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Abstract

Image hashing is an efficient technology for processing digital images and has been
successfully used in image copy detection, image retrieval, image authentication,
image quality assessment, and so on. In this paper, we design a new image hashing
with compressed sensing (CS) and ordinal measures. This hashing method uses a
visual attention model called Itti model and Canny operator to construct an image
representation, and exploits CS to extract compact features from the representation.
Finally, the CS-based compact features are quantized via ordinal measures. L2 norm
is used to judge similarity of hashes produced by the proposed hashing method.
Experiments about robustness validation, discrimination test, block size discussion,
selection of visual attention model, selection of quantization scheme, and
effectiveness of the use of ordinal measures are conducted to verify performances of
the proposed hashing method. Comparisons with some state-of-the-art algorithms
are also carried out. The results illustrate that the proposed hashing method
outperforms some compared algorithms in classification according to ROC (receiver
operating characteristic) graph.

Keywords: Image hashing, Visual attention model, Saliency map, Compressed
sensing, Ordinal measures
1 Introduction
In the Internet era, many people publish their daily photos on the web via social plat-

form, such as Twitter, Facebook, and Instagram. Some of them would like to copy the

photos of their friends and re-distribute them on the web. Consequently, there are

many copies of some images in cyberspace. Therefore, detecting image copy is an im-

portant task of the community of image processing research. In the past years, many

researchers try to solve the problem of image copy detection by an efficient technology

called image hashing [1, 2]. This technology can not only quickly find similar copies of

a given image, but also effectively distinguish different images.

In general, image hashing maps a digital image to a short sequence of numbers called

image hash in a one-way manner. As image hash can represent its original image in

practice and its storage cost is low, image hashing can achieve efficient processing in

many image applications [3–7], such as image copy detection, image forensics, image

authentication, image quality assessment, and image retrieval. Generally speaking,
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image hashing should meet two basic properties [8–10]. One property is robustness,

which requires that image hashing should produce the same or similar hashes from

those images with the same visual contents regardless of their digital bit-

representations. Since some people may process image copy via editing tool (e.g., ACD-

See and PhotoShop) before republishing them, this property can ensure high correct

detection of image copies. The other property is discrimination, which is also called

anti-collision capability in some hashing papers. This property demands that hashing

algorithm must extract discriminative features from input image, and thus it can sig-

nificantly reduce the number of images falsely returned. In other words, discriminative

hashes should be produced from different images.

The concept of image hashing is firstly proposed at the end of the 20th century [11],

but it has attracted much attention of multimedia community in the past decade. The

early techniques of hashing algorithms include discrete wavelet transform (DWT) [11],

Radon transform [12], singular value decomposition (SVD) [13], discrete Fourier trans-

form (DFT) [14], feature point [15], discrete cosine transform (DCT) [16], and so on.

In recent years, some other techniques are also exploited to build hashing algorithms

for different application purposes. For example, Li et al. [17] jointly used Gabor filtering

and vector quantization to construct hash for resisting image rotation. To improve dis-

crimination, Ghouti [18] proposed to calculate hash of color image via quaternion

SVD. Similarly, Tang et al. [19] selected color vector angle (CVA) as the feature of

color image and conduct feature compression by DWT. In another study, Li et al. [20]

derived hash from color image by quaternion polar cosine transform. To improve rota-

tion robustness, Tang et al. [21] extracted perceptual statistical features from image

rings invariant to rotation and compressed them by using vector distance. Huang et al.

[22] incorporated random walk into zigzag blocking for enhancing hash security. Tang

et al. [23] proposed a novel hashing scheme by using CVA and Canny operator. To

build a hashing with good robustness, Qin et al. [24] computed perceptual features

based on block truncation coding and center-symmetrical local binary pattern. In an-

other work, Yan et al. [25] proposed a novel hashing algorithm for tampering

localization by combining quaternion Fourier-Mellin moments and quaternion Fourier

transform. Zhang et al. [26] improved the image hashing based on non-negative matrix

factorization [2] by converting a rectangular image to a circular image using

interpolation mapping. In another study, Zhang et al. [27] exploited non-subsampled

contourlet transform and salient region detection to design hashing method for authen-

tication. Tang et al. [28] constructed a feature matrix invariant to rotation by log-polar

transform and DFT, and learned hash from the matrix by multidimensional scaling. Re-

cently, Qin et al. [29] utilized hybrid features based on CVA, Canny operator, and SVD

to construct hash of color image. Tang et al. [30] combined a visual attention model

with DFT’s phase spectrum and ring partition to design a hashing algorithm resilient to

rotation. Li et al. [31] exploited neural network to build a new hashing algorithm for

learning robust hash. The above-mentioned hashing algorithms have shown competi-

tive performances in their applications. But their classification between robustness and

discrimination do not reach the expected performance yet.

