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Abstract

Geolocation of covert communication entity is significantly important for the forensics of the crime but has significant
challenges when the steganalyst locks the guilty actor IP and wants to know the physical location of the actor. This
kind of post-steganalysis involves not only the stegos transmitted on the Internet but the IP package head and
content. This paper presents a geolocation method for the location of the covert communication entity based on hop-
hot path coding. The method estimates the location of the covert communication entity by combining the path and
delay between probes and the covert communication entity IP, which improves the deficiency that similar delays do
not necessarily mean close geographical locations of the IPs. Moreover, the similarity between the IPs’ paths can be
measured by coding the paths between IPs and probes. The results of a series of experiments show that the median
error of the proposed method is within 6.16 km using different thresholds.
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1 Introduction
Steganography embeds secret messages into unsuspicious
carriers and transmits the messages through public chan-
nels for covert communication without attracting atten-
tion [1]. This kind of communication not only hides the
secret messages but also the communication behavior as
the carriers are accessible to anyone on the public chan-
nels. As the steganography techniques could be mali-
ciously used for stealing confidential information, it is
practically significant to carry on researches to forensics of
the crime. For decades, researchers have proposed many
techniques for the forensics of steganography, including
the stego detection [2–10], the payload location [11–15],
the embedding key restore [16, 17], the secret message ex-
traction [17], and the steganographer detection [18–20].
In practice, the covert communication entity on the Inter-
net usually acts as the user of social platforms, whose loca-
tion is virtual. Even if the covert communication entity is
successfully detected, the physical location of the covert

communication entity is still unknown. To achieve the
complete forensics of the crime, the post-steganalysis that
investigates the physical location of the covert communi-
cation entity should be carried out.
As the transmission of the stegos on the Internet in-

volves the IP (Internet Protocol) packages and the IP
usually reflects the physical location of the client, the
physical location of the covert communication entity can
be located based on the IP addresses in the IP packages
of the stegos. At present, street-level geolocation method
is suitable for locating the covert communication entity,
such as SLG (Street-Level Geolocation) method [21]
IRLD (Identification Routers and Local Delay Distribu-
tion Similarity based Geolocation) method [22], and
TNN method (IP Geolocation Algorithm based on Two-
tiered Neural Networks) [23]. These methods are based
on an important assumption that when probes measure
IPs with similar geographic locations, the delays from
probes to IPs are often similar. However, in actual Inter-
net environment, IPs’ locations with similar delays are
not necessarily adjacent. Therefore, it is difficult to en-
sure the reliability of the results of these methods.
Aiming at the above problem, this paper presents a geolo-

cation method for the location of the covert communication
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entity based on hop-hot path coding. It is worth noting that
the geolocation of the entity is for the post-steganalysis
where the stegos transmitted on the Internet are successfully
and the entity IP is locked. With the knowledge of the cov-
ert communication entity IP, the proposed method firstly
obtains landmarks around the covert communication entity
(landmarks are not covert communication entities; they are
IP addresses of known geographical locations), and use
probes to measure the known landmarks to get the delay
and path information from probes to landmarks. Then, the
path is encoded to get the vector of delay and path, and
probes are used to measure the covert communication en-
tity to obtain the entity vector of delay and path. After that,
the vector of delay and path of the landmarks whose net-
work environment is similar to the entity is taken as the in-
put, and the corresponding latitude and longitude of the
landmarks are as the output to train the neural network. Fi-
nally, input the entity vector of delay and path neural net-
work to geolocate the entity.
The rest of this paper is organized as follows. The exist-

ing typical entity geolocation methods are introduced in
Section 2. Section 3 introduces the basic principle and
main steps of the proposed method for the geolocation of
the covert communication entity based on hop-hot path
coding. The performance of the method is evaluated and

discussed through the experiments in Section 4. Finally,
Section 5 summarizes the work of this paper.

