Arachchilage and Izquierdo EURASIP Journal on Image and Video E U RASl P JO urna | on | mage
Processing (2020) 2020:25

https://doi.org/10.1186/513640-020-00510-w and Video Processing

Deep-learned faces: a survey ®

Check for
updates
Samadhi P. K. Wickrama Arachchilage @ and Ebroul Izquierdo
*Correspondence:
s.wickramaarachchilage@gmul.ac.uk Abstract ) ) ]
Multimedia and Vision Group, Deep learning technology has enabled successful modeling of complex facial features
School of Electronic Engineering when high-quality images are available. Nonetheless, accurate modeling and
and Computer Science, Queen " fh f . | Id — h ild” d d
Mary University of London, Mile End recogmtmn of human faces in real-world scenarios “on the wild" or under adverse
Rd, E1 4NS London, UK conditions remains an open problem. Consequently, a plethora of novel deep network

architectures addressing issues related to low-quality images, varying pose,
illumination changes, emotional expressions, etc., have been proposed and studied
over the last few years.

This survey presents a comprehensive analysis of the latest developments in the field. A
conventional deep face recognition system entails several main components: deep
network, optimization loss function, classification algorithm, and train data collection.
Aiming at providing a complete and comprehensive study of such complex
frameworks, this paper first discusses the evolution of related network architectures.
Next, a comparative analysis of loss functions, classification algorithms, and face
datasets is given. Then, a comparative study of state-of-the-art face recognition
systems is presented. Here, the performance of the systems is discussed using three
benchmarking datasets with increasing degrees of complexity. Furthermore, an
experimental study was conducted to compare several openly accessible face
recognition frameworks in terms of recognition accuracy and speed.
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1 Introduction

Face conveys a plethora of discriminative features rich enough to determine one’s identity
[1]. These features can be extracted in unconstrained scenarios and non-intrusive man-
ners. Hence, automated face recognition can be exploited in a large number of practical
applications [2]. Among others, it has shown excellent capabilities in security applications
like intelligent surveillance [3, 4], user authentication applications like traveler verification
at border crossing points [5, 6], and diverse other mobile and social media applications [7—
10]. Indeed, person identity prediction based on facial features for practical purposes is a
valuable tool in modern information technology [11]. Straightforwardly, as it may seem,
the underlying modeling and mapping of faces is complex and it becomes daunting due
to the diversity of facial features. Such complexity is further exacerbated by other varia-
tions like emotions, illumination, make up, and low-quality sensing [12, 13]. To tackle this
important, yet challenging problem of face recognition, intensive research efforts have
been reported by numerous research groups and scholars. The discipline can be traced
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back to the sixties [14, 15], when both feature based approaches and holistic approaches
were reported. Feature-based approaches exploit the geometric relationships among dis-
tinctive facial features such as eyes, mouth, and other face landmarks [16—23]. In contrast,
holistic approaches aim at capturing features of the entire facial area in an image [24—29].
Holistic approaches assign equal importance to all the pixels rather than special attention
to a set of points of interest. Hence, these approaches encompass higher distinctive power
at the cost of increased computational complexity [6, 30].

Deep convolutional neural networks (DCNNs) are a holistic approach that recently
enabled a quantum leap in the field. In 2014, Facebook reported a face recognition sys-
tem named DeepFace [27] which achieved near-human performance on LFW benchmark
[31]. This accuracy was quickly surpassed by systems like Deepld3 [28] and FaceNet [29].
Such substantial progress of face recognition technology is a reflection of cutting-edge
research developments in deep network architectures. Starting from LeNet in 1989 [32],
DCNNSs have evolved into sophisticated networks particularly fueled by classification
challenges like The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [33].
AlexNet [34], VGGNet [35], and GoogleNet [36] are arguably the three most influential
ILSVRC networks.

The role of a deep network in a classic image classification system is to map the complex
high-dimensional image information into a low-dimensional proprietary template, i.e.,
feature vector. The generated feature vectors can be interpreted as points in a fixed-
dimensional space. Clearly, face images are a subspace in the much larger image space. This
fact implies that network architectures that succeeded in the problem of image classifica-
tion are adaptable to face classification. Some successful face recognition applications that
emerged from image classification networks are as follows: DeepId3 [28] which was influ-
enced by VGGNet [35] and GoogLeNet [36], Google’s Facenet [29] which used GoogleNet
[36] architecture, and VGGFace [37] that exploited concepts from VGGNet [35].

A deep network is generally underpinned by an optimization loss function. When the
deep net outputs feature vectors from input images, the loss function adds discriminative
power to the generated features. Over the years, loss functions have evolved complement-
ing the network architectures. These loss functions can be categorized as classification
based approaches, i.e., softmax loss and it’s variants, and metric learning approaches, i.e.,
contrastive loss and triplet loss. Successful exploitation of suitable loss functions in face
recognition includes softmax loss in DeepFace [27], a variation of softmax loss as used in
Arcface [38] and a tripletloss used in FaceNet [29].

Figure 1 shows the data flow of a typical face recognition system. During training, the
network model learns from large training datasets. The trained model is then used to
generate feature vectors for test faces. A classic face recognition task generally includes a
gallery of labelled faces and probe/query images. Labelled gallery images are usually pro-
cessed in advance in a step called ‘enrolment process. Here, the feature vectors/templates
of the gallery subjects are generated. These features are then either stored with their cor-
responding labels or used to generate subject specific models. During the face recognition
phase, the template of the query face is compared to the enrolled templates. This compar-
ison can either use a nearest neighbor search or a model based classification. The former
approach is referred throughout this paper as template learning and the latter is referred
as subject-specific modelling.
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Fig. 1 The dataflow of a deep face recognition system. During training the network learns feature
representations (f_i) of faces by getting gradually penalized by the loss function. During testing, the
pre-trained model is used to generate features of test faces. The generated features are classified/compared
for identity determination

An important aspect of face recognition is benchmarking. As mentioned before,
network architectures together with optimization loss functions and sufficient and diver-
sified train datasets have enabled successful modeling of complex facial features when
provided with high-quality images. These face recognition systems reported near-perfect
performance on classic benchmarks like LFW [31]. However, the performance saturation
on these benchmarks resulted in more challenging benchmarks [39-41] entailing more
realistic pictures captured under adverse conditions. The evaluations on such real-world
data shows that the performance of face recognition systems is affected by many factors
including emotions, illuminations variations, make up and pose variations [39, 40, 42, 43].

1.1 Surveys on deep face recognition

Due to the importance of the topic and the vast number of face recognition papers
reported in the past, there is indeed no shortage of related surveys either. Some notewor-
thy face recognition surveys include Zhang et al. [11], Jafri et al. [30], Bowyer et al. [44],
and Scheenstra et al. [45]. These comprehensively survey face recognition systems prior
to DeepFace. Hence, these surveys do not discuss the new sophisticated deep learning
approaches that emerged during the last decade. Surveys that discuss deep face recogni-
tion have singled out face recognition as an individual discipline rather than a collection
of components adopted from different studies. These surveys generally discuss the face
recognition pipeline: face pre-processing, network, loss function, and face classification
[42, 46, 50] or discuss a single aspect of face recognition such as 3-D face recognition [47],
illumination face recognition [52] or pose invariant face recognition [51]. Although these
surveys are important and provide an excellent basis for the analysis of the state-of-the-
art in the field, they do not provide conclusive comparisons or analysis of the underlying
network architectures.
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To better illustrate the difference of the key contributions in the past and this sur-
vey, Table 1 summarises the main deep face recognition surveys. The analysis presented
by Wang et al. [46] is arguably the most comprehensive survey yet in the field. It pro-
vides a holistic overview of the broad topics of deep face recognition including the face
recognition pipeline, face datasets, benchmarks, and industry scenes, briefly surveying all
elements of face recognition. In contrast, this paper focuses on deep learning based com-
ponents in the recognition pipeline and delivers a much detailed analysis of the 18 most
critical deep face recognition systems. The paper describes a face recognition system as
a unique combination of a deep net, loss function, classification approach, train dataset,
and other system specific novelties if any. To properly understand how each system was

derived, the paper also discusses the evolution of the aforementioned components.