In this paper, we develop a new hashing method based on compressed sensing and

ordinal measures. Compared with the current hashing algorithms, our work has two

significant contributions.
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(1) We exploit compressed sensing (CS) to extract compact features from the image

representation constructed by visual attention model and Canny operator. The use of

visual attention model can make the constructed representation indicating visual atten-

tion of human eyes, and thus improves perceptual robustness of the extracted features.

The Canny operator can efficiently find image edges, which are discriminative features

for human visual system (HVS). Therefore, compressed sensing applied to the image

representation can derive a compact sequence of robust and discriminative features.

(2) We propose to quantize CS-based compact features via ordinal measures. As the

ordinal measure is an efficient technique for feature compression, the use of ordinal

measures can derive a short hash from the CS-based compact features.

Various experiments are done with open image databases to validate performances of

the proposed method. The results demonstrate that the proposed method reaches good

classification performance and is superior to some current hashing algorithms in terms

of robustness and discrimination. The structure of the remainder of this paper is as fol-

lows. Section 2 introduces the proposed method. Section 3 presents experimental re-

sults and discussion, and Section 4 conducts comparison with some current hashing

algorithms. Section 5 makes conclusions of this paper.
2 Proposed method
The proposed method consists of five steps, as shown in Fig. 1. Input image is firstly in-

terpolated to a normalized size Q×Q by bicubic interpolation. This operation can reach

two functions. The first one is that our hashing method can resist image resizing. The

second one is that hashes of input images with different sizes have the same hash

length. The second step includes two operations. The first operation is the saliency

map extraction from the resized image and the second operation is the edge detection.

Next, the results of saliency map extraction and edge detection are combined to pro-

duce a weighted image representation. And then, compressed sensing is exploited to

extract compact features from the image representation. Finally, the compact features

are quantized by using ordinal measure. Details of saliency map extraction, edge detec-

tion, weighted representation computation, compressed sensing, and ordinal measures

are introduced in the below sections.
2.1 Saliency map extraction

To improve perceptual robustness, we incorporate saliency map into hash generation.

In this paper, saliency map is extracted via a famous visual attention model proposed

by Itti et al. [32]. The Itti model can effectively extract the saliency map of the focus
Fig. 1 Block diagram of the proposed method
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area of human eye and has been widely applied to many fields, such as image classifica-

tion [33], feature detection [34], and image search [35]. Generally, the Itti model is

decomposed of four steps. The first step is the extraction of the saliency map of colors

by conducting the operations of Gaussian pyramids, center-surround operations, and

across-scale combinations. The second step is the extraction of the saliency map of in-

tensity by similar procedure of the saliency map extraction of colors. Similarly, the third

step is the extraction of saliency map of orientations by similar procedure of the sali-

ency map extraction of colors. Lastly, the final saliency map is generated by using the

above three maps as follows:

S ¼ 1
3

S1 þ S2 þ S3ð Þ ð1Þ

where S1, S2, and S3 are the saliency maps of colors, intensity, and orientations, respect-
ively. More details of the classical algorithm of the Itti model can be referred to its ori-

ginal paper [32]. Figure 2 presents an example of the results of detecting saliency map

by the Itti model, where (a) is an input image, (b) is the color map S1, (c) is the inten-

sity map S2, (d) is the orientation map S3, and (e) is the final map S. Here, the Itti

model is chosen to conduct saliency map extraction due to the following reason. Com-

pared with other visual attention models, such as SR model [36] and PFT model [37],

the Itti model can provide our hashing method a better classification performance. Ex-

periment will prove this in Section 3.4.
2.2 Edge detection

Image edge is a useful visual feature and has been successfully used in many applica-

tions, such as image matching, image denoising and image retrieval. In general, differ-

ent images have different image edges. HVS can discriminate different images

according to their edges. Based on these considerations, we select image edge as dis-

criminative feature for hash generation. To do so, the well-known algorithm called

Canny operator [38] is exploited to conduct edge detection. Generally speaking, Canny

operator consists of five phases as follows: (1) a smooth image is generated for alleviat-

ing noise effect on detection result by a Gaussian filter. (2) Intensity gradients of the

smooth image are then extracted by a first-order difference operator. (3) Non-

maximum suppression is exploited to reduce spurious response to edge detection. (4)

Potential edges are determined by using double thresholds. (5) Final edges are extracted

by suppressing those edges which are weak and not connected to strong edges. Details

of the classical algorithm of Canny operator can be found in [38].
Fig. 2 An example of the results of detecting saliency map by Itti model
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As the input of Canny operator is a grayscale image, we select luminance component

of color image for representation. To do so, the resized color image in RGB color space

is mapped to the YCbCr color space by the below formula.