2 Related work
In this section, the existing typical network entity geolo-
cation methods are briefly analyzed and the problems in-
volved are pointed out.
Existing network entity geolocation methods usually

attempt to describe the conversion or statistical relation-
ship between delay and geographical location. The ac-
curacy of most of these methods can only reach city
level. Only a few methods, such as SLG and TNN, can
geolocate the network entity at street-level granularity.
The SLG method [21] uses a three-tier geolocation process

to locate the network entity. A schematic diagram of the geo-
location process of SLG method is shown in Fig. 1. In tier 1,
the method convert the delay between the probes and the
network entity into geographical distance, and geolocate the
entity into a coarse-grained region based on multila-
teration. In tier 2, the relative delay between the landmarks
and the entity is converted into distance; then, the entity is
geolocated into a fine-grained region via multilateration. In
tier 3, the location of the landmark with the minimum rela-
tive delay of the entity is taken as the estimated location of
the entity, for example, the landmark L3.

Fig. 1 Schematic diagram of SLG method
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The TNN method [23] locates the network entity by
training neural network; it also utilizes the idea of ap-
proaching tier by tier to geolocalize the entity. A schematic
diagram of the geolocation process of TNN method is
shown in Fig. 2. The method uses RBF (radial basis func-
tion) neural network and MLP (multilayer perceptron)
neural network to learn the mapping between the delay and
the location of the landmarks to achieve entity geolocation.
The TNN method uses RBF neural network as the first tier
to locate a smaller region in which the network entity re-
sides, and then uses MLP neural network as the second tier
to estimate its location more accurately within that region.
Under normal circumstances, the above methods based

on delay can achieve street-level entity geolocation. How-
ever, the delays of probes measuring entity can only repre-
sent the distance between the probes and the entity. In
actual network environment, due to indirect or circuitous
routing, entities with similar delays may be far apart,
which will cause unreliable geolocation result. In order to
overcome the above problems and improve reliability in
entity geolocation, an entity geolocation method based on
delay and path is proposed in this paper. Different from
the above typical methods, the proposed method not only
estimates the location of entity by delay but also takes into
account the paths between the probes and the entity.

3 The proposed method
A large amount of measurement data shows that the
end-to-end distance in the Internet can be approximated

by delay, and the direction is determined by the path.
According to this basic fact, the geolocation method
trains neural networks based on the combination of
delay and path. Because of the ISPs (Internet service
providers) of the covert communication entities are un-
known and ISPs in some countries do not fully realize
the interconnection within the city, when geolocating
the covert communication entities, we need to use land-
marks around the entities to ensure the consistency of
training samples.
The method is divided into six parts: obtaining land-

marks, vectors construction of landmarks, acquisition of
training sets, training neural networks, vector construction
of the covert communication entity, and entity geoloca-
tion. Figure 3 shows the frame diagram of the method.
The specific steps of the method are as follows:

1) Obtaining landmarks. With the knowledge of the
covert communication entity IP, get landmarks
around the entity.

2) Vector construction of landmarks. Deploying n
probes P1, P2, …, Pn, acquiring the delay and path
from the probes to landmarks. Then, encoding the
path with hop-hot path code method to get the
vectors of delay and path

Vk ¼ dk;1; dk;2;…; dk;n;Ck
� �

: ð1Þ

Fig. 2 Schematic diagram of TNN method
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Fig. 3 Method frame diagram
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where Vk represents the vector of delay and path of
the k th landmark, and dk, i represents the delay from
the probe i to the landmark k. Ck represents the encoded
path vector of the landmark k.Acquisition of training
sets. Use (1) to cluster the landmarks, and then use the
latitude and longitude of the landmarks to cluster the
landmarks. Take the intersection of the two clustering
results to obtain the training sets, denoted as

F ¼ S1; S2;…; Sq
� �

: ð2Þ

where Si is the i th training set.

3) Neural networks training. Train the neural network
for each training set. Taking (1) in the training set
Si as input, and the latitude and longitude thereof as
output, obtaining a well-trained neural network.

4) Vector construction of the covert communication
entity. Acquiring the delay and path from the
probes to entity. Encoding the path to get the
vector of delay and path of the covert
communication entity

VT ¼ d1; d2;…; dn;CTð Þ: ð3Þ
where VT represents the vector of delay and path of the
covert communication entity, and di represents the delay
from the probe i to the entity. CT represents the
encoded path vector of the entity.

