a trigger set, includ-

ing a few samples and their assigned labels, to train the neural network. After the train-

ing, the outputted result must be same as its corresponding assigned label when a

trigger sample is input to the neural network, and the trigger set is only known by the

owner. If the owner wants to prove his ownership, he may verify the matching relation-

ship between the trigger samples and the labels by providing the trigger set to an au-

thoritative third party. Here, any inner mechanism or weight parameter of the network

is not revealed, i.e., the watermarked neural network could be a black box on owner-

ship verification phase. In view of the good nature of trigger-set-based watermarking,

the researchers have proposed many schemes to construct trigger sets. Adi et al. [4]

took 100 abstract images and attached labels that did not correspond to the images’

content to them. So this is their trigger set, and they utilized both the trigger set and

the training set to train the classification neural network at the same time. Merrer et al.

[5] used adversarial samples to construct the trigger set. These adversarial samples were

obtained by adding disturbance to original images, and could not be correctly classified

by ordinary models without trigger-set training, so they are also suitable for trigger

samples. In addition, various schemes for constructing trigger sets are also proposed in

[6, 7], including adding specific patterns or signatures, mixing Gaussian noise, and

overlaying a special image related to watermark information on the original image.

Although the trigger-set-based methods are more convenient, for its fewer inner de-

tails of the neural network on the ownership verification phase, than the weight-

parameter-based methods, an attacker capable of accessing the neural network may

forge a fake trigger set to claim his ownership. Then, two watermarks exist in the

neural network, and no one can distinguish the illegal watermark from the legal one.

That implies the ownership of the neural network will be confused. The forging attack

remains a problem of the trigger-set-based watermarking methods.

This paper proposes a novel trigger-set-based watermarking protocol against the for-

ging attack. By introducing one-way hash function, the trigger samples to prove owner-

ship must form a one-way chain. For an attacker who can assess the neural network

but fail to train the neural network, it is impossible to construct a chain of trigger sam-

ples and the matching relationship between the trigger samples and the assigned labels.

The protocol is suitable for neural networks with different function mechanisms and

training methods. Our experiments also show that the proposed protocol can resist the

watermark forgery without sacrificing the neural network performance.

2 Related work and forging attack
The forging attack is not aimed at removing the original legal watermark, but con-

structing another illegal watermark without any change on the watermarked cover. The

forging attack of image watermarking is also called invertible attack or protocol attack,
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and a series of works are on this topic [8, 9]. If someone is given a watermarked image

and a watermarking algorithm, he can construct a fake original image and a fake water-

mark and show the result of embedding the constructed watermark into the con-

structed original version is same as the given watermarked image, then the forging

attack succeeds. By introducing a noninvertible mechanism into watermarking algo-

rithm or protocol, the forging attack can be resisted. In [10], an enhanced forging at-

tack is presented, in which the watermarking algorithm, as well as the original image

and the watermark, is also constructed to perform a stronger attack. By establishing a

relationship between the watermark extraction algorithm and the embedded water-

mark, the enhanced forging attack is therefore disabled in [10].

In the scenario of trigger-set watermarking for neural networks, after defining a trig-

ger set and training a fairly well-performing watermarked network with a watermark,

the owner puts the watermarked neural network on the cloud to serve others. Then,

the users may submit inputs to the watermarked network to obtain the outputs. In par-

ticular, an attacker can collect a set of images and input them into the watermarked

network, supposing it is a classification model, to obtain the corresponding outputted

labels, and then, he could claim his trigger set including the collected images and the

obtained labels. Since both the fake trigger set and the legal trigger set are effective for

the watermarked network, the authoritative third party cannot determine who actually

owns the trained network, even if the fake trigger set has not been used to train the

network.

We call this kind of attack against the deep network watermark as the forging attack,

which is a black-box attack [11]. In other words, it can only contact the network

through a functional interface, but cannot modify the parameters and structure. The

black-box attack is the most likely attack on trained networks. In many cases, an at-

tacker cannot even get complete training data, let alone stealing a trained network.