1.2 Paper contribution

The key contributions of this survey include:

Table 1 Surveys that discuss deep face recognition

Year

Survey

Contribution

2019

2019

2018

2018

2018

2017

2016

2016

2015

2015

Deep-learned faces: a survey (Ours)

Deep face recognition: a survey [46]

Deep face recognition: a survey [42]

3D face recognition: a survey [47]

A comprehensive analysis of LBCNN
for fast face recognition in surveil-
lance video [48]

A survey on facial feature extrac-
tion techniques for automatic face
annotation [49]

A survey of deep face recognition in
the wild [50]

A comprehensive survey on pose-
invariant face recognition [51]

Addressing the illumination chal-
lenge in two-dimensional face
recognition: a survey [52]

A survey of unconstrained face
recognition algorithm and its appli-
cations [53]

Provides an elaborated study on 18 state-of-the-art face recog-
nition systems. Discusses the origin and evolution of these sys-
tems providing insights of how the network designs and algo-
rithms were derived from image recognition and adapted to
face recognition. The systems are analyzed based on reported
performance and experimental results, comparing the perfor-
mance against dataset quality and complexity.

Provides an overview of all the topics of deep face recognition
covering algorithm designs, databases and protocols, applica-
tion scenes, reported benchmark results, etc. A good reference
for a quick, shallow summary across the broad discipline.

Summarizes the advances of deep face recognition tech-
niques from 2014-2018. Includes a summary on face datasets,
face pre-processing, alignment, network architectures and loss
functions. Additionally, discusses the performance of the face
recognition systems with respect to the 1JB-A [39] dataset.

Categorizes 3D face recognition systems into pose-invariant
recognition, expression-invariant recognition and occlusion-
invariant recognition. Provides an overview of publicly avail-
able 3D face databases.

Comparatively analyses Local Binary Convolutional Neural Net-
works (LBCNNs) against other state-of-the-art networks in
terms of sensibility and processing time.

Discusses six facial feature extraction approaches: speeded up
robust features, eigenfaces, scale invariant feature transform,
convolutional neural network, gabor filter, and local binary
pattern.

Discusses the network models of seven face recognition sys-
tems, comparing their reported performance on LFW [31]
benchmark.

Discusses pose-robust facial feature extraction systems under
two categories: engineered features and learning based fea-
tures. Deep frameworks are discussed under learning based
features.

Provides summarized review of 72 state-of-the-art
illumination-invariant facial feature extraction methods prior
t0 2014,

Discusses face recognition techniques in terms of their behav-
jor at pose variations, non-uniform motion blur and illumina-
tion for the period 2011-2014. The discussion includes several
neural network based systems.

Deep learning based face recognition is either the main focus or is included as a subsection in each survey
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Table 2 DCNN frameworks that had significant impact on face recognition

Year Publication Contribution Network ILSVRC Face recognition
architecture error system
(top-5) (%)
2012 AlexNet [34] Large DCNN with Ensemble of 7 models 15.3

2014

2014

2014

2014

2015

2016

VGGNet [35]

GoogleNet [36]

InceptionV2[73]

InceptionV3 [74]

Residual Learning [70]

InceptionV4 [71]

60M parameters and
650,000 neurons

Increasing depth
using very small
convolution filters.

Inception architecture

Adding batch
normalization to
Inception architecture

Adding factorization
to Inception
architecture

Aresidual learning
framework to ease the
training of very deep
CNNs

Adding residual
learning on top of
Inception

Ensemble of 2 models

Ensemble of 7 models

Batch Normalized
Inception ensemble

Ensemble of four
Inception-V3s

ResNet 34

ResNet 50

ResNet 101

ResNet 152
Ensemble
Inception-ResNet-v1

Inception-ResNet-v2
Ensemble of 4 DNNs

6.8

6.67

49

5.60

5.25
4.60
449
357
43

37
3.1

VGGFace [37]

Deepld3 [28]
FaceNet [29]
Deepld3 [28]
OpenFace [65]

DLIB [64]

ArcFace [38]
CosFace [61]
SphereFace [60]

FaceNet_Re [66]

of

e The background knowledge required to understand and analyze the underlying

frameworks used in face recognition, including,

— The origin and evolution of DCNN frameworks that were effective in face

recognition (Table 2).

— The loss functions used in face recognition, categorized and compared under

two classes: classification based approaches and metric learning approaches.

— A comparative discussion on two main classification approaches used in face

recognition, i.e, template learning and subject specific modelling.

— A brief discussion on key face datasets and evaluation benchmarks.

e An elaborated discussion on 18 state-of-the-art face recognition systems (DeepFace
[27], Deepld [54], DeepID2 [55], DeepIlD2+ [56], VGGFace [37], DeepID3 [28],
FaceNet [29], Baidu [57], NAN [58], Template Adaptation [59], SphereFace [60],
CosFace [61], ArcFace [38], B-CNN [62], DCNNmanual+metric [63], DLIB [64],
OpenFace [65], and FaceNet_Re [66]).
The face recognition systems are analyzed based on the network architecture, loss

function, classification approach, and train data and other unique system design

details.

e The performance of face recognition is discussed based on three scenarios:
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— The performance on good quality data (LFW [31] benchmark)

— The performance on unconstrained data (IJB-A [39] benchmark)

— The performance under millions of gallery distractors (MegaFace [67]
benchmark)

® An experimental study that compares three face recognition systems (DLIB [64],
OpenFace [65], and FaceNet_Re [66]) with respect to face recognition accuracy and
speed.

e Discussion on open issues and challenges in face recognition highlighting possible
future research.

The remainder of the survey is organized as follows. Section 2 presents a cognitive
study of the evolution of DCNN architectures. Then, the paper presents a comparative
analysis of loss functions in Section 3, a study of classification algorithms in Section 4,
and face datasets and evaluation benchmarks in Section 5. Section 6 presents a study on
state-of-the-art face recognition systems. This study is three fold and includes an indi-
vidual systems analysis, a comparative performance analysis on three benchmarks and
an experimental performance analysis. Finally, the paper presents the open issues of face
recognition followed by the conclusion.

2 The evolution of deep face architectures

Andrew Ng, the Chief Scientist at Baidu Research, described the notion of deep learning
as “Using brain simulations, hope to make learning algorithms much better and easier
to use and make revolutionary advances in machine learning and AI” While deep neural
networks (DNNs) have conquered different disciplines, convolutional neural networks
(ConvNets or CNNs) have been particularly effective in visual science [68]. Given the
appropriate network architecture, CNNs are able to process, analyze, and classify high-
dimensional patterns, resulting in an extremely valuable tool in computer vision.

A typical DCNN adheres to a conventional structure which consists of a set of stacked
convolutional layers followed by contrast normalization and max-pooling and finally one
or more fully connected layers [36]. Different variants of this structure have been explored
for performance enhancements. Please refer to Fig. 5 for the general structure of a DCNN.

The evolution of deep network architectures initiated with increased size with respect
to depth, the number of levels, and width, the number of units at each level [34, 35,
69]. Nonetheless, the increased complexity associated with larger nets was not favored in
practical applications. Hence, systems like GoogleNet pioneered architecturally enhanced
networks with lesser parameters [36]. This was followed by Microsoft’s efforts to sim-
plify the training process by using networks with lesser complexity [70]. In the immediate
history, researchers have combined these two design techniques for further simplified
networks [71].

