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Abstract

As a large number of images are transmitted through social networks every moment,
terrorists may hide data into images to convey secret data. Various types of images
are mixed up in the social networks, and it is difficult for the servers of social
networks to detect whether the images are clean. To prevent the illegal
communication, this paper proposes a method of defeating data hiding by
removing the secret data without impacting the original media content. The method
separates the clean images from illegal images using the generative adversarial
network (GAN), in which a deep residual network is used as a generator. Therefore,
hidden data can be removed and the quality of the processed images can be well
maintained. Experimental results show that the proposed method can prevent secret
transmission effectively and preserve the processed images with high quality.
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1 Introduction
With the fast development of information technology, the online social networks (OSN)

can provide us a convenient transmission of various messages. However, terrorists can also

use OSN to transmit secret messages by hiding data inside the posted images. Generally, it

is difficult for a server to detect whether an image contains secret messages inside the

content. One possible solution is to interfere with the image content in OSN and destroy

the hidden data that might be embedded.

There are two categories of data hiding technologies, i.e., steganography and water-

marking [1]. The former hides many data into a cover while aiming at avoiding detec-

tion. In most cases, steganography is fragile to common attacks, and hidden data can

be removed easily. The latter focuses on embedding data robustly, making the hidden

data difficult to be destroyed. However, fewer data can be hidden into a cover by

watermarking, which is widely used for copyright protection in social networks [2, 3].

Steganalysis is a technique to detect whether an image contains hidden data [4, 5].

However, steganalysis is not precise enough, esp. in cases of small embedding rates

[6]. Besides, as there are many processed images in OSN, it would inevitably neces-

sarily result in large false alarm rates. Therefore, it is more reliable to defeat the

covert transmission by interfering with the image content.
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Typical image processing operations on images, e.g., recompression, down-sampling,

and beautification [7], can defeat most steganography methods without robustness.

However, it is difficult to remove the messages hidden by robust steganography or

watermarking tools. In previous studies, researchers have proposed some methods of

destroying digital watermarking. In [8], an attacking method is proposed to remove

redundancy through the self-similarities of image pixels. In [9, 10], the wavelet

transform-based watermarking and singular value decomposition-based watermarking

can be defeated, respectively. These methods are mainly useful for specific watermark-

ing algorithms [11].

The development of deep learning brings forward more tools for image processing,

e.g., image classification, reconstruction, and recognition [12–15]. As most data-hiding

methods can be viewed as adding noises, it would be useful to remove the hidden data

by image denoising. Although many methods in [16–20] can offer better denoising

performances than traditional methods, they are not good at removing the hidden data,

esp. the date hidden by robust information-hiding tools. In this paper, we propose a

new framework of defeating covert transmission in OSN. Inspired by the generative

adversarial network (GAN) [21], we design a generator and a discriminator to destroy

the secret data that might be hidden in the OSN images. After processing the images

using the proposed method, a receiver cannot extract the hidden data from the proc-

essed images, even the robust data hiding methods are used by the sender. Meanwhile,

the image quality can be well preserved. The rest of the paper is organized as follows.

Section 2 introduces the related works. In Section 3, we present a detailed implementa-

tion of the proposed framework. Experimental results are presented in Section 4, and

Section 5 concludes the paper.

2 Related works
Social networks such as Weibo, Twitter, and Instagram have various image processing

functions. General steganography algorithms are not robust, in other words, social net-

works can easily break the secret information of stego images. Therefore, we use water-

marking algorithms to verify the performance of our method, considering that terrorist

may apply the robust and imperceptible watermarking for covert communication. The

algorithms for testing should be typical and will not fail to normal lossy channel. After

comprehensive consideration, we chose three classic algorithms in the field of digital

image watermarking, which are based on quantized index modulation (QIM) [22],

spread spectrum (SS) [23], and uniform log-polar mapping (ULPM) [24], respectively.

Some brief introductions are given in this section.