Therefore, the main purpose of our research is to resist this kind of black-box forging

attack.

Although there have been some works aiming at resisting the forging attack, this

problem has not been solved completely. For example, Li et al. [12] proposed a convo-

lution operation to construct the trigger set so that the trigger samples are marked with

identity information. Their trigger set is divided into two parts, one for watermark em-

bedding and the other for preventing forging attacks. The former part of images is

tagged as a common label, and the matching relation between these images and the

common labels outputted by the watermarked network is used to verify ownership.

Correspondingly, the latter images are attached with multiple labels, and this part of

the training makes it difficult for forged trigger samples to be classified into the same

category of the selected common label. In effect, although one cannot construct a fake

trigger set compatible with the watermarking algorithm in [12], it is still feasible for an

attacker to successfully construct fake trigger set compatible with other watermarking

algorithms, thus the ownership can still be confused. To overcome this problem, we

propose a secure watermarking protocol with wild compatibility in the next section.

In contrast to the black-box attack, the white-box attack [11] assumes that the at-

tacker has obtained the complete network, including weight parameters and frame

structure, but he still cannot use the stolen network publicly. What he needs is to re-

move the original watermark and even embed a new watermark in the network, while
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ensuring that the modification does not degrade its performance. Some researchers be-

lieve embedding new watermarks as an effective white-box attack. They argue that once

multiple watermarks exist in the network, the copyright should be shared by all the

owners of those watermarks. In fact, this is not reasonable in the case of an authorita-

tive third-party certifier existing. Because one of the watermark embedders can provide

the trusted third party with a network containing only one authenticated watermark to

prove that he or she owns the copyright exclusively. Therefore, we believe that simply

embedding a new watermark is not enough as a successful attack. For white-box at-

tacks, we only consider the way to remove the original watermark by transfer learning.

Once the original watermark is removed, the real owner cannot claim copyright. A se-

cure neural network watermarking protocol should prevent the attack of black-box for-

ging while resisting the attack of white-box removing. Later experiments will show that

we did.

3 The proposed method
To resist the forging attack, the proposed watermarking protocol prescribes a manner

of generating a trigger set. By introducing a one-way hash function, the trigger samples

used to prove ownership must form a one-way chain, and their corresponding labels

are also assigned. The protocol is compatible with various neural networks and training

methods. As long as the owner obeys the protocol to embed a watermark, he can suc-

cessfully provide an effective trigger set to prove his ownership. For an attacker who

cannot train the network, although he accesses the watermarked network freely, it is

impossible to construct a chain of trigger samples and the matching relationship be-

tween the trigger samples and the assigned labels. This way can disable the forging

attack.

3.1 Secure watermarking protocol

Supposing we are protecting a N-classification neural network, the details of the proto-

col are as follows:

The authority T publishes two one-way hash functions HX and Hy. Here, HX takes an

image X and a key k as input to output an image Xl of the same size

Xl ¼ HX Xl − 1; kð Þ; l ¼ 2; 3…; L ð1Þ

and Hy takes an image X as input to output an integer value y

y ¼ Hy Xð Þ ð2Þ

When an owner of a neural network inserts his watermark into the network, he

should select an initial image X1 and a key k to calculate

Xl ¼ HX Xl − 1; kð Þ; l ¼ 2; 3;…; L ð3Þ

and

yl ¼ mod Hy Xlð Þ;N� �
; l ¼ 1; 2;…; L ð4Þ

where N is the number of classification of the network and L samples, Xl (l = 1,

2,…, L), form a chain. The value of L is assigned by the authority L and will be
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discussed later. Then, the owner collects the samples and the labels to generate

the trigger set:

Xl; ylð Þ j l ¼ 1; 2;…; Lf g ð5Þ

and trains the network to ensure the classification result of inputting Xl must be yl.

Here, the training method may be determined by the owner.