Y
Cb

Cr

2
4

3
5 ¼

65:481 128:553 24:966
−37:797 −74:203 112
112 −93:786 −18:214

2
4

3
5 R

G
B

2
4
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16
128
128

2
4

3
5 ð2Þ

where R, G, and B are the red, green, and blue components of a color pixel, Y is its lu-

minance component, Cb and Cr are its blue-difference and red-difference chromas, re-

spectively. Let D be the detection result of Canny operator. Thus, its element D(i,j) in

the ith row and jth column is determined by the below rule.

D i; jð Þ ¼ 1; If J i; jð Þ is an edge point;
0; Otherwise:

�
ð3Þ

in which J(i,j) is the pixel of in the ith row and jth column of the resized color image.

Figure 3 demonstrates an example of Canny operator, where (a) is the luminance com-

ponent of Fig. 2a, (b) is the result of edge detection by Canny operator.

2.3 Weighted representation computation

To generate perceptual edges of color image, visual saliency map is incorporated into

the detected result of Canny operator. Specifically, the detected edges and the detected

saliency map are combined to produce a weighted representation of color image. Let I

be the weighted representation, where I(i, j) is its element in the ith row and jth col-

umn (1 ≤ i ≤ Q, 1 ≤ j ≤ Q). Thus, it can be determined by the following formula.

I i; jð Þ ¼ D i; jð Þ � S i; jð Þ ð4Þ

where S(i, j) is the element of the detected saliency map S in the ith row and jth

column.

2.4 Compressed sensing

As the dimensions of the weighted representation are the same with the resized color

image, compressed sensing is exploited to extract compact features from the weighted

representation. Compressed sensing (CS) [39] also called compressive sensing [40] is a

new and effective way of signal processing. CS theory breaks through the limitations of

sampling with Nyquist theorem and can directly achieve compression during the
Fig. 3 An example of Canny operator
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sampling process. CS theory has illustrated that if a signal is sparse in an orthogonal

space, it can be sampled at a low frequency and it can be also reconstructed from the

sampled data by solving an optimization problem. In the past years, CS has attracted

much attention and has been successfully used in many applications [40, 41], such as

image processing, image steganography, video processing, pattern recognition, and

communication system. Let x ∈ℝN × 1 be a real-value signal. Assume that x can be

sparsely denoted with the sparse basis set Ψ ∈ℝN × P by the following formula.

x ¼ Ψα ð5Þ

where α ∈ℝP × 1 is K-sparse and K<<N. Thus, CS can obtain a measurement vector
y ∈ ℝM × 1 (M<<N) by the below formula.

y ¼ Φx ¼ ΦΨα ¼ θα ð6Þ

in which Φ ∈ℝM ×N is the sensing matrix (measurement matrix) and θ is the perceptual
matrix (the product of ΦΨ). As the number of the elements in y is much smaller than

the number of the elements in x, y is generally viewed as the compression of x. More

details of CS can be referred to [39, 40]. In this study, the wavelet transform is selected

as the sparse basis set and the measurement vector is exploited to construct compact

feature.

To extract local discriminative features, the weighted representation I is divided into

non-overlapping blocks sized b×b. For simplicity, let Q be the integral multiple of b.

Therefore, there are L=(Q/b)2 blocks in total. Suppose that xi is the ith block of the

weighted representation numbered from top to bottom and left to right (1< i ≤ L). Here

CS is applied to the block xi and its measurement vector yi is then generated. To indi-

cate element fluctuation of the measurement vector yi, the variance is chosen as the

block feature which can be calculated by the following formula.

vi ¼ 1
M−1

XM

j¼1
yi jð Þ−mi½ �2 ð7Þ

where yi(j) is the jth element of yi, and mi is the mean of yi, which is determined by the
below formula.

mi ¼ 1
M

XM

j¼1
yi jð Þ ð8Þ

After the calculation of vector variance, a small vector v is available as follows.
v ¼ v1; v2;…; vL½ �T ð9Þ

Clearly, the vector v consists of L floating-point numbers.