5) Geolocation of covert communication entity.
Calculate the similarity simi from (3) to Si.Setting
the threshold U, and let M ¼ max

i¼1;…;q
ðsimiÞ , if M ≥

U, inputting (3) into the neural network
constructed by Si to obtain its latitude and
longitude; otherwise, ending the method.

Among them, hop-hot path coding method, acquisi-
tion of training sets, and geolocation of covert commu-
nication entity are the important parts of the method,
which will be described in detail in the following
subsections.

3.1 Hop-hot path coding method
The path from probe to the entity IP is composed of
router sequence, such as <probe, router1, router2, …,
routern, entity IP>. One-hot coding can be used to meas-
ure the similarity between paths by judging whether
routers in the paths, but the paths are sequential, one-
hot coding cannot express this sequential well, so it is
not very reasonable to express the paths by one-hot en-
coding. In order to better measure the degree of similar-
ity between paths, this paper proposes a path coding

method: hop-hot path coding. It can make the coded
path vector directly into the machine learning model as
a feature or compare similarity.
The process of coding is as follows. Firstly, stable

router paths are obtained from probes to all landmarks,
and all router sets are obtained. Then, the one-hot cod-
ing is used to encode each stable router path to obtain
the path vector. After that, the path vector is quantized
by hop number. Finally, the entity’s router path vector is
quantized. The details are as follows:
Step 1. Building router path set. n probes are used to

measure m landmarks, then, a stable router path set
whose size is n ×m obtained. The set is recorded as

E ¼
p1;1; p1;2;…; p1;n
p2;1; p2;2;…; p2;n
…
pm;1; pm;2;…; pm;n

8>><
>>:

9>>=
>>;
: ð4Þ

where pk, i is the measured router path from the ith
probe to the kth landmark.
Step 2. Extracting routers. All routers in the router

paths from the ith probe to m landmarks are extracted.
The extracting result is

Oi ¼ ri;1; ri;2;…; ri;li
� �

: ð5Þ
where ri, j is the jth router in the measured paths from
the ith probe to m landmarks, and the order is inessen-
tial. li is the number of routers appearing in the mea-
sured paths whose source is the ith probe. The feature
space of path coding is consistent to all Oi, and the fea-
ture space is recorded as

L ¼ O1;O2;…;Onf g: ð6Þ
That is equivalent to

L ¼ r1;1; r1;2;…; r1;l1
� �

; r2;1; r2;2;…; r2;l2
� �

;…; rn;1; rn;2;…; rn;ln
� �� �

:

ð7Þ
where n is the number of probes.
Step 3. Building landmarks’ router path vector. For

landmark k, according to the router paths from each
probe to landmark k, the landmark is coded in feature
space L. The coding result is recorded as

Ck ¼ V 1;1;k ;V i; j;k ;…;Vn;ln;k
� �

: ð8Þ
The value of Vi, j, k is donated as

V i; j;k ¼ β; if ri; j not in pi;k
Hi; j;k ; if ri; j in pi;k

�
ð9Þ

where Hi, j, k is the number of hops from the router ri, j
to landmark k, and β is a control parameter whose value
is greater than the length of px, y, (1 ≤ x ≤m, 1 ≤ y ≤
n).Step 4. Building the router path vector of the covert
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communication entity. As the same of landmark, the
coding result of entity in feature space L is recorded as

CT ¼ V 1;1;T ;V i; j;T ;…;Vn;ln;T
� �

: ð10Þ
The value of Vi, j, T is donated as

V i; j;T ¼ β if r j not in pi;T
Hi; j;T if r j in pi;T

�
ð11Þ

where Hi, j, T is the number of hops from the router ri, j
to entity T. Meanwhile, if a router is in the router path
from probes to entity but not in the router paths from
probes to the landmarks, this router would not be
considered.