Classification challenges such as ILSVRC [33], MNIST, and CIFAR have led to several
milestone in image recognition. AlexNet [34], the winner of ILSVRC 2012, achieved a top-
5 test error rate of 15.3%, which is the pioneer of DNN-based image recognition. To this
day, the publication is considered to be one of the most influential breakthroughs. The
second milestone was recorded when VGGNet [35], the second place winner ILSVRC
2014, achieved significant improvements (top 5 test error rate of 6.8%) with increased
depth in DNNE.
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Despite the fact that going deeper with convolutions seemed to be the straightforward
solution for accuracy enhancements [34, 35, 69], this approach had two main draw-
backs: (1) the large number of parameters that these deeper networks encompassed
made the network prone to over-fitting and (2) the deeper networks meant increased
computer resource consumption. These factors turned the attention of research com-
munity towards sparsely connected systems. Nonetheless, sparse systems were not a
simple solution and possessed complications and limitations. The calculations associ-
ated with these non-uniform sparse systems, even if the number of arithmetic operations
were fewer, suffered from the overhead of look-ups and cache misses. In compari-
son, dense nets, even with higher number of arithmetic operations, had the advan-
tage of fast dense matrix multiplication operations provided by improved numerical
libraries [34, 72].

GoogleNet [36], which was the winner of ILSVRC 2014, introduced an architecture
code-named Inception, which was capable of outperforming AlexNet with 12 times fewer
parameters as that of AlexNet. The main concept behind this architecture is finding
optimal local sparse structure covered by readily available dense components.

The inception architecture was learned layer by layer. In a single layer, units with high
correlation were clustered together. These clusters which are connected to the layer units
were considered as the next layer. When these inception modules were stacked, the higher
layers required more and more 3x3 and 5x5 convolutions. This is because the highly
abstract features are captured by the higher layers, and their spatial concentration reduces
as a result. To avoid such complexities, dimension reduction was introduced to the
architecture. In doing so, 1 x 1 convolutions were introduced before the 3x3 and 5x5 con-
volutions so that these 1x1 convolutions can compute reductions prior to feeding them
to more expensive convolutions. The Inception architecture was later modified in the
subsequent versions by adding batch normalization in Inception V2 [73] and additional
factorizations in Inception V3 [74].

The uniqueness of Inception architecture is that the design principles focus more on
computational simplicity, enabling the inference to be run even on a single machine. Due
to this nature of GoogleNet, it was later used by many face recognition systems including
Google’s FaceNet [29] and Deepld3 [28].

In a contemporary research, the Microsoft Research employed the concept of deep
residual learning [70] for image recognition. The authors show that the residual learning
framework enables very deep networks, deeper than the traditional DNNS, to be imple-
mented with lesser complexity. The study presented a DNN with 152 layers, which is eight
times as deep as VGGNet [35].

Residual learning can be explained as follows. Consider a set of layers stacked, this could
be the entire network or a part of it. Let the input to the stack of layers be x and the under-
lying mapping be H(x). Instead of training the layers to learn the traditional complicated
function, the stack of layers are trained to learn the corresponding residual function, i.e.,
H(x) — x thus deriving Eq. 1.

Fx) =Hx) —«x
F(x) +x = H(x) (1)

The authors presented several networks of different sizes. ResNet-152, which is 152
layers deep, outperformed VGGNet and GoogleNet in ImageNet validation with a top
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Fig. 2 Top 1 one-crop accuracy (using only the center crop ) on the ImageNet-1k validation set with respect
to the computational complexity of the model. The computational complexity is measured as the number of
floating-point operations (FLOPs) required for a single forward pass. The size of each ball corresponds to the
number of learnable parameters

5 error of 4.49%. An ensemble of ResNets which achieves 3.57% top 5 error won the
ILSVRC-15.

The residual networks, even though much deeper, have lower complexity than the tra-
ditional DNNs. An architectural comparison between VGG-19 model, a 34-layer deep
network and the same 34-layer network with residual connections (ResNet-34), explains
the complexity reduction in ResNets. VGG-19 model has 19.6 billion FLOPS whereas the
34-layer deep networks, both plain and with residual connections, have only 3.6 million
FLOPS each. The plain net and ResNet both have the same FLOPs because the identity
mappings do not introduce any parameters nor computational complexity. Despite the
lesser complexity, ResNet34 outperformed the VGG-19 model in ImageNet validation.

When residual connections on top of a traditional DCNN architectures achieved closer
performance to that of Inception V3, it raised the question whether residual connections on
top of Inception would further enhance the performance. This hypothesis was explored in
Inception V4 (Fig. 3) [71]. The authors showed that, while it is feasible to achieve competi-
tive results through very deep networks without the use of residual connections, inclusion

of residual connections in fact improves training speed in a greater scale.

Inception mod-
ule + Residual
Connections (m)

Relu Ac-
tivation

Residual Residual Con-
Connections nections (m)

Relu Ac- Relu Ac-
tivation tivation

Inception Module of the
pure InceptionV4 network

Relu Ac-
tivation

Pooling

Relu Ac- Relu Ac-
tivation tivation

Relu Ac-

onteny tivation

Fig. 3 From left to right in order are original residual connections [70], modified residual connections used in
[36], the schema for 17x 17 grid of the pure InceptionV4 network, and the schema for 17x 17 grid
(Inception-ResNet-B) module of Inception-ResNet-v1 network
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In addition to discussed networks, bilinear CNNs are a model designed for image
recognition and later adopted in face recognition. The network consists of two feature
extractors whose outputs are multiplied using outer product at each location of the image
and pooled to obtain a bilinear vector [75]. This model was proven to be effective in
fine-grained recognition tasks.

The major architectural innovations in DCNN history are associated with three con-
cepts: increased network size, inception architecture, and residual connections. These
innovations vary in performance indices like model complexity, computational complex-
ity, memory usage, and inference time. These indices are vital in selecting an appropriate
architecture compatible with the resource constraints in practical deployment. Canziani
et al. [76] and Bianco et al. [77] presents an experimental comparison between different
DNN:s. From the results of Canziani et al., Fig. 2 presents the model complexity and com-
putational complexity of DCNNs that have major impact on face recognition (with the
exception of E-Net, BN-NIN, and BN-AlexNet).

3 Comparative analysis of loss functions

The loss function is the supervisory signal used to train a deep network. The study of loss
functions has been carried along two main lines of research: Fig. 4 (1) classification-based
approaches (conventional softmax classifier [27, 37, 78] and modified versions of softmax
loss [38, 60, 61, 79-86]) and (2) metric learning approaches (contrastive loss [28, 55, 56,
87, 88] and triplet loss [29]). The softmax loss learns by classifying each train image into
one of the pre-defined classes. Variants of softmax loss have made efforts to increase the
intra-class compactness in the process. In contrast, metric learning approaches learn by
increasing the similarity between faces of same identity while decreasing the similarity
between the faces of different identities. Regardless of the approach, all deep face super-
visory signals are driven towards a single goal, inter-class discrepancy with intra-class

compactness.

3.0.1 Classification-based approaches

The softmax loss is a multi-class classification problem where the input data contains one
or more images of a set of individuals and the classifier learns the features of each individ-
ual. Despite being referred as softmax loss for convenience, technically, a k-way softmax
function is employed to obtain a probability distribution over labels of k classes [27]. And
the minimization is carried out for the cross-entropy loss for each training sample. The
softmax loss is denoted in Eq. 2,

N W x;+by,
1 e ittt
L=—— log——M 2
N Z g W xi+b; @
i=1 j:le J

Softmax SphereFace CosFace ArcFace Triplet Loss

Fig. 4 Classification boundaries of different loss functions in binary classification
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where x; € R? denotes the d-dimensional deep feature of the ith sample, belonging to the
yfh class. Wj e R? denotes the jth column of the weight W e R**” and bj € R" is the bias
term. The batch size and the class number are N and #, respectively.