2.5 Ordinal measures

According to the IEEE standard [42], 32 bits are needed to store a floating-point num-

ber. This means that the storage cost of the vector v is 32L bits. To reduce the cost of

hash storage and further improve classification performance between robustness and

discrimination, the vector v is represented by using the well-known ordinal measures

[43]. The ordinal measures are robust and compact features and have been widely used

in many applications, such as video signature [44], iris recognition [45], and face recog-

nition [46]. In general, the ordinal measures of the elements of a data sequence can be
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generated by sorting these elements in ascending order and taking their positions in

the sorted sequence for representation. Table 1 demonstrates an example of ordinal

measures, where the second row is an original data sequence with 10 elements, the

third row is the sorted version the original sequence in ascending order, and the final

row is the ordinal measures of the elements of the original sequence. Clearly, the first

element of the original sequence is 2, which locates at the 2nd position of the sorted se-

quence. Therefore, its ordinal measure is 2. Similarly, the second element of the ori-

ginal sequence is 8, which located at the 6th position of the sorted sequence.

Therefore, its ordinal measure is 6.

Here, the ordinal measures of the elements of the vector v are selected as our hash el-

ements. More specifically, our hash h is represented by

h = [h1, h2,…, hL] (10)

where the ith element hi of h is the position of vi of v in the sorted sequence in ascend-

ing order (1< i ≤ L). Clearly, the length of our hash is L integers. Since the fixed-length

encoding is used to store hash elements, ⌈log2L⌉ bits are needed for a hash element,

where ⌈∙⌉ is the upward rounding operation. Therefore, the length of our hash is

L⌈log2L⌉ bits in binary form. Section 3.6 will validate effectiveness of the use of ordinal

measures. To achieve easy understanding of the proposed method, a visual example of

our hash generation is presented in Fig. 4.

3 Results and discussion
In the experiments, the parameter settings of our method are as follows. Input image is

interpolated to a fixed size 512×512 and the block size is 64×64. In other words, Q=512

and b=64. Consequently, L=(Q/b)2=(512/64)2=64. Therefore, our hash consists of 64 in-

tegers. In binary form, our hash length is L⌈log2L⌉ = 64⌈log264⌉ = 384 bits. To judge

similarity of the hashes of two images, the metric called L2 norm is taken. Let

h1 = [h1(1), h1(2),…, h1(L)] and h2 = [h2(1), h2(2),…, h2(L)] be two hashes of images.

Thus, their L2 norm can be determined by the below formula.

d h1;h2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1
h1 jð Þ−h2 jð Þ½ �2

r
ð11Þ

where h1(j) and h2(j) are the j-th elements of h1 and h2, respectively. Generally, the L2

norm of the hashes of two similar images (e.g., one is a copy of the other image) is ex-

pected to be small. If the L2 norm is bigger than a given threshold T, the corresponding

images are judged as different images. The used platform for implementing our method

is MATLAB 2016a. The configurations of the used computer are as follows. The CPU

is an Intel Core i7-7700 processor with 3.60 GHz and size of the memory is 8 GB. Sec-

tion 3.1 and Section 3.2 validate the performances of robustness and discrimination, re-

spectively. Section 3.3, Section 3.4, Section 3.5 and Section 3.6 present block size
Table 1 An example of ordinal measures

Position 1 2 3 4 5 6 7 8 9 10

Original sequence 2 8 6 4 9 12 3 10 14 1

Sorted sequence 1 2 3 4 6 8 9 10 12 14

Ordinal measures 2 6 5 4 7 9 3 8 10 1
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discussion, selection of visual attention model, selection of quantization scheme, and ef-

fectiveness of the use of ordinal measures, respectively.
3.1 Robustness

To measure robustness performance, the Kodak image database [47] is selected as the

test dataset. This database consists of 24 color images. The sizes of these images can be

divided into two kinds. One kind is 768×512 and the other size is 512×768. In this ex-

periment, three tools, i.e., Photoshop, MATLAB and StirMark [48], are taken to pro-

duce similar images of the 24 color images. Specifically, the used operations of

Photoshop are the adjustments of contrast and brightness (four parameters per oper-

ation). The used operations of MATLAB include gamma correction (4 parameters),

3×3 Gaussian low-pass filtering (8 parameters), salt and pepper noise (10 parameters),

and speckle noise (ten parameters). The provided operations of StirMark are JPEG

compression (eight parameters), watermark embedding (ten parameters), image scaling

(six parameters), and combinational operation of rotation, cropping, and rescaling (10

parameters). In summary, ten digital operations are used and they contribute 74 manip-

ulations in total. Consequently, every original image has 74 similar versions. Therefore,

there are 24×74=1776 pairs of similar images in the robustness test and the number of

the used images reaches 1776 + 24 = 1800.