3.2 Acquisition of training sets
In the actual Internet environment, there are multiple
ISPs in some countries and regions. Even if the land-
marks’ locations are close, there may also be large gaps
in vectors of delay and path between landmarks. If all
the landmarks are used as the training set to train the
neural network, the mapping relationship learned by it
will not be strong, and the geolocation reliability is hard
to guarantee. Therefore, the training set needs to be fil-
tered so that the delays, paths, latitude, and longitude of
the landmarks in each training set are similar. The spe-
cific steps are as follows:
Input: Vectors of delay and path of landmarks, longi-

tude, and latitude of landmarks
Output: Filtered training sets
Step 1. Using (1) to perform K means clustering on

the landmarks, wherein k value is iterated from small to
big, calculating the contour coefficients of the clustering,
selecting the k value corresponding to the maximum
contour coefficient, recording the clustering set as
K = {D1,D2,…,Dk}.Step 2. Using the latitude and longi-
tude in the landmark set to cluster all the landmarks, in
terms of the number of clusters, also selecting the value
corresponding to the maximum contour coefficient and
recording it as h, and recording the clustering set as
Q = {L1, L2,…, Lh}.Step 3. Calculating F =K ∩Q and re-
cording the final set of categories as F = {S1, S2,…, Sq}.At

this time, the delay, path, latitude, and longitude of the
landmarks in each training set are similar. The neural
network is trained by using the landmarks in each train-
ing set, and the mapping between delay, path, and loca-
tion will be more reliable.

3.3 Geolocation of covert communication entity
After training the neural network for each training set,
when geolocating the covert communication entity, it is
first necessary to judge the training set to which the en-
tity belongs. Then, the vector of delay and path is input
into the neural network trained by the training set to ob-
tain the latitude and longitude of the entity. Specific
steps are as follows:
Input: The vector of delay and path of the entity
Output: Longitude and latitude of the entity
Step 1. Calculate the cosine similarity between the

center of Di and (3), and choose the Di with the highest
cosine similarity between center and (3) as the Di to
which the entity T belongs.
Step 2. Calculate the cosine similarity between land-

marks in Di and the entity. Find the landmark whose
vector of delay and path is most similar to the entities’
vector. Record the training set to which the landmark
belongs as Sj, and use Sj as the training set of the entity.
The vector similarity between landmark and entity is

Table 1 Experimental setups

Landmark deployment New York State 2384

Chinese Mainland 11286

Hong Kong 39763

Probe deployment China: four probes deployed, in Beijing,
Chengdu, Shanghai and Wuhan, respectively.

The United States: five probes deployed in
Washington, Silicon Valley, New York, Atlanta,
and Seattle, respectively.

Detection protocol ICMP-PARIS [24]

Table 2 Statistics of stable path ratio

Training set size The quantity of categories in the region

Chinese Mainland Hong Kong New York State

Training set size > 100 28 9 3

Training set size > 300 5 7 2

Training set size > 500 2 6 2

Table 3 Relationship between different training set sizes,
different thresholds and the quantity of the entities that can be
geolocated and geolocation error

Landmark sets U★ QCG/QCNG● MGE◆

Training set size§ > 100
(a total of 40 training sets
and 41,231 landmarks)

0.9 9321/1365 2.80 km

0.8 10109/577 4.62 km

0.7 10549/137 6.16 km

Training set size > 300
(a total of 14 training sets
and 37,134 landmarks)

0.9 8203/2483 2.26 km

0.8 8748/1938 2.97 km

0.7 9108/1578 4.05 km

Training set size > 500
(a total of 10 training sets
and 32,241 landmarks)

0.9 7296/3390 2.18 km

0.8 8052/2634 2.51 km

0.7 8724/1962 2.96 km
§“Training set size > N” represents a landmark set composed of all training
sets with a landmark quantity greater than N in the training set
★U is short for “geolocation threshold”
●QCG is short for “quantity of the entities that can be geolocated”
QCNG is short for “quantity of the entities that cannot be geolocated”
◆MGE is short for “median geolocation error of the entities that can be geolocated”
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recorded as M.Step 3. Setting the threshold U, and if
M ≥U, using the neural network formed by the training
set Sj to geolocate the entity; otherwise, ending the
method.

4 Experimental results and discussion
This paper focuses at the geolocation of the covert com-
munication entity on the Internet with the knowledge of
the entity IP, while the detection of the stegos on the
Internet and the acquisition of the IP address from the
stegos IP packages are beyond this paper. In this section,
the rationality and effectiveness of the proposed method
are verified by two experiments: verification on the geo-
location effect of the method, and comparative verifica-
tion. The experimental setups are shown in Table 1.
In this paper, 53,433