The QIM algorithm quantifies the original cover into several different index intervals

by different quantifiers, which is also the embedding process. There are generally two

quantifiers due to the embedded information that is binary, and the quantization area

is not coincident because of the disjunction. The watermarking will be extracted

according to the quantitative index interval of modulated data. Receiver can detect

hidden data by the shortest distance method when the channel interference is not

serious.

As an important work in frequency domain watermarking, the contribution of SS

algorithm lies in the introduction of spread spectrum communication technology. The

spread spectrum code with pseudorandom and cross-correlation properties plays a key
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role in system. And the energy distribution of embedded watermarking signal is

extended to a wider spectrum, which improves the security and robustness capability.

The researchers of ULPM algorithm propose a watermarking robust to rotated,

scaled, translated, cropped distortion and general print-scan simultaneously. This study

eliminates the interpolation distortion and expands the embedding space. A discrete

log-polar point can be obtained by performing the near ULPM to the frequency index

in the Cartesian system, and the data of which is then embedded to the corresponding

DFT coefficient in Cartesian system, ensuring the integrated robust performance and

efficiency.

Although the above three watermarking algorithms have difference in robustness,

they will not easily fail in the face of lightweight image processing in social networks.

Our method can prevent illegal communication by using of robust watermarking, so as

to break the hidden data that cannot be influenced by traditional attacks. And the qual-

ity of processed images is slightly affected. Meanwhile, the method can be regarded as a

new evaluation for the robustness of information hiding.

3 Proposed method
3.1 Overall framework

The flowchart of the proposed method is illustrated in Fig. 1. We provide a holistic

approach to prevent security risks in social networks, which no longer relies on stega-

nalysis due to possible failure in detection. We first generate watermarked image sets

by randomly adding watermark into normal images, and we use binary random

sequences as secret data, i.e., possibilities for 0 and 1 are equal. We send all pairs of

image sets to GAN and gain the processed models by learning the mapping of water-

marked images to clean images. Subsequently, all models would be integrated into the

Fig. 1 The framework of the proposed method
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social networks to block illegal communication hidden in transmitted images. The de-

tailed steps are described as follows:

1) In the initial stage, clean images of the database DSC are first added with a

watermark generated by random binary message. We denote the watermarking

algorithms as ϕ1, ϕ2, …, ϕn respectively, and the corresponding watermarked image

datasets as DSϕ1
;DSϕ2

;…;DSϕn
. The watermarking algorithms should cover both

classical and state-of-the-art algorithms.

2) In the training phase, DSC is sent to the generator G and discriminator D n times

with n watermarked datasets severally. We follow the optimization equation

proposed by [21]

min
G

max
D

V D;Gð Þ ¼ Epdata xð Þ logD xð Þ½ � þ Epz zð Þ log 1 −D G zð Þð Þð Þ½ � ð1Þ

where pdata(x) and pz(z) denote the distribution of real data and generated false data,

respectively. E calculates their mathematical expectation. The value function V

represents the performance of D. For each training objective, G fits from the prior

distribution on DSC, ensuring that the expected error of D for the generated data is as

large as possible. Then D should distinguish the real samples from the generated

samples more accurately through the log-likelihood. The Model-ϕ1, Model-ϕ2,…,

Model-ϕn record training parameters for each session. The details of the network

design will be introduced in Sections 3.2 and 3.3.

3) We deploy all the aforementioned training models on social networks in the

application process. One of the rules is not to judge whether a transmitted image

contains a watermark and the type of watermark to guarantee the practicality of

our method. The effect of each model is only valid for images with its

corresponding or similar watermarking algorithms due to the characteristic of data

distribution. Therefore, we scramble all models under random n times sampling

without replacement for n times process, and the rearrangement is Model-1,

Model-2,…, Model-n. The operation would be done whenever an image is

transmitted. As an example, the Model-ϕ1 gained by DSC and DSϕ1
should have a

small influence on the ϕ2-watermarked image. However, the watermarked image

that applies ϕ2 can be processed by Model-ϕ2 during n times process to remove

secret data in any case.