Figure 5 demonstrates robustness performances of our method under different opera-

tions based on the Kodak database, where the x-axis represents the parameter values of

the used operation, and the y-axis represents the mean value of the L2 norms of the

hashes between each original image and its similar image produced by the used oper-

ation with corresponding parameter. From Fig. 5, it can be seen that the maximum

means of the used operations with all parameters are smaller than 40, except those of

the combinational operation of rotation, cropping and rescaling. Table 2 presents the

detailed statistical results of different operations. It is easy to find that the mean L2

norms of all operations are less than 25, except that of the combinational attack of ro-

tation, cropping and rescaling. The mean L2 norm of the combinational operation is

about 66. It is much bigger than those of other operations. This is because, compared

with single operation, combinational operation brings much distortion to similar im-

ages. Moreover, the maximum L2 norm of the combinational operation is 145.70 and

those of other operations are less than 65. Therefore, when the threshold is set as T =

80, correct detection rate of similar images is 96.11%. If there is no similar image
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Table 2 Detailed statistical results of different operations

Operation Maximum Minimum Mean Standard deviation

Brightness adjustment 64.76 4.24 20.18 10.53

Contrast adjustment 36.74 3.74 14.23 6.12

Gamma correction 62.08 7.62 22.92 10.07

3 × 3 Gaussian low-pass filtering 36.47 0 14.96 7.90

Speckle noise 57.97 6.16 18.88 9.21

Salt and pepper noise 47.14 3.46 18.30 8.35

JPEG compression 59.32 7.35 21.28 9.19

Watermark embedding 60.66 3.74 17.77 9.81

Image scaling 59.11 9.80 24.42 9.62

Rotation, cropping, and rescaling 145.70 21.82 65.74 24.06
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produced by the combinational operation, the correct detection rate can reach 100%.

Similarly, when the threshold increases to T = 100, correct detection rate of similar im-

ages is 98.93%. If the threshold is set as T = 150, our method can correctly recognize

all similar images.
3.2 Discrimination

An open image dataset called UCID [49] is taken to test discriminative capability of

our method. The UCID consists of 1338 color images. The sizes of these color images

can be also divided into two kinds. One kind is 512 × 384 and the other kind is 384 ×

512. The hashes of these 1338 images are firstly extracted by using our method. For

each image, the L2 norms between its hash and the hashes of other 1337 images are

then computed. Consequently, the number of the valid L2 norms reaches C2
1338 = 1338

× (1338 − 1)/2 = 894453. Figure 6 presents the distribution of these L2 norms, where

the abscissa is the L2 norm and the ordinate is the frequency of the corresponding L2

norm. Statistics of these L2 norms are also calculated. The results are as follows: the

minimum L2 norm is 38.37, the maximum L2 norm is 284.03, the mean is 200.20, and
Fig. 6 Distribution of L2 norms based on UCID



Tang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:21 Page 11 of 20
the standard deviation is 28.00. From Fig. 6, it can be observed that most L2 norms are

bigger than 100. This means that we can select the threshold around 100 according to

the practical performances. Note that both performances of robustness and discrimin-

ation are closely related to the selected threshold. In general, a low threshold will im-

prove discrimination but decrease robustness, and vice versa. Table 3 presents our

robustness and discrimination performances under different thresholds, where the cor-

rect detection rate (R1) represents the robustness performance, the false recognition

rate (R2) denotes the discrimination performance, and the total error rate ((1 - R1) +

R2) indicates the whole performance of our method. Clearly, the smaller the total error

rate, the better the whole performance. From Table 3, it is found that the threshold

100 can be selected as a recommended value since it reaches the smallest total error

rate.

3.3 Block size discussion

To view effect of block size, the experiments of our method with different settings of

block size are discussed in this section. The selected block sizes include 16×16, 32×32,

64×64, 128×128, and 256×256. In the experiments, only the block size is different and

other parameters are all the same. The datasets used for the experiments of robustness

and discrimination are the same databases mentioned in Sections 3.1 and 3.2.

To make theoretical analysis of the experimental results, the receiver operating char-

acteristic (ROC) graph [50] is exploited. Here, false positive rate (P1) is selected as the

abscissa of the ROC graph and true positive rate (P2) is taken as the ordinate of the

ROC graph. More specifically, the values of P1 and P2 can be calculated by the follow-

ing equations.