Softmax loss, despite achieving inter-class dispersion, provides no particular inclination
towards intra-class compactness. Hence, the features learned through softmax loss may
not be discriminative enough for rather challenging open-set classification problem [38].
Studies that followed have reported several efforts to enhance the discriminative power
of softmax loss [60, 61, 79-81, 83—-86]. An extension of softmax loss named center-loss
[79] attempted to achieve the missing intra-class compactness by taking into account the
euclidean distance between the feature vector and the center of the class. The authors
show that a combination of center-loss and the softmax loss could be an optimum solu-
tion. However, in the matter of huge training datasets with a large number of classes, the
class-wise learning approach becomes complicated and difficult. In an effort to solidify
class-wise learning in large datasets, a new approach named SphereFace [60] incorporated
a multiplicative angular margin penalty. Even though a new loss function was introduced
in this publication, the presented optimum solution was a hybrid with softmax loss. Later,
Wang et al. [61] proposed a system named CosFace which used a cosine margin penalty.
As opposed to Sphereface, CosFace was an additive margin. This approach outperformed
Sphereface.

Most recently in 2019, a research team from Imperial college introduced an additive
angular margin loss named ArcFace [38]. The derivation of ArcFace can be outlined as
follows.

Consider the traditional softmax loss denoted in Eq. 2. The bias is removed and the
logit VVij,- is transformed to its dot product as VV/.Txi = W; Il % || cos6;. When I,
normalization is applied on individual weight and embedding feature , | W; ||= 1 and
| %; || is re-scaled to s yielding the following equation.

escoseyi

N
L ! E l
1= -7 og
N scosby,; no scost;
i=1 € i+ Z}:l,}!:yi €

Now, the predictions only depend on the angle between the feature and the weight. The
inter-class discrepancy and intra-class compactness is achieved by the additive angular
margin penalty m1; hence, the final equation is as follows.

escosGyi +m

N
L ! l
1= —-= E og
N scosty; +m no cost;
i=1 € ! + Z]:l,]!:yi es

ArcFace system reported considerable improvement reporting 99.83% LFW accuracy.

3.0.2 Metric learning approaches

Metric learning approaches are a different optimization approach than softmax loss or its
variants. In metric learning, the network is provided with sample images and is penalized
based on whether the samples are of the same class or not. Contrastive loss and triplet
loss are two metric learning approaches popular in face recognition.

Contrastive loss is generally used in Siamese style networks. A Siamese network is an
architecture with two parallel neural networks with shared weights. Each network takes
a different input, and the two outputs are combined to provide some prediction [89].
Contrastive loss was proposed by Hadsell et al. [90] and was used in face recognition
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Fig. 5 Architecture of VGG16 model

systems like Deepld2 [55], Deepld2+ [56], Deepld3 [28], and others [87, 88]. Figure 7
shows the Siamese network used in Deepld2+.

The researchers of Google presented a system that learns a direct mapping from face
images to discrete points in the compact euclidean space [29]. The optimization loss func-
tion is triplet loss. Given a triplet (an anchor, positive sample and negative sample), this
loss aims at minimizing the distance between the anchor and its positive while maximiz-
ing the distance between the anchor and the negative. Contemporary research carried out
by Baidu Research also reports the use of triplet loss [57].

Despite being conceptually straightforward, the effectiveness of metric learning mainly
depends on the input samples. For example, FaceNet uses a hard sample mining algorithm
for optimum triplets. Moreover, the number of possible triplets grows exponentially with
dataset size and hence effective triplet mining becomes complicated. Studies that followed
[37, 38] reported that while triplet loss is an effective approach, learning by classification
and metric learning approaches makes the training more convenient.

4 A study on face classification algorithms

Generally, the train data in face recognition are large scale datasets diversified with vari-
ations in gender, ethnicity, profession, etc. In contrast, gallery set is much smaller and
application specific (e.g., mugshot images of persons of interest). Often times, gallery
images are disjoint from the train data. Even if the gallery set was included in the much
larger train set, each update to gallery will require complete retraining of the network.
In these situations, the effort to use the trained model without alteration, for online face
recognition, is inconvenient and naive. To this end, deep face recognition exploits the
strategy of transfer learning. In this approach, as shown in Fig. 6, the network learns from
large volumes of train data and the trained model is used to generate features for test
faces. A shallow classifier is then used on the generated features for face identification. In
doing so, the enrolment of gallery samples, i.e., training the shallow classifier, is carried
out as an intermediary step between offline model training and online face recognition.
The enrolment could be a model based approach or a template learning approach. This
section aims to discuss the algorithms used in this shallow classification process.
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Fig. 6 Feature based transfer learning with pre-trained models. conv, convolution layer; fc, fully connected
layer

Generally, transfer learning includes a source domain which is trained offline and a tar-
get domain for online processing [59, 91, 92]. In this context, the source domain is the
large datasets used for offline training of the network model and the target domain is the
online face recognition data. Prior to DeepFace, transfer learning meant fine-tuning the
network model with the gallery samples. DeepFace presented a varied approach of trans-
fer learning for face recognition. The DeepFace net was initially trained as a traditional
multi-class face classification problem. The authors considered the output of the last fully
connected layer as a raw feature representation of the input face. With this notion, Deep-
Face used two identical DNNs with shared weights to simultaneously generate feature
vectors for two faces for face verification. A contemporary research that exploited a simi-
lar concept is the Deepld series [28, 54—56], which used the generated feature vectors for
tasks like face verification and recognition. This feature vector based classification was
exploited in face recognition in two main approaches: (1) subject specific modelling and
(2) template based learning.

When several gallery images are available for a single subject, it results in multiple
feature vectors per subject. These feature vectors can be modeled into a single repre-
sentation for the subject. This is generally carried out with the use of algorithms like
support vector machines (SVM). The model-based approaches yield optimum perfor-
mance multiple imagery per subject is available. In other circumstances, template-based
learning is a straightforward approach. In template learning, the unknown feature vector,
i.e., template, is compared to known templates to calculate the nearest neighbor.

In contrast to image-based face recognition, video-based face recognition generally has
more than one face image for a probe subject spread across a set of consecutive frames.
Hence, multiple feature vectors are available for comparison [58, 62, 63, 93, 94] during the
classification. The studies on video face recognition has carried out classification in three
main approaches: (1) perform classification on each frame, (2) result pooling over set of
frames [62, 63, 94], and (3) integration of information across frames for one-time face
recognition [58, 95]. The second and third approaches maintain the information across
all frames and have reported progress on IJB benchmark.
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5 Face datasets and evaluation benchmarks

The data serves two purposes in a typical face recognition system; it serves as training
data and as benchmarks for system validation. It known that the quality of train data has
a huge impact on the performance of a DNN. Similarly, the quality of the validation data
has a huge impact on the reliability of the benchmark results. The term “quality” refers
to the size and the level of inter and intra-class variations. The intra-class variation is a
measure of the depth of the dataset, i.e., the number of images per each individual and
the inter-class variations is achieved by increasing the breadth, the number of individuals
in the dataset (Table 3).

Initially, face datasets consisted of high-quality images mostly featuring celebrities [31,
88, 96]. Datasets that followed were more practicality driven and hence consisted of data
captured at unconstrained environments (e.g., surveillance footages) [39, 40]. Moreover,
several datasets aimed at including challenging variations like age gaps [97-100], pose
[101], disguise [102], and ethnic variations [37, 67].

Over the years, face recognition systems have been employing train datasets of increas-
ing scale. Facebook once used a dataset of 500 million images of over 10 million subjects
for training face recognition models [103] and Google used a dataset of 4 million facial
images from 4000 subjects [27]. The success of these systems, backed up by large-scale
private datasets, attracted research attention towards large and openly accessible face
datasets like VGGFace2 [78].

The evaluation benchmarks are generally disjoint from the train datasets. They pro-
vide an estimate on the reliability of the trained model under different protocols like face
verification, closed-set face identification, and open-set face identification [104]. For an
unbiased comparison, the results are denoted in notations specified by the benchmark.