It should be noted that our training scheme is not to mix the watermarked images of

all labels. Because different types of watermarked images have great differences in data

distribution, it may lead to the instability of network learning and the failure of the

models. The framework avoids the problem to some extent. Meanwhile, it is apparent

that the data distribution of clean images is different from that of the watermarked

images, which also guarantees that clean images are not largely affected. We obtain the

result under n times random sampling to ensure the randomness of the processed

image at the pixel level. Besides, in many cases, data senders are able to find patterns of
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image processing in social networks by repeatedly uploading and downloading. The

framework prevents such phenomenon effectively.

3.2 The architecture of generator G

We use the method in [18] as the generator to gain the mapping of watermarked im-

ages to clean images. The applied convolutional neural network (CNN) can efficiently

and flexibly mine deep features of images by combining residual learning and batch

normalization (BN). Because of the truth that the deeper networks generated by merely

adding layers would not always bring positive benefits, the combination method avoids

convergence difficulties and the saturation or even slowdown in network performance.

We synchronize the training errors of deep and shallow networks by introducing

shortcut connections on the stacked layer. Specifically, we denote the original mapping

to be learned as H ðxÞ for network input x and output y, while the residual mapping is

F ðxÞ ¼ H ðxÞ − x. When the residual is zero, the network would not be negatively

optimized because the identity mapping happens on the stack layer. In theory, the most

intuitive benefit is to cut the amount of learning required to make training more

accessible. Next, we take the residual image as output directly through only one

residual unit, which is different from the classic residual network with multiple shortcut

connections. At the same time, the BN layer is employed to improve the generalization

ability and reduce the training pressure caused by adapting to the distribution changes

of each iteration.

Figure 2 provides the architecture of generator and discriminator network. The

network depth is set to 21, which is determined by balancing model effect and training

time. We apply 64 filters of size 3 × 3 on the input watermarked image IW. The output

64 feature maps are fed into the 19 repeated convolutional layers composed of 64

kernels with size 3 × 3, and batch normalization is added after each convolution. The

Fig. 2 Architecture of generator and discriminator network with kernel size (k), number of feature maps (n),
and stride (s) represent the parameters of each convolutional layer
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residual image IR is reconstructed by the corresponding number of image channels,

aiming to approximate the real residual of IW and clean image IC. Except for the

TanHyperbolic (TanH) function used on the output layer, all other layers take rectified

linear units (ReLU) as the activation function for the stability of training. At the end of

the network, generated image IG is obtained by subtracting IR from IW. We denote

training parameters of the generator G as θG = {ω1~L; b1~L}, where ω1~L and b1~L repre-

sent the weights and biased of the L-th layer, respectively. We express the relationship

between the above image labels by Eq. (2).

IR ¼ GθG IW
� �

IG ¼ IW − IR

�
ð2Þ

We use a real-valued tensor of size N×H×W×C, where the images are sized N×H×W

with C channels, and the training batch size is N.

Our learning goal is guided by the loss function, which consists of content loss and

adversarial loss. The content loss adopts the mean-squared error (MSE) of the output

residual image and the real residual as the optimization objective, which is the most

frequently used in the perceptual loss. Since it can be intuitively regarded as the pixel-

wise difference, the detailed result is calculated by Eq. (3)

lmse ¼ 1
NHW

XN

k¼1

XH

m¼1

XW

n¼1
ICk;m;n − IWk;m;n − IRk;m;n

� �� �2
ð3Þ

However, the accuracy of gradient descent direction is not high enough by simply

using error back-propagation through MSE, especially where there is little visual dispar-

ity between watermarked image and target clean image. We expect that the probability

of a fake image being judged as clean by discriminator is vast, and keep pace with the

minimization trend of MSE. Therefore, the adversarial loss is further added to update

gradient more precisely and make sure the generated image is as similar as possible to

the groundtruth. The adversarial loss can be calculated as follows:

ladv ¼ 1
N

XN

k¼1
− logDθD IGk

� � ð4Þ

Finally, we define the total generator loss as

lG ¼ lmse þ βladv ð5Þ

where β = 10−3. Empirically, for the balance of generator and discriminator, the pro-

portion of adversarial loss is generally slightly smaller.