P1 d≤Tð Þ ¼ N1;1

N1;2
ð12Þ

P2 d≤Tð Þ ¼ N2;1

N2;2
ð13Þ

in which N1,1 is the number of different images falsely judged as similar images, N1,2 is
the number of all different images, N2,1 is the number of similar images correctly de-

tected as similar images, and N2,2 is the number of all similar images. Clearly, P1 and P2
correspond to discrimination and robustness. A low P1 means good discrimination,

while a high P2 implies good robustness. Note that a curve in the ROC graph consists

of a set of points (P1, P2), which can be obtained by using a set of thresholds. As the
Table 3 Our performances under different thresholds

Threshold Correct detection rate (R1) False recognition rate (R2) Total error rate = (1 - R1) + R2

80 96.110% 0.006% 3.896%

90 97.750% 0.027% 2.277%

100 98.930% 0.081% 0.012%

110 99.380% 0.210% 0.830%

120 99.660% 0.500% 0.840%

130 99.890% 1.130% 1.300%

140 99.940% 2.340% 2.360%

150 100% 4.540% 4.540%
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curve near the top-left corner of the ROC graph has a low P1 and a high P2, this can be

used to intuitively judge whether the evaluated hashing reaches a good performance or

not. To conduct quantitative analysis, the area under ROC curve (AUC) is often calcu-

lated, whose value ranges from 0 to 1. The bigger the AUC, the better the hashing

performance.

The ROC curves of different block sizes are illustrated in Fig. 7. To show details, the

curves near the top-left part are zoomed in and placed in the right-bottom of Fig. 7.

From the results, it can be found that the curves of 32 × 32 and 64 × 64 are much

nearer the top-left corner than those of other block sizes. As to the AUC, the values of

16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256 are 0.99978, 0.99991, 0.99993,

0.99918, and 0.89944, respectively. Since the AUC of 64 × 64 is bigger than those of

other block sizes, our method with block size 64 × 64 is better than our method with

other block sizes in terms of ROC graph. Computational costs of different block sizes

are also tested. To do so, the total consumed time of extracting hashes of 1338 images

in UCID is calculated. It is found that the block sizes 16 × 16, 32 × 32, 64 × 64, 128 ×

128, and 256 × 256 need 1397.586, 659.103, 389.702, 303.891, and 277.832 s, respect-

ively. Our method with 64 × 64 runs faster than our method with 16 × 16 or 32 × 32,

but it is slower than our method with 128 × 128 or 256 × 256. Similarly, the length of

our method with 64 × 64 is 64 integers. It is shorter than that of our method with 16 ×

16 or 32 × 32, but it is longer than that of our method with 128 × 128 or 256 × 256.

Table 4 lists summary of performance comparison among different block sizes.
3.4 Selection of visual attention model

To make robust hash, visual attention model is exploited to extract saliency map in the

second step of our method. To validate effectiveness of our selection, Itti model is com-

pared with other two visual attention models, i.e., SR model [36] and PFT model [37].

The selected models are both reported in the famous conference about computer vision

and widely used in many applications of image processing. The SR model calculates

spectral residual (SR) with the log spectrum of an image and transforms the SR to
Fig. 7 ROC curves of different block sizes



Table 4 Our performances under different block sizes

Block size AUC Hash length (integer) Total run time (s)

16 × 16 0.99978 1024 1397.586

32 × 32 0.99991 256 659.103

64 × 64 0.99993 64 389.702

128 × 128 0.99918 16 303.891

256 × 256 0.89944 4 277.832
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spatial domain for detecting saliency map. The PFT model exploits phase spectrum of

Fourier transform (PFT) to find saliency map of an image. More details of the SR

model and the PFT model can be found in [36, 37], respectively.

Figure 8 demonstrates ROC curve comparisons among different visual attention

models, where the curves near the top-left corner is enlarged and presented in the

right-bottom part of the figure. It can be seen that the curve of the Itti model is much

nearer the top-left corner than those of the SR model and the PFT model. As to AUC,

the values of the SR model, the PFT model and the Itti model are 0.99978, 0.98075,

and 0.99993, respectively. The AUC of the Itti model is bigger than those of other

models. This means that our method with the Itti model is better than our method

with the SR model and the PFT model in terms of ROC graph. Computational time of

extracting hashes of 1338 images is also compared. The time of the SR model, the PFT

model and the Itti model is 270.451, 293.565, and 389.702 s, respectively. Our method

with the Itti model runs slower than our method with the SR model and our method

with the PFT model. The hash lengths of our method with different models are all 64

integers since their block numbers are the same. Table 5 lists performance comparisons

among different visual attention models.
3.5 Selection of quantization scheme

To reduce storage cost of the extracted vector, ordinal measures are exploited to con-

duct quantization in the fifth step of our method. To illustrate effectiveness of our
Fig. 8 ROC curves of different visual attention models



Table 5 Performance comparisons among different visual attention models

Model AUC Hash length (integer) Total run time (s)

SR model 0.99978 64 270.451

PFT model 0.98075 64 293.565

Itti model 0.99993 64 389.702
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selection, the performances of our method with ordinal measures are compared with

the performances of our method with other quantization scheme. Here, the selected

schemes are the well-known methods called median quantization and mean

quantization. For the scheme of median quantization, the elements of the vector v are

also sorted in ascending order and the element in the median position of the sorted se-

quence is taken as the threshold to binarize the elements of v (i.e., the element bigger

than the threshold is represented by 1. Otherwise, it is denoted by 0). For the scheme

of mean quantization, the mean value of all elements of the vector v is first calculated

and then taken as the threshold to binarize the elements of v. Since the hashes of me-

dian quantization and mean quantization both consist of bits, the Hamming distance is

used to calculate similarity instead of L2 norm.