Table 3 The benchmark datasets and train datasets for face recognition

Year Dataset Media Subjects
Benchmarks
2007 LFW [31] 13,233 Images 5749
2011 YTF [96] 3425 Videos 1595
2015 1JB-A [39] 5712 Images 500
2085 Videos
2016 MegaFace [67] 4.7M Images 690,572
2017 1JB-B [40] 11,754 Images 1845
7011 Videos
2018 1JB-C [41] 31,334 Images 3531
11,779 Videos
Train Data
2013 CelebFaces [106] 87,628 Images 5436
2014 CASIA-WebFace [88] 494,414 Images 10,575
2014 Google (P) [27] 4.4M Images 4K
2015 Facebook (P)[103] > 500M Images > 10M
2015 Baidu (P)[57] 1.2M 18K
2015 VGGFace [37] 2.6M Images 2622
2016 MS-Celeb-1M [107] 10M Images 100K
2018 VGGFace2 [78] 3.31MImages 9131
2018 CosFace (P) [61] 5MImages > 90K

P private datasets
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Face verification is the task of determining if two faces belong to the same identity or
not. Verification accuracy is generally represented in the receiver operating character-
istic (ROC) [31]. The curve plots variance of the true acceptance rate against the false
acceptance rate. Closed-set face identification is the task of identifying a probe against
the pre-defined gallery with the assumption that the probe has a mate in the gallery. The
accuracy of closed-set recognition is commonly denoted using cumulative match charac-
teristic (CMC) [39, 40]. The CMC curve measures the percentage of true identifications
within a given rank, ie., rank 5 identification accuracy denotes the true identifications
within the top 5 predictions. Open-set face identification is the task of identifying a probe
against the pre-defined gallery while being open to the possibility that the probe may
not have a mate in the gallery. The open-set face recognition accuracy can be denoted
using decision error trade-off (DET) [39]. The DET curve to plots the false-negative
identification rate (FNIR) as a function of false-positive identification rate (FPIR).

This sections aims to provide an overview of face datasets that have been effective in
face recognition discussing their important features, advantages, and disadvantages.

5.0.3 LFW|[31]

LFW is by far the most effective benchmark for unconstrained face recognition. The
dataset comprises 13,233 images of 5749 people under varying conditions of pose, light-
ing, focus, resolution, etc. The cropped faces are detections of Haar cascade-based face
detector by Viola and Jones [105].

The benchmark targets the pair matching problem/face verification. Two evaluation
protocols are provided: (1) restricted, the pairs are provided, and (2) unrestricted, the
pairs can be generated as per user’s preference. The ROC curve is used for recording the
results.

5.0.4 YTF[96]
Following LFW, a similar dataset and a benchmark was released with the purpose of
evaluation of face recognition in videos under unconstrained category. The dataset com-
prises 3425 videos of 1595 individuals. These individuals are a subset of those of the LEW
dataset.

Since the dataset was designed so as to align with LEW, the benchmark tests were
designed the same way. The benchmark includes pair matching tests under two protocols
restricted and unrestricted.

5.0.5 VGGFace[37]
VGGFace [37] consists of 2.6 million images of 2 622 individuals. Despite being recog-
nized as one of the largest publicly available datasets for training, the refined dataset

where label noise is removed by human annotators, consisting of 800, 000 images.

5.0.6 VGGFace2[78]

VGGFace2 consists of 3.31 million images of 9131 s classes giving an average of 362.6
images per class. The dataset was created with the aim of achieving a higher depth and
breadth. The additional design goals of the dataset include achieving wide range of age,
pose, and ethnic variations.
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5.0.7 CASIA-Webface [88]

The CASIA-Webface dataset which consists of total of 453,453 images over 10,575 iden-
tities. The data is collected from IMDb website. The dataset is designed to be compatible
with LFW benchmark, meaning that there are no any overlappings between the two
datasets. Hence, a system trained on CASIA-Webface can be independently evaluated on
LFW.

5.0.8 CelebFaces[106]
CelebFaces contains 87,628 face images of 5436 celebrities from the Internet, with

approximately 16 images per person on average.

5.0.9 Ms-celeb-1m[107]

Ms-celeb-1m dataset consists of a benchmark test which includes evaluation data and
evaluation protocol and a separate dataset for training. The evaluation dataset comprises
data from one million celebrities and the training dataset comprises approximately 10

million images of 100,000 celebrities.

5.0.10 MegaFace [67]

MegaFace challenge evaluates the performance of face recognition and face verification
with up to 1 million distractors. Moreover, it includes protocols for age invariant face
recognition. The probe data collection of MegaFace is composed of two datasets: (1) Face-
Scrub dataset [108] which consists of 100,000 photos of 530 celebrities and (2) FG-Net
dataset [109, 110] which consists of 975 photos of 82 people. The latter encompasses
variations of age with photos spanning many ages of each subject. The MegaFace distrac-
tion data, i.e., gallery collection, includes 1 million photos of more than 690,000 unique
subjects collected from Yahoo's Flickr dataset [111].

The evaluation protocol for face recognition is as follows. Let the probe set have M faces
of a subject, out of which one is placed in the gallery of 1 million distractors. The face
recognition system is provided with the remaining M-1 images. The system is expected to
learn from these M-1 images and rank the distractor set in the order of similarity. Ideally,
the one image from the probe set should be ranked in the first place. The results are
provided via CMC curves. For evaluations on face verification, all pairs between the probe
set and distractor set are provided within the dataset. This contains 4 billion negative
pairs. The verification results are provided via ROC curves.

5.0.11 1JB[39-41]

In contrast to LFW benchmark which used a commodity face detector, IJB dataset pro-
vides a set of face images that are manually aligned (Fig. 8). The manual alignment process
aims at preserving challenging variations such as pose, occlusion, and illumination, that
are generally filtered out with automated detection. The dataset is a collection of media
in the wild which contains both images and videos. The dataset contains media from
500 individuals gathered so as to produce a near-uniform geographic distribution. The
complete dataset comprises 5712 images and 2085 videos.

This dataset is benchmarked for face verification and closed-set and open-set face
recognition. The performance evaluation on IJB is a process of 10-fold cross validation.
The dataset is split 10 random train and test splits with 333 subjects allocated for train-
ing at each level and the remaining 167 subjects for testing. The train set can be used
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to either fine-tune the network or experimentally derive the optimum threshold distance
between two facial feature vectors, which, when exceeded, it can be concluded that the
faces are of different identities. The test set is then split into two parts, gallery set and
probe set. Each subject has media in both the sets. The media in the probe set are used as
the search term and the gallery set is the database that the probe image is tested against.
To facilitate open-set classification problem, 55 randomly picked subjects are removed
from the gallery. In the protocol specified for face verification, the actual and imposter
pairs are provided similar following the LFW convention, but to increase the difficulty,
the imposter pairs are selected with restrictions so as to pick pairs of more similarity. The
performance is reported using ROC, CMC, and DET curves.

6 State-of-the-art face recognition systems

The conventional face recognition pipeline begins with row input images and followed
by pre-processing [112—114], face and facial landmark detection [105, 115-118], align-
ment [119-124], feature generation, and classification. Although each step along the
pipeline has been subjected to research, this survey focuses on the steps controlled by
deep learning, i.e., feature generation and classification.

6.1 Study 1:Individual analysis of system designs

6.1.1 DeepFace [27]

DeepFace uses a nine-layer deep neural network with more than 120 million parame-
ters for face recognition. Softmax loss was employed to train the network, and the train
dataset was a private dataset of four million facial images of more than 4000 identities.
The system also implements an effective pre-processing mechanism where a 3D model is
used to align faces into a canonical pose. In summary, the success of DeepFace is due to
three main factors: (1) sound pre-processing step, (2) network architecture, and (3) large
scale train data.

In addition to the proposed system, DeepFace also presents an end-to-end face verifi-
cation system using a Siamese network. Following the training, the network excluding the
classification layer is replicated twice to generate features simultaneously for two images.
The generated feature vectors are compared in deciding if the two images are of the same
person.

6.1.2 Deepld series [28, 54-56]
Deepld introduced the concept that when a CNN is trained for face classification with
approximately 10,000 identities and the network is designed such that the number of neu-
rons is reduced as we go higher in the feature extraction hierarchy, it results in the top
layers producing compact identity related features with only a few neurons. These identity
features, referred to as Deeplds, can then be generalized to other tasks like face verifi-
cation. This approach of learning facial feature representations through a classification
tasks has conceptual similarities to the Siamese network proposed by DeepFace.