For verifying the ownership, the owner should provide X1 and a key to the authority

and calculate Xl and yl according to (3) and (4). The authority checks if the result of in-

putting Xl into the network is same as yl. Denote

Check R Xlð Þ; ylð Þ ¼ 0; if R Xlð Þ≠yl
1; if R Xlð Þ ¼ yl

�
ð6Þ

and

t ¼
XL
l¼1

Check R Xlð Þ; ylð Þ ð7Þ

where R(Xl) is the classification result of inputting Xl by the target network. In fact, t

is the number of samples in the trigger set that can be correctly classified by the net-

work. With a given threshold τ, if

t≥τ ð8Þ

the ownership is recognized. The value of the threshold τ will also be discussed later.

3.2 Protocol implementation

In the protocol, HX and Hy can be any one-way hash functions that take an image and

a key as input to output an image with the same size and take an image as input to

Fig. 1 An initial image and 5 trigger images in a hash chain
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output an integer value, respectively. Actually, we define Hxand Hy based on some

standard one-way hash function. To construct a trigger image, for example, an input

image Xl − 1 is divided into non-overlapping blocks containing 32 pixels, and each block

in image Xl − 1 is used to generate a block at the same position in the output image Xl,

b’ ¼ SHA256 b k kð Þ ð9Þ

where b and b’ are the blocks in Xl − 1 and Xl respectively. For the hash function, we

select SHA256, whose output can be divided into exactly 32-pixel values. Then, Xl can

be obtained from Xl − 1 in a block-by-block manner. As the hash is done each time, a

fixed secret key is appended to the 32-pixel bit string b. The function Hy is to connect

the bitstrings corresponding to all pixel values of image Xl in sequence, input it into

SHA256, and output a hash value. Figure 1 gives an initial image and 5 obtained trigger

images in the hash chain. In fact, there is not much required for the selection of the ini-

tial image.

We do not specify how similar or dissimilar it is to the training set images, as it will

be used to construct numerous noise-like trigger set images. Although the trigger im-

ages except the first one similar to random noise, they can still be used for watermark

verification. On the contrary, the huge visual difference between the trigger samples

and the training images results in the trigger-set training without disrupting the learn-

ing of training images’ visual content. In other words, the watermark embedding will

not affect the establishment of the network function.

Here is to discuss the values of L and τ. In some application scenarios, the water-

marked neural network may be transfer-learned, and we denote the probability that the

result of inputting a single trigger sample Xl into the watermarked network is yl as P.

Since the classification results on trigger sets are produced by reliable training and diffi-

cult to erase, P is usually more than 99%. Then, the probability that the owner succeeds

in verifying the ownership is

PO ¼
XL
i¼τ

Ci
L � Pi � 1 − Pð ÞL − i ð10Þ

On the other hand, attackers may forge trigger samples, and the labels of these forged

samples are also randomly specified by equation (4). When a forged sample is input,

the probability that the output of the watermarked network can be the same as the

label calculated according to equation (4) is 1
N , where N is the number of classifications

of the classification network. Therefore, the success rate of forging attack is

PA ¼
XL
i¼τ

Ci
L � N − i � 1 −

1
N

� �L − i

ð11Þ

Table 1 The recommended value of L and τ for the trigger sets of N-classification networks

N 2 5 10 20 50 100

The size of trigger set: L 135 55 38 29 23 20

The threshold: τ 130 52 36 27 21 18
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To ensure the security of the protocol and limit the size of the trigger set, L and τ

should be assigned the smallest values while satisfying PO ≥ 99 % & PA ≤ 10−32. Table 1

lists the values of L and τ with respect to various values of N.

4 Experimental results and discussion
In the experiment, we embedded watermarks for 10- and 100-classification resnet18

[13] trained with CIFAR-10 and CIFAR-100 data sets. According to the proposed

protocol, we constructed trigger sets containing 38 and 20 samples for the two classifi-

cation tasks respectively. And all the trigger samples are computed from the same

image. For watermark embedding, two samples in trigger set are added into each train-

ing batch by turns, batch size of 100, for 60-epoch training, which ensures the water-

mark is embedded in the initial training phase of the network function establishment.