Figure 9 illustrates the ROC curves of different quantization schemes, where the de-

tails of the curves near the top-left part are enlarged in the bottom-right of the figure.

It can be seen that the curve of ordinal measures is nearer to the top-left corner than

the curves of median quantization and mean quantization. As to AUC, the values of

median quantization, mean quantization, and ordinal measures are 0.99973, 0.99962,

and 0.99993, respectively. The AUC of ordinal measures is bigger than those of other

quantization schemes. This means that our method with ordinal measures is better

than our method with median quantization and mean quantization in terms of ROC

graph. As to computational cost, the total time of median quantization, mean

quantization and ordinal measures is 392.027, 391.069 and 389.702 s for hash gener-

ation of 1338 images, respectively. Our method with ordinal measures is slightly better

than our method with median quantization and mean quantization in computational

complexity. In addition, the hash lengths of median quantization, mean quantization,
Fig. 9 ROC curves of different quantization schemes
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and ordinal measures are 64, 64, and 384 bits, respectively. Table 6 summarizes per-

formance comparison among different quantization schemes.
3.6 Effectiveness of the use of ordinal measures

To show advantage of the use of ordinal measures, the ROC curve of our hashing with-

out ordinal measures is also calculated. Note that our hashing without ordinal measures

is obtained by removing the step of ordinal measures in the proposed method. Figure 10

is the ROC curve comparison between our hashing with ordinal measures and our hash-

ing without ordinal measures. It can be seen that the ROC curve of our hashing with or-

dinal measures is much nearer the top-left corner than the curve of our hashing without

ordinal measures. As to AUC, the values of our hashing with ordinal measures and our

hashing without ordinal measures are 0.99993 and 0.99959, respectively. The AUC of our

hashing with ordinal measures is bigger than that of our hashing without ordinal mea-

sures. It means that our hashing with ordinal measures is better than our hashing without

ordinal measures in terms of ROC graph. This validates effectiveness of the use of ordinal

measures in our proposed method. In addition, the hash length of our hashing without or-

dinal measures is L floating numbers, equaling to 32L bits in binary form according to the

IEEE standard [39]. For our hashing with ordinal measures, its hash length is L⌈log2L⌉. It

is clear that L⌈log2L⌉ < 32L when L <232 = 4.295 × 109. Note that L is the block number,

which is a small value in practice. For example, L=64 in the experiments. Therefore, the

hash lengths of our hashing without ordinal measures and our hashing with ordinal mea-

sures are 2048 and 384 bits, respectively. Obviously, our hashing with ordinal measures is

better than our hashing without ordinal measures in the performance of hash length. In

summary, the use of ordinal measures can not only make a short hash, but also improves

classification performance between robustness and discrimination in terms of AUC.
4 Performance comparisons
In this section, our hashing method is compared with some state-of-the-art algorithms.

The selected hashing algorithms include random-walk hashing [22], CVA-Canny hash-

ing [23], and hybrid features-based hashing [29]. The main procedures of the compared

algorithms are as follows:

(1) Random-walk hashing: This hashing consists of three steps. It firstly divides

input image into small rectangles under the control of a secret key. Secondly, it

exploits random-walk algorithm to generate several zigzag blocks by combining

these rectangles. This operation is also controlled by a secret key. If some rectan-

gles still exist after the second step, they are split by random-walk algorithm again.

Finally, expectation of luminance of every zigzag block is used to form image hash.
Table 6 Performance comparison among different quantization schemes

Quantization scheme AUC Hash length (bit) Total run time (s)

Median quantization 0.99973 64 392.027

Mean quantization 0.99962 64 391.069

Ordinal measures 0.99993 384 389.702



Fig. 10 ROC curve comparison between our hashing with ordinal measures and our hashing without
ordinal measures
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(2) CVA-Canny hashing: This hashing firstly creates a normalized image by

interpolation and a Gaussian low-pass filter. Secondly, it calculates CVAs of all

pixels and extracts image edge via Canny operator. Finally, it divides CVA matrix

into concentric circles, extracts variances of CVA of those edge pixels on the con-

centric circles and quantizes them to produce a compact hash.