The network used in Deepld consists of four convolutional layers, each followed by
a max pooling layer. On top of this lies the fully connected layer which is referred to
as Deepld layer. The layer was named so because the Deeplds are extracted from this
layer. Deepld layer is then followed by the top layer which is a softmax layer. The Deeplds
extracted from this network is fed to joint Bayesian technique via which the verification
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is carried out. The system was trained on an extended version of CelebFaces [106], code-
named CelebFaces+, which contains 202,599 face images of 10,177 celebrities. The system
yielded 97.45% verification accuracy on unconstrained face verification in LFW.

Following the success of Deepld, Deepld2 suggested that including both face identifi-
cation signals and face verification signals (contrastive loss) for supervision can further
increase the accuracy of face recognition/verification systems. This hypothesis was based
on the premise that the face identification signals contribute in increasing inter-personal
variations whereas face verification signals contribute in reducing intra-personal varia-
tions. Deepld2 achieved 99.15% LEW accuracy. This performance was further improved
by Deepld2+ which introduced two system improvements: (1) increasing the dimension
of hidden representations and (2) introducing supervisory signals to early convolution
layers. Please refer to Fig. 7 for Deepld2+ network.

Adding to the continuous improvements, Deepld3 used both identification and verifi-
cation signals as supervision but on deeper architectures than those of previous Deepld
versions. The Deepld3 nets were influenced by VGGNet (stacking of convolutions to
achieved increased depth) and GoogLeNet (Inception) architectures. By this implemen-
tation, an ensemble of two Deepld3 nets achieved 99.53% LFW accuracy (Fig. 8).

6.1.3 VGGFace[37]

Inspired by VGGNet which showed that deeper convolutions can be more effective in
large-scale image recognition, VGGFace applies the same concept for face recognition.
The authors employed a modified version of the architecture presented in VGGNet and
trained on VGGFace dataset. The authors evaluated two loss functions, softmax loss and
triplet loss, and concluded that the triplet loss certainly does provide a better overall per-
formance. Nonetheless, the authors report that training the network as a classifier with
softmax loss makes the training significantly easier and faster.
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Fig. 7 DeeplD2+ net. Conv n, nth convolutional layer (with max-pooling). FC n, nth fully connected layer. Id,
identification supervisory signal. Ve, verification supervisory signal. Dashed arrows denote forward
propagation. Solid arrows denote supervisory signals. Nets in the left and right are two DeeplD2+ nets with
shared weights and different input faces
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Fig. 8 Sample data in three benchmarks LFW (top), video frames from 1JB-A (middle) and MegaFace (bottom)

6.1.4 Template adaptation [59]

The VGGFace system was later used for transfer learning with template adaptation. In
this implementation, the deep CNN features from pre-trained VGGNet is combined
with linear SVMs trained at test time [59]. The one-vs-rest linear SVMs are reported to

increase the discriminative power of the feature space.

6.1.5 FaceNet[29]

Instead of training a face recognition system in the form of a conventional classifier,
FaceNet implements a system which directly maps the input face thumbnails to the com-
pact Euclidean space. The Euclidean space is generated such that the 12 distance between
all faces of the same identity is small, whereas the 12 distance between a pair of face images
from different identities is large. This is enabled by triplet loss which, by definition, aims
at minimizing the distance between pairs of same identity while maximizing the distance
between pairs of different identities.

The authors used two DNN:Ss, (1) Zeiler Fergus [125] and the (2) GoogleNet [36] archi-
tecture. The nets were trained on an in-house dataset of 100—200 million face images of
about 8 million different identities. Out of the two nets used, Zeiler Fergus, achieved an
impressive LFW accuracy of 99.63% and a 95.12% YTF accuracy.

6.1.6 Baidu[57]

The authors present a network comprising 9 convolutions trained with triplet loss. The
system reports a near-perfect LEW verification accuracy. The authors conclude that
triplet loss, compared to multi-class classification, is more suitable for face verification
and retrieval problems.

6.1.7 DLIB[64]

Dlib [64] is library written in C++ which provides software components targeting special-
ities like data mining, machine learning, image processing, and linear algebra. The library
includes a face recognition component that uses a modified version of ResNet-34 [70] to
obtain a unique embedding for each face thumbnail. The output feature vectors are of 128
numerical dimensions and the network is trained using triplet loss. The network has been
trained on a dataset of 3 million images.
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The face recognition component of the Dlib library employs transfer learning to offer
flexibility to the user to provide an annotated dataset against which the probe face
image/video is compared to. During the enrolment process, the pre-trained model gener-
ates vectors for the annotated face images and are stored. During the recognition process,
the Euclidean distance between the probe feature vector and each of the stored gallery
feature vectors is calculated. During the classification, if the calculated distance lies below
a pre-defined threshold, the two faces are considered to be of the same identity. This
implementation identifies one or more subjects as possible identity of the unknown face.

6.1.8 OpenFace [65]

OpenFace [65] is a face recognition system open sourced under the Apache 2.0 license.
The system was developed with the purpose of bridging the gap between the pub-
licly available face recognition systems and the state-of-the-art high performing private
systems. The system is based on concepts introduced in GoogleNet [36] and FaceNet [29].

OpenFace uses a modified version of nn4 network from GoogleNet which was also used
in FaceNet. The DNN is trained using triplet loss. The output feature vectors obtained
from this trained model are of 128 numerical dimensions.

The face classification is carried out by subject specific modelling approach using a
linear SVM. Given the labeled face images of train data, the system generates feature
vectors for each face. Then, the feature vectors are fed to the SVM which creates a model
based on face feature vectors. When provided with a facial feature vector of an unknown
face image, the SVM model classifies the unknown face.

Table 4 Important milestones in face recognition with corresponding LFW verification accuracies

Year Publication DCNN architecture Loss function Train data LFW (%)
2014  DeepFace [27] 9 layer deep CNN Softmax Private dataset 97.35
2014 Deepld [54] 9 layer deep CNN Softmax CelebFaces+ 97.45
2014 DeeplD2 [55] 9 layer deep CNN Softmax, contrastive  CelebFaces [106] 99.15
2014 DeeplD2+ [56] 9 layer deep CNN Softmax , contrastive  CelebFaces+, 9947
WDRef [129] 99.53
2015  VGGFace [37] VGGNet [35] Softmax, triplet VGGFace [37] 98.95
2015  DeeplD3 [28] GoogleNet [36], Softmax , contrastive  CelebFaces+, 99.53
VGGNet [35] WDRef [129] 99.53
2015  FaceNet [29] GoogleNet [36], Triplet Private dataset [29] 99.63
Zeiler_Fergus [125]
2015  Baidu [57] DCNN with 9 convolutions  Triplet Private dataset 99.77
2018  SphereFace [60]  ResNet-64 [70] SphereFace [60] CASIA-WebFace [88] 9942
2018  CosfFace [61] ResNet-64 [70] CosFace [61] CASIA-WebFace [88] 9933
Private dataset 99.73
2019  ArcFace [38] ResNet-100 [70] ArcFace [38] msim 99.83
Open Source Implementations
- DLIB library ResNet-34 [70] Triplet VGGFace [37], 99.38
FaceScrub [108]
2016 OpenFace [65] GoogleNet [36] Triplet CASIA-WebFace [88], 92.92
FaceScrub [108]
- FaceNet_Re [66] Inception-ResNet-v1 [71] Softmax VGGFace2 [78] 99.65
Inception-ResNet-v1 [71] Softmax CASIA-WebFace [88]  99.05

Inception-ResNet-v1 [71] Centre [79] VGGFace2 [78] 99.2
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6.1.9 FaceNet: re-implementation (FaceNet_Re) [66]

This openly accessible face recognition system is a modified re-implementation of
FaceNet [29]. The system provides three pre-trained models of Inception ResNet V1
architecture, trained with varying loss functions and train datasets. As seen in Table 4,
the model trained with softmax loss and VGGFace2 reported the highest LEW accuracy
out of the three.