To verify the embedded watermark, the number of samples in the two trigger sets that

can be correctly classified according to the preset labels should be no less than τ (τ= 36

and 18, respectively, for 10-classification and 100-classification tasks).

4.1 Trigger-set training effect on classification

The watermark embedding does not seriously affect the original classification function of the

network. The classification accuracy of the 10- and 100-classification networks we trained

Fig. 2 The effect of increasing the size of the trigger set on the function of resnet18 [13]. The two bar
charts above and below respectively represent the experimental results on CIFAR-10 and CIFAR-100.
Orange, green, and blue bars are our trigger set, test set, and the attacker’s forged trigger set
classification accuracy
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without watermarking was 0.9088 and 0.7273, respectively. When the trigger-set training was

added, the two figures changed only slightly, to 0.9057 and 0.7334. We consider when we use

images with visual perception significantly different from the training data as triggers, the

trigger-set training makes little impact on the original classification function of the network.

In addition, the strong fitting ability of the neural network can also support it to learn the clas-

sification of the trigger set. In fact, a negligible functional reduction is acceptable.

Watermarks in multimedia files are required not to destroy the perceived quality. For

deep networks, we also require that watermarking cannot damage the networks’ func-

tion. Figure 2 shows the effect of continuously increasing the size of the trigger set to

400 on the function of the networks. The yellow line indicates the classification accur-

acy of the network’s function itself when trigger-set training is not added. Gradual in-

creasing the quantity of trigger samples does not impair network’s function (green

column), or decrease the accuracy of the watermark (orange column). At the same

time, the number of trigger samples which are forged in a black-box manner, being

correctly classified, was always far below the threshold τ agreed to in the protocol. This

indicates that embedding the watermark with the proposed trigger set size has little ef-

fect on the network function.

4.2 Watermark verification

In the watermark verification, the authoritative third party needs to input the sub-

mitted trigger set {(Xl, yl) | l = 1, 2,…, L} into the watermarked network and count

the number of trigger sample Xl, whose outputted label is same as yl. Consider

that an attacker uses his initial image X1 to forge a fake trigger set according to

(3) and (4) in the protocol, and submit the trigger set to an authoritative third

party for watermark verification. Table 2 shows the verification results of the net-

work owner’s legal trigger set and the attacker’s forged trigger set, where towner and

tforged are respectively calculated by (7) using the two sets. We performed the ex-

periments for five times with different trigger sets, towner and tforged taking the aver-

age value of the results. It can be seen that all L results of inputting owner’s

trigger sample Xl into the network are the same as yl, which implies a powerful ar-

gument for ownership. On the other hand, since the forged trigger set has not

been learned by the network, tforged is much less than the threshold τ, leading to a

failed watermark verification.

4.3 Comparison

After the forging attack is disabled, comparisons to the backdoor watermarking

scheme [4, 12], and [4–7] are made in this part to show that the proposed method

is as accurate and robust as previous studies and it also has little impact on the

function of the network itself. In Table 3, we use the same network and datasets

(resnet18 [13] on CIFAR-10 and CIFAR-100). The third and seventh rows are the

Table 2 Watermark verification results of owner’s legal trigger set and attacker’s forged trigger set

N L τ towner tforged

10 38 36 38 3.4

100 20 18 20 0.4
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accuracy comparison, the correct classification rate of the trigger set. Under the

same training condition, it represents that the watermark we embed can be ex-

tracted completely correctly. The fourth and eighth lines show the performance re-

duction of the classification function on the test set caused by trigger-set training.

Since only a small trigger set is used, the results show some randomness, and even

sometimes watermarking causes a slight improvement. What is more, with a

smaller trigger set, there is no doubt that our watermarks will be easier to embed

and have less impact on network functionality.

However, our secure watermarking protocol able to eliminate forging attacks

completely is the more important point that must be mentioned in the compari-

son. It is a feature that all other watermarking methods do not have and the nov-

elty of the research lies in. Many existing watermarking methods [4–7] cannot

resist forging attacks. Although the research in [12] can prevent attackers from

constructing fake trigger sets compatible with their own watermarking algorithm, it

is still feasible for an attacker to successfully construct fake trigger set compatible

with other watermarking algorithms, so that the ownership can still be confused.

In our scheme, the authority of the protocol combined with the one-way hash

function completely blocks the forging attack.

Fig. 3 Transfer learned watermarked network classification accuracy for the owner’s trigger set and test set.
The data in the figure is the average of five experiment results
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4.4 Transfer learning

Another widely discussed attack in the white-box manner is transfer learning to re-

embed a new watermark in the presence of the original watermark. However, it cannot

succeed due to the existence of third-party authenticators. Furthermore, a network em-

bedded with more than one watermark has no authentication significance, because the

true owner can constantly submit a network containing only one watermark to prove

his exclusive ownership. This is a fact that has been overlooked by some current re-

searches. Therefore, for the white-box attack, it is only necessary to consider the attack

of removing the original watermark.

The watermark embedded under the protocol is also secure enough to resist the

watermark removing in a white-box manner of transfer learning. One type of removing

attack is to fine-tune the watermarked network using a training set with the purpose to

make the fine-tuned network no longer output yl to the input sample Xl in the owner’s

trigger set. In the experiment, we fine-tuned the watermarked networks’ all layers for

60 epochs with their datasets (CIFAR-10 and CIFAR-100). This kind of experiment was

carried out five times, and as a result, 100% of the owner’s trigger samples can be cor-

rectly classified into the categories calculated according to equation (4), meaning the

watermark could not be erased. Another possible way to remove watermarks is to con-

struct a new trigger set and then use the full training set with the new trigger set to

train the watermarked network in the same way that the original watermark is embed-

ded. Figure 3 shows the classification accuracy of the owner’s trigger set and test set.

The data in the figure is also the average value of the five experiment results. Only one

sample in the 100-classification trigger set was misclassified in one experiment, and the

remaining 19 samples were correctly classified, in which case, the owner’s watermark

verification was also successful according to the threshold we set in Table 1. In all ex-

periments, no less than 99% of the owner’s trigger samples were correctly classified by

transfer learned watermarked networks, which illustrated the robustness of the water-

mark. Although this transfer learning attack does not degrade the classification accur-

acy of the test set, the copyright of the watermarked network is protected as long as

the owner’s watermark cannot be removed.

5 Conclusion
For the intellectual property protection of trained neural networks, we propose a novel

trigger-set-based watermarking protocol against the forging attack. The introduction of

one-way hash function makes trigger samples generated as a chain, and the precursor

in the chain is the source of the successor. In addition, we randomly specify the labels

of these samples by hashing. With this kind of trigger-set training, the authorized third

party can determine whether the user’s ownership is recognized according to the num-

ber of trigger samples being matched with the preset labels by the watermarked net-

work. And it is impossible for an attacker to obtain a set of images that can be verified

as a legal trigger set through random testing. In other words, watermarks can only be

embedded by training.

It should be emphasized that our study is not to propose a method that only solves

the problem of forging attack based on a single watermarking scheme, but to publish a

secure protocol that is compatible with various watermarking algorithms. It ensures

that watermarks embedded according to the protocol can avoid the trouble of forgery.
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The resolution of the forging attack promotes more complete and practical neural net-

work watermarking.

At the same time, there is a big visual difference between our trigger images and the

training images, where the embedding of watermark will not affect the establishment of

the network function. The removing attack experiments also demonstrate that our

watermark is robust enough to ensure that the ownership of transfer learned water-

marked networks can also be verified successfully.
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