(3) Hybrid features-based hashing: This hashing also includes three steps: pre-

processing, hybrid feature extraction, and hash generation. In the pre-processing,

image normalization, Gaussian low-pass filter and SVD are jointly exploited to im-

prove robustness. In the second step, the hybrid features, i.e., the circle-based

structural features and the block-based structural features, are extracted by using

CVAs and Canny operator. Finally, the hybrid features are quantized and scram-

bled to make a short hash.

From the above reviews, it can be found that our hashing is significantly different

from the compared algorithms, especially the used techniques of saliency map extrac-

tion, CS and ordinal measures. In the experiments, those images used in Sections 3.1

and 3.2 are both selected to test robustness performances and discriminative capabil-

ities of the compared hashing algorithms, where all images are converted to a standard

size 512 × 512 before hash generation. As to our hashing method, the experimental re-

sults under the settings of block size 64 × 64, Itti model and ordinal measures are taken

for performance comparisons.

Figure 11 presents ROC curve comparison between our hashing method and the

compared hashing algorithms. To view details of the ROC curves around the top-left

corner, a zoomed-in view of the ROC curves is placed in the right-bottom part of Fig.

11. Clearly, the ROC curve of our hashing is much nearer the top-left corner than those

of the compared hashing algorithms. It can be intuitively concluded that our hashing

method is better than the compared hashing algorithms in classification performance

of robustness and discrimination. Moreover, the AUCs of the assessed algorithms are

also computed and the values of random-walk hashing, CVA-Canny hashing, hybrid

features-based hashing and our hashing are 0.96650, 0.99297, 0.99469, and 0.99993,



Fig. 11 ROC curve comparisons among different algorithms
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respectively. The AUC of our hashing method is bigger than those of the compared

hashing algorithms. This validates that our hashing method is superior to the compared

hashing algorithms in the performances of classification between robustness and

discrimination.

Computational time of the assessed hashing algorithms is also compared. In the ex-

periments, the average time of calculating a hash is chosen. To do this, the assessed

hashing algorithms are all exploited to calculate hashes of the 1338 images in UCID

and then the total consumed time is used to compute the average time. It is found that

the average time of random-walk hashing, CVA-Canny hashing, hybrid features-based

hashing, and our hashing is 0.0377, 0.0843, 32.3029 and 0.2913 s, respectively. Our

hashing is slower than random-walk hashing and CVA-Canny hashing. However, our

hashing is faster than the hybrid features-based hashing. The hybrid features-based

hashing has a low speed due to the high computational cost of SVD. Hash storages are

also compared. The lengths of the hashes generated by random-walk hashing, CVA-

Canny hashing and hybrid features-based hashing are 144, 400, and 3328 bits, respect-

ively. The length of our hash is 384 bits. It is longer than the length of random-walk

hashing, but it is shorter than those of CVA-Canny hashing and hybrid features-based

hashing. Performance summary of different algorithms is demonstrated in Table 7.

From this table, it can be easily found that our hashing is better than the compared al-

gorithms in classification between robustness and discrimination according to AUC.

Our hashing has moderate performance in computational time. It is better than hybrid

features-based hashing, but it is not better than other compared algorithms. As to hash

length, our hashing is better than all compared algorithms, except random-walk

hashing.
Table 7 Performance summary of different algorithms

Performance Random-walk hashing CVA-Canny hashing Hybrid features-based hashing Our hashing

AUC 0.96650 0.99297 0.99469 0.99993

Average time (s) 0.0377 0.0843 32.3029 0.2913

Hash length (bit) 144 400 3328 384
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5 Conclusions
In this paper, we have proposed a new image hashing with CS and ordinal measures.

The CS is exploited to find compact features from the weighted image representation,

which is determined by jointly using the Itti model and Canny operator. Since the Itti

model can effectively detect saliency map indicating visual attention of human eyes,

perceptual robustness of the image features extracted from the weighted representation

is improved. As the ordinal measures can efficiently achieve feature compression, the

use of ordinal measures can derive a short hash from the CS-based compact features.

Experiments of robustness and discrimination have been done and discussions about

block size selection, selection of visual attention model, selection of quantization

scheme, and effectiveness of the use of ordinal measures have been also made. Compar-

isons with some state-of-the-art algorithms have illustrated that our hashing method

outperforms the compared algorithms in classification between robustness and discrim-

ination according to ROC graph. As to the performances of computational time and

hash length, our hashing is also superior to some compared algorithms.
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