Similar to Deepld series, once trained, the inference network which is the network
omitting the top layer is used as the pre-trained model generate feature vectors of 512
numerical dimensions. Similar to OpenFace implementation, an SVM classifier is used
for classification task.

6.1.10 SphereFace [60] and CosFace [61]

SphereFace and CosFace are two face recognition systems which were used to introduce
SphereFace loss and CosFace loss respectively. Both systems use the ResNet-64 archi-
tecture and is trained on CASIA-WebFace. Additionally, CosFace trains the system with
another private dataset and reports a higher performance.

6.1.11 ArcFace[38]

ArcFace, which is a quite recent publication, implements a series of DNNs (ResNet-100,
ResNet-50 and ResNet-34) along with the ArcFace loss. This system outputs a 512-
dimensional feature vector for face images. The DNNs were trained on a modified version
of Ms Celeb dataset (ms1m). In a series of experimental results, the authors show that this
implementation outperforms majority of the reported state-of-the-art results.

6.1.12 Neural aggregation network (NAN) [58]

NAN is a system designed for video face recognition. It comprised a deep network and
an aggregation module. The deep network generates feature vectors for faces in video
frames. The aggregation module aggregates the feature vectors to form a single feature
inside the convex hull spanned by them. This aggregation is invariant to the image order
and hence does not utilize the temporal information across video frames. The network
used in the paper is of GoogLeNet [36] architecture with the batch normalization [73].
Face verification is carried out with a Siamese NAN structure with two NANs trained
with contrastive loss. Face identification is carried out by adding a fully connected layer
on top of the NAN for softmax loss. The train dataset uses about 3M face images of 50K
identities from the Internet.

6.1.13 Bilinear CNNs (B-CNN) [62]

The system uses a symmetric bilinear-CNN model, comprising two Imagenet-pretrained
“M-net” models from VGG’s MatConvNet [126]. The models are fine-tuned with Face-
Scrub dataset. One-versus-rest linear SVM classifiers are trained on the gallery set during

experiments.

6.1.14 DCNNmanual+metric [63]

The paper presents an end-to-end system for face verification. The authors train a DCNN
with 10 convolutional layers, 5 pooling layers, and 1 fully connected layer with CASIA-
WebFace dataset [88]. The system uses joint Bayesian metric learning [127, 128] for face
verification. Out of presented deep nets, the network named DCNNmanual+metric yields
the best performance. DCNNmanual+metric uses the model trained on CASIA-WebFace
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dataset further fine-tuned using the IJB-A [39] and its extended version Janus Challeng-
ing set 2 dataset. The system uses cosine distance as a measure of similarity between
faces. Manual stands for using training data with manual annotation and metric stands
for applying metric learning to compute similarity.

6.2 Study 2: Comparative performance analysis

6.2.1 LFW(2007)

LEW has been the commodity benchmark for face verification, over the last decade.
Table 4 presents the summary of recent milestones in face recognition alongside the
reported LFW accuracy.

The reported high accuracies on LFW indicates that the benchmark has reached sat-
uration, creating requirement for advanced benchmarks. This near-perfect performance
at LFW has been explained by Klare et al. [39], in terms of the nature of the face detector
used. This commodity face detector, despite having attractive features like being scal-
able and real-time efficiency, is not resilient to variations in visual data. Once the faces
are mined using this detector, variations like pose, occlusion, and illumination are fil-
tered. The clear and good quality images of frontal pose makes it more convenient to the
face recognition systems, thus overlooking the probable challenges in advanced applica-
tions like intelligent surveillance. In comparison to the face recognition results reported
on larger benchmarks like MegaFace (Table 5), dataset size can be identified as a second
factor that enables higher accuracy on LEW.

6.2.2 MegaFace
MegaFace challenge advocates evaluation of deep face recognition at the hand of million
distractors. The aim of the benchmark is to scale with the real-world applications that
usually involve recognizing a face at a planetary scale.

“Algorithms that achieve above 95% performance on LFW (equivalent of 10 distrac-

”
’

tors in our plots), achieve 35—-75% identification rates with 1 million distractors,” reports
MegaFace. Accounting for the reported results on this benchmark, Google’s FaceNet
which achieved near perfect LFW accuracy has recorded an accuracy level of 70%s on
MegaFace. The other noteworthy results were of a commercial system named NTech-
Lab. While the reported situation in 2014—-2015 was not perfect nor impressive, the
years that followed reported progress in recognition results [60, 61]. The recent results

reported by ArcFace [38] indicate an impressive near perfect accuracy on MegaFace

Table 5 Face identification and verification evaluation of different methods on MegaFace
Challenge1 using FaceScrub as the probe set

Publication Id (%) Ver (%)
FaceNet v8 70.49 -
NTechLAB 7330 -
SphereFace 72.729 85.561
CosFace (single-patch) 72.729 96.65
CosFace (3-patch ensemble) 7411 97.96
ArcFace 77.06 96.98
ArcFace R 98.35 9848

Id rank 1 face identification accuracy with 1M distractors, Ver face verification TAR at 10-6 FAR, R data refinement on both probe
setand 1M distractors



Arachchilage and Izquierdo EURASIP Journal on Image and Video Processing (2020) 2020:25 Page 22 of 33

benchmark. Please refer to Table 5 for a summary of identification and verification results

on MegaFace.

6.2.3 1JB(2015)

Table 6 presents a summary of reported face recognition results on IJB benchmark. While
the reported results on this benchmark are comparatively higher than those on MegaFace,
the results are not perfect, nor near-perfect. Hence, these results are an indication that the
face recognition is challenged by complications in unconstrained data. A noteworthy fact
regarding this benchmark is that, since the dataset includes multiple imagery for a single
recognition, ideally, the system should include a mechanism to fully exploit the excess
information. While the authors of the dataset suggest subject specific modelling, systems
like B-CNN have employed other approaches like result pooling.

6.3 Study 3: Experimental analysis

Bianco et al. [77] presents an experimental analysis of DCNN frameworks for image
recognition. Here, experiments on all systems are carried out on the same computational
resources. Hence, it provides an unbiased comparison of strengths and weaknesses of the
frameworks. Inspired by the work of Bianco et al., this experimental study analyzes the
performance of three open-source face recognition systems (DLIB library, OpenFace, and
FaceNet_Re) in terms of recognition accuracy and speed. The systems in comparison use
three main deep network architectures discussed in this survey; ResNet, GoogleNet, and
Inception-ResNet and the two main classification approaches, subject-specific modeling
with SVM and template learning.

OpenFace and DLIB uses HoG face detector [116] while FaceNet_Re uses MTCNN face
detector [115]. To avoid dependencies from the detectors, only the faces detected by both
algorithms were considered in the experiment. Taking into account the dependencies
from different classification approaches, the two systems that used subject-specific mod-
eling with linear SVMs (OpenFace and FaceNet_Re) were modified to perform template
comparison in a similar manner to that of DLIB (nearest neighbor based on euclidean dis-
tance). In addition, the results from the original SVM implementation was also reported
for comparison.

Depending on the use case, the recognition could be from Still images to Still images
(§2S), from Video to Video (V2V), and from Still images to Video (S2V). Several bench-
marks have addressed the first two approaches; LFW and MegaFace address S2S, and
IJB addresses the combination of S2V, S2S, and V2V tests. While some benchmarks have
made efforts to address S2V, these are problem specific datasets with some form of bias
[130]. Hence, the experiment measures S2V recognition with LEW dataset as the set of
gallery images and selected videos of YTF dataset as the probe videos. The experiment
measures the rank 1 recognition accuracy with increasing gallery sizes. In addition, the
average time taken by the system to run the forward pass on a single face thumbnail is
compared.