3.3 The architecture of discriminator D

We set up a pre-processing layer based on prior knowledge before the image is formally

inputted into the discriminator. Image quality would affect the results of an algorithm

under normal circumstances. The processing of database is not restricted to the

normalization of image pixels. It is crucial to eliminate irrelevant information and take

advantage of useful information on the basis of simplifying data to the greatest extent.

Because the difference between watermarked image and clean image is totally small in

our task, it can be regarded as a weak noise signal in high frequency. High-pass filtering

operation can amplify the signal by weakening the other image contents, which would
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drive the subsequent network to perform better at classification. We denote the high-

pass filter as F, and the filtered image R under batch N can be obtained by Eq. (6)

Rlabel
k ¼ I labelk ⨂F ð6Þ

where k = 1, 2, …, N. The symbol ⨂ represents convolution operation, and the label

on behalf of generated image G and clean image C. We use the following filter kernel,

which is commonly employed in steganalysis.

KHPF ¼ 1
12

− 1 2 − 2 2 − 1
2 − 6 8 − 6 2
− 2 8 − 12 8 − 2
2 − 6 8 − 6 2
− 1 2 − 2 2 − 1

0
BBBB@

1
CCCCA

ð7Þ

Inspired by the principles summarized in DCGAN [25], the core part of the discriminator

network consists of 8 convolutional layers, and the number of kernels increases gradually from

64 to 512 by a factor of 2. We utilize the stacked convolution kernel of size 3 × 3 instead of

the size 5 × 5 used in the original method without changing the perceptive field. This setting

allows the mapping to contain more nonlinear functions and to represent more features with

fewer parameters. The probability of sample classification is calculated by the cross-entropy

error function, after 512 feature maps pass through the full connection layer and sigmoid acti-

vation function. More importantly, we add the BN layer and the LeakyReLU activation func-

tion in all convolutional layers except the input layer for the sake of discrimination stability.

Similarly, we utilize parameter θD to construct discriminator as DθD . The

optimization goal is defined as follows:

max
D

EIC�ptrain ICð Þ logDθD IC
� �þ EIG�pG IGð Þ 1 − logDθD IG

� �� � ð8Þ

The discriminator is able to determine the probability of real as higher as possible

when the input image is clean. For the generated fake image, the detecting result is

low. The network achieves Nash equilibrium during the interaction between discrimin-

ator and generator, and the final generated image is sufficient to deceive discriminator.

4 Results and discussion
4.1 Experimental setting

We test three classic watermarking algorithms based on QIM, SS, and ULPM, respect-

ively. The image dataset employed in our experiments is COCO [26], which contains

200,000 plain color images. In practice, we select 10,000 images from training set and

1000 images from testing set randomly for experiments. A larger training naturally will

increase the computational complexity and might cause positive feedback to the results.

All images are resized to 192 × 192 for simplicity.

In the initial stage before training, we first set the label of the original training image

as clean. Next, the above-mentioned three watermarking algorithms are utilized to gen-

erate watermarked image denoted as ϕQIM, ϕSS, and ϕULPM. The length of message se-

quence is randomly selected from 40-bit to 120-bit. According to the payload capacity

of each algorithm, we consider the length range of message comprehensively, which en-

larges the effect of the model on watermarked images with various data extent. Though

these watermarking algorithms are mainly designed for gray images, they can be easily
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applied on color images by embedding data in the Y channel. We separately send the

clean images and three watermarked datasets to GAN to gain three processed models

named Model-ϕQIM, Model-ϕSS, and Model-ϕULPM.

The image pre-processing of network includes normalizing the pixels to [-1, 1] and

high-pass filtering. Our models are trained for 7500 iterations based on the Adam

optimizer, and hyperparameter momentum is set to 0.9. The learning rate is decayed

exponentially from 1e−4 to 1e−6. To avoid the oscillation of loss, all weights are initial-

ized by a normal distribution with a mean of 0 and a standard deviation of 0.02. The

slope is 0.2 in all layers activated by Leaky ReLU. We conduct the experiments on a PC

with Intel (R) Core (TM) i7-6850K CPU 3.60 GHz and a GTX1080Ti GPU. It averagely

takes about 1.5 days to train each model on GPU.

4.2 Evaluations on process effectiveness

For objective image assessment, we use three metrics to assess the degree of damage

and the impact on the quality of watermarked images. The value of each objective

metric is the mean result on testing sets. The first is the data extraction error rate of

processed images. We denote the number of wrong message bits as nerror, and nm is the

length of embedded messages, the error rate result is calculated by Eq. (9)

Rerror rate ¼ nerror
nm

� 100% ð9Þ

which approaches 50% means that secret data is completely destroyed. Peak signal-

to-noise-ratio (PSNR) and structural similarity index (SSIM) as two universal criteria

are also applied. The former measures fidelity of watermarked images and processed

images, while the latter evaluates visual loss. A higher PSNR or SSIM generally indi-

cated better visual quality.

We test the effectiveness of each processed model in the first step to ensure that the

saved models can process corresponding watermarked images. The lengths of secret

message are 40, 60, 80, 100, and 120 bits, respectively. As in the training phase, the

message is also embedded in the Y channel. Figure 3 shows the relationship between

Fig. 3 Relationship between data extracting error and payload 40, 60, 80, 100, and 120 bits on Model-ϕQIM,
Model-ϕSS, and Model-ϕULPM
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data extracting errors and payloads. For the testing images of ϕQIM watermark scheme,

the average error rate can reach around 40% or higher, which indicates the secret data

has been basically destroyed. While the watermarked images of ϕSS and ϕULPM perform

slightly better than ϕQIM in fault tolerance due to non-blind and error-correction code.

However, the ratios of data error for each payload tested are more than 30%, indicating

that the extracted data has lost the original meaning.

Figure 4 shows the effect of model on the quality of watermarked images. With pay-

load increasing, the influence of Model-ϕQIM and Model-ϕSS is getting larger, and

Model-ϕULPM is stabilizing. However, high SSIM proves strong imperceptibility of the

proposed framework. As we reconstruct the pixel content of watermarked images to

approximate their original images, the degree of impact on image quality depends on

the watermark algorithm principle.

As mentioned above, it is meaningless to apply a single model to the images water-

marked by the corresponding algorithm in practice because we cannot classify the type

of transmitted images. Hence, we further serial all models in random order so that im-

ages are processed three times. Obviously, there are six kinds of outcomes. We denote

all processes as PQIM − SS −ULPM, PQIM −ULPM − SS, PSS −QIM −ULPM, PSS −ULPM −QIM,

PULPM −QIM − SS, and PULPM − SS −QIM. Next, we embed 80-bit and 100-bit messages in

the images of testing set by ϕQIM, ϕSS, and ϕULPM to generate the watermarked images

sets named T80
ϕQIM

, T80
ϕSS

, T80
ϕULPM

, T 100
ϕQIM

, T 100
ϕSS

, and T 100
ϕULPM

.

Further, toward better proof for the performance of our method, we also test the same

metrics on watermarked images processed by several traditional distortions, including

JPEG compression, gamma correction, Gaussian noise, salt and pepper noise, wiener

filtering, Gaussian filtering, and median filtering. We set the quality factor of JPEG com-

pression QF= 90, 70, 50, 30, and 10. For other kinds of attacks, the filtering window size is

5 × 5, mean and variance of noise are 0 and 0.05, and the gamma factor is 0.3.

To demonstrate the superiority of our method over the traditional attacks in visual,

we select the label “test_image22.png” in the testing sets as an object, and the version

of ϕSS with a 100-bit message is “ϕ100
SS _image22.png”. Subsequently, we give all proc-

essed images of the “ ϕ100
SS _image22.png” applied by our method and the above

traditional attacks, which is shown in Fig. 5. As can be seen from the results, our

Fig. 4 Image quality of watermarked images with payload 40, 60, 80, 100, and 120 bits processed by Model-
ϕQIM, Model-ϕSS, and Model-ϕULPM for a PSNR and b SSIM
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processed images are almost identical to that before processing. However, with the

decrease of the quality factor, the perception of visual distortion increases gradually.

Meanwhile, the results of image filtering, noising, and gamma correction are obviously

not promising.

We compare the recovery of the 80-bit message and image quality variation in the six

processes with JPEG compression. The results of all outcomes are shown in Table 1. It

is observed that different order of three models offers individual results. For a

watermarked image, the best situation is that the model trained by the corresponding

watermarked images is placed first. Other models produce incorrect effects toward a

clean image in pixel content to bring a chain reaction. JPEG compression as the most

common image processing operation works explicitly until the QF= 10. However, the

image quality will drastically deteriorate, which is not allowed in real social network

application. The worst results from randomization in our method can also ensure chan-

nel security without much change in image quality.

Other traditional attacks mentioned above and the six processes are applied on

watermarked images with a 100-bit message, and testing results are listed in Table 2.

Fig. 5 Processed images of “ϕ80
SS_image22.png” applied by our method, JPEG compression, wiener filtering,

Gaussian filtering, median filtering, salt and pepper noise, Gaussian noise, and gamma correction

Table 1 Comparisons of JPEG compression and the proposed method in error rate and image
quality for watermarked images with payload 80 bits

T 80ϕQIM
T 80ϕSS

T 80ϕULPM

Error rate PSNR SSIM Error rate PSNR SSIM Error rate PSNR SSIM

PQIM − SS − ULPM 43.55% 41.61 0.9860 29.54% 44.03 0.9928 33.54% 43.40 0.9901

PQIM − ULPM − SS 43.46% 41.65 0.9860 22.67% 44.40 0.9932 37.44% 43.53 0.9902

PSS − QIM − ULPM 33.64% 41.49 0.9851 37.19% 43.84 0.9924 37.56% 43.40 0.9901

PSS − ULPM − QIM 49.82% 41.46 0.9851 26.46% 44.22 0.9930 37.41% 43.55 0.9902

PULPM − QIM − SS 34.68% 41.52 0.9844 37.26% 43.85 0.9925 37.58% 43.41 0.9901

PULPM − SS − QIM 37.61% 41.45 0.9842 31.73% 43.61 0.9918 37.38% 43.55 0.9902

JPEG_90 0.11% 34.94 0.9756 0.00% 34.94 0.9754 0.00% 34.90 0.9748

JPEG_70 2.34% 31.62 0.9523 0.00% 31.62 0.9519 5.95% 31.52 0.9491

JPEG_50 2.27% 30.17 0.9359 0.00% 30.18 0.9356 14.36% 30.06 0.9308

JPEG_30 17.94% 28.77 0.9136 0.30% 28.74 0.9199 21.68% 28.67 0.9068

JPEG_10 50.96% 25.40 0.8199 43.36% 25.43 0.8209 49.18% 25.40 0.8168
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Although different watermarking algorithms have different performance in resisting

various kinds of traditional attacks, the data extraction error rate is still inferior to our

method while the watermarked images have been seriously distorted, according to Fig. 5.

We can speculate that the traditional attacks will cause intolerable distortion to

watermarked images when achieving sufficient data error rate, which further proves the

effectiveness of our proposed method.

4.3 Anti-analyzability of process and impact on clean images

Our framework provides randomness from different order of sampling of the models,

so that robustness against collusion attack is ensured, namely, finding the inherent rule

and designing resistance strategy. To illustrate randomness, we should prove that each

process order has different effect results on an image. The “test_image616.png” and “

ϕ100
ULPM_image616.png” are selected from respective image sets. Six processes are applied

Table 2 Comparisons of Wiener filtering, Gaussian filtering, median filtering, salt and pepper noise,
Gaussian noise and gamma correction, and the proposed method in error rate and image quality
for watermarked images with payload 100 bits

T 100ϕQIM
T 100ϕSS

T 100ϕULPM

Error rate PSNR SSIM Error rate PSNR SSIM Error rate PSNR SSIM

PQIM − SS − ULPM 44.24% 40.86 0.9834 29.34% 43.30 0.9914 37.38% 43.46 0.9902

PQIM − ULPM − SS 44.23% 40.89 0.9834 22.39% 43.67 0.9919 37.37% 43.59 0.9903

PSS − QIM − ULPM 35.09% 40.72 0.9822 38.00% 43.16 0.9911 37.48% 43.46 0.9902

PSS − ULPM − QIM 49.95% 40.69 0.9823 26.58% 43.50 0.9916 37.38% 43.61 0.9903

PULPM −QIM − SS 36.19% 40.74 0.9814 37.96% 43.17 0.9911 37.41% 43.48 0.9902

PULPM − SS − QIM 38.84% 40.66 0.9811 34.17% 42.84 0.9901 37.39% 43.61 0.9903

5 × 5 Wiener filtering 9.21% 29.22 0.8817 15.92% 29.37 0.8930 19.93% 29.22 0.8840

5 × 5 Gaussian filtering 14.13% 25.41 0.8479 19.26% 25.48 0.8543 20.38% 25.42 0.8443

5 × 5 median filtering 3.93% 22.63 0.7263 3.34% 33.65 0.7291 18.20% 22.63 0.7247

Salt and pepper noise_0.05 31.19% 17.92 0.5156 19.45% 17.92 0.5135 28.45% 17.97 0.5183

Gaussian noise_0.05 22.61% 19.45 0.5664 12.74% 19.45 0.5640 24.21% 19.46 0.5663

gamma correction_0.3 5.31% 10.39 0.6747 7.28% 10.39 0.6769 0.00% 10.39 0.6752

Fig. 6 The “ϕ100
ULPM_image616.png” and different processed consequences
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to the watermarked image. The PSNR between the processed image and the

watermarked image is used to distinguish outcomes. The results are shown in Fig. 6.

Apart from the fact that human eyes can barely distinguish differences, we assure that

the distribution of internal pixels is different through image quality.

On the other hand, the majority of images transmitted over social networks are free

from secretly embedded data. It is also necessary to verify that the model has little

effect on these pure images. We process pure images without any watermarking in

testing sets using the six processes in Section C and list the average value of PSNR and

SSIM of these images in Table 3. The results in Table 3 prove that the impact of

defeating potential data hiding proposed in the paper is mere and controllable. Also,

better performance of removing secret data will result in lower influence on the non-

watermarked images.

5 Conclusion
In the paper, we consider that social networks are weak in the face of illegal communica-

tion hidden by robust algorithms, and steganalysis performs not well in the small payload.

We propose a GAN-based method to defeat data hiding, which learns the mapping from

the watermarked images to the corresponding clean images. The experiments prove that

the process models trained are effective in destroying hidden data basically while ensuring

the quality of the processed image. To resist collusion attack, we increase the vigilance for

communication channel analysts by sampling without replacement repeatedly from the

process models. For future study, we consider to improve the breaking rate and integrate

more robust data hiding schemes by designing more efficient schemes to integrate all

watermarking algorithms.
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