Figure 9 plots the recognition accuracy against the gallery size. The graph depicts two
observations: (1) comparing the performance of the three systems with template learn-
ing as the classifier, FaceNet_Re TL and OpenFace TL show performance decrease with
the gallery size; however, DLIB system shows considerable stability against the growth of
gallery; and (2) comparing the performance of the same system with SVM and template
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Fig. 9 Face recognition accuracy against the gallery size. SSM, subject-specific modeling; TL, template
learning. The gallery contains three images per subject and ranges from 150 images to 2700 images, i.e.,
50-900 subjects

learning classifiers, in both the instances (OpenFace and FaceNet_Re), the SVM is effec-
tive with limited number of subjects, but the performance drops drastically as the number
of subjects increases. And one-to-one template learning is comparatively more stable
against larger gallery sets. Since many studies have encouraged the use of subject-specific
modeling to better utilize all the available information from multiple visual data [27, 39—
41, 59], it is important to properly analyze the strengths and weaknesses of different
modeling approaches. The popularity of SVM in image classification can be explained by
its ability to scale well with high dimensional data [131-133]. Although this works well
when provided with small number of classes, increased number of classes with limited
train data per class could complicate the process of finding the separation hyperplane.

Table 7 reports the average time taken by each system to run the DCNN model on
a single face thumbnail, as recorded on an Intel Core i7-7740X CPU @ 4.30GHz. The
times reflect the underlying computational complexity involved in feature extraction from
raw pixels. OpenFace and FaceNet_Re that includes Inception modules in the frame-
work have reported lesser forward pass time in comparison to the DLIB model. Among
the limited records in literature on computational efficiency, DeepFace reports an 0.18-
s feature extraction time on a single core Intel 2.2GHz CPU and FaceNet reports a
30 ms/image on a mobile phone with a small NN which is reported to have lesser, yet
sufficient-for-face-clustering accuracy.

7 Openissues

Starting from face verification with high-quality data, face recognition has advanced
over the recent years to address complicated scenarios like face recognition in uncon-
strained images and video face recognition. Simultaneously, face recognition benchmarks
like IJB and MegaFace have aimed to replicate real-world applications. While the reports

Table 7 Feature extraction time per face

System NN Forward pass (s)
OpenFace GoogleNet [36] 0.08
DLIB ResNet-34 [70] 0.15

FaceNet_Re Inception-ResNet-v1 [71] 0.01
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indicates a continuous progress, there are some un-addressed issues in terms of face

recognition systems and benchmarks.

7.1 A comparative analysis for face recognition accuracy

Several studies have carried out experimental evaluations comparing state-of-the-art
DCNN frameworks for image classification [68, 76, 134]. These experiments provide
unbiased comparisons of the systems. This is particularly important in situations where
all the systems are not evaluated on the same benchmark. The condition applies to face
recognition as well. While almost all the face recognition systems provide the LFW accu-
racy, systems that were implemented prior to benchmarks like IJB and MegaFace do not
provide evaluation results on them. Hence, there exists the necessity for these systems to
be evaluated under a common benchmark.

7.2 A comparative analysis for computational complexity

While the studies report the recorded accuracy, only limited publications report the asso-
ciated computational complexity. Despite offline processing being generally flexible on
computational complexity, it is one of the most critical requirements in real-time applica-
tions. Hence, there exists the need for a comparative analysis of the deep face recognition
systems with respect to performance indices like computational complexity, memory

consumption, and inference time.

7.3 End-to-end systems
Majority of the studies and benchmarks tend to isolate face recognition as an individ-
ual discipline and hence do not provide sufficient insights on critical issues arising from
inevitable integration with modules like face detection (e.g., false recognitions resulting
from false detections). Despite limited studies [63, 135, 136], end-to-end face recognition
is still an open research.

7.4 Multi-model face recognition

Most of the deep face recognition systems generate a single feature embedding for each
face. This approach consider holistic features and does not contemplate component level
features. Several studies have aimed to implement multi-model face recognition systems
to gain optimum use of diverse information in a face image [137-139]. Several stud-
ies have made efforts to perform fusion of multiple descriptors across face [140-142].
These systems show that despite the possibility of increased computational complexity,
the multi-model systems can yield positive results. Hence, this study an be improved
targeting applications that require offline processing.

7.5 Multi-face recognition and tracking

The benchmarks and systems for video face recognition portray the problem as face
recognition on a set of face images per subject [39-41]. These benchmarks does not
evaluate face tracking. Nonetheless, face tracking is of vital importance in multi-face
recognition in videos. In this scenario, the pixel level information in a video frame and
the temporal information across video frames can be fused for an improved result. While
face tracking and face clustering have been studies as a separate discipline [143—146],
in practical applications, they are applied along with face recognition. Hence, evaluating
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the state-of-the-art face recognition systems along with face tracking can be a possible
research with practical use.

7.6 Ensemble of deep learning and traditional face descriptors

While deep face descriptors are becoming the main feature representations for face
recognition, traditional visual appearance descriptors can be used as an additional infor-
mational guidance. Recent developments have demonstrated effective usage of traditional
visual descriptors in image processing tasks such as image semantic learning [147] and
text mining in complex background images [148]. Exploring their effectiveness as an
ensemble of deep learning could be possible future research.

7.7 Video face recognition

Frame-wise face recognition, feature aggregation across frames, and score pooling across
frames are popular approaches of video face recognition. The first approach provides a
crisp classification output that the probe face belongs to identity x. Unconstrained videos
where faces are subjected to motion blur and other factors like partial faces due to pose
might require aggregation of several partial truths into a higher truth. Despite score
pooling and feature aggregation being straightforward aggregations across video frames,
there exists room for sophisticated algorithms like inference based on fuzzy logic. They
can be adapted from research work of similar disciplines like image annotation [149].
Through this mechanism, a degree of certainty can be calculated to the classification
output, against factors like the quality of the image and the fraction of face visible.

While temporal attention has proven to be effective in video face recognition, research
disciplines like video captioning has shown improved performance by including spatial
affinities in the attention [150]. Hence, spatial-temporal attention emerges as a possible
research for video face recognition.

7.8 Application-specific designs

The expected functionality of face recognition varies with application. A face recognition
application designed for intelligent surveillance where the cost of false alarms (regis-
tered individuals recognized as possible intruders) is high and the cost of missed alarms
(possible intruders recognized as registered) is even higher should strive for minimum
FPIR with reasonable flexibility on false-negative rejections. In contrast, applications that
detects persons of interest is expected to have minimum FNIR (person of interest rec-
ognized as unknown) with reasonable flexibility of FPIR (false alarm where a regular
individual is identified as a person of interest). Hence, the need for scenario specific
designs and benchmarks cannot be overlooked.

7.9 Basic challenges for face recognition

Despite many architectural enhancements and diversified datasets, face recognition still
has scope for improvement in terms of elementary complications arising from visual vari-
ations like pose, expression, occlusion, and illumination. In addition to direct studies like
expression invariant face recognition [151], face recognition under occlusion [152], or
illumination face recognition [52], tools like video segmentation [153, 154] and region of
interest extraction [155] can provide potential indirect assistance for face recognition on

noisy imagery.
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Regardless of the varying modeling approaches and application specific fine-tuning,
face recognition has mainly been influenced by DCNN frameworks, loss functions, clas-
sification algorithms, and train data. The continuous advancement of deep network
architectures in image classification generates networks adaptable for face recognition.
The study of Dong et al. [156], Bruna and Mallat [157], and Hankins et al. [158] are
some image classification networks with prospect for face classification. Hence, face
recognition will remain an active research striving for sophisticated frameworks.

8 Conclusion

This survey has presented the origin and evolution and a comparative analysis of 18 face
recognition systems. Through this, the survey aims provide an informational guidance
to simulate future research. In doing so, the paper has analyzed the performance of the
systems in terms of benchmark results reported on three benchmarks which addresses
different aspects of face recognition and an experimental study. Additionally, the survey
has discussed the open issues in face recognition along with a note on possible future
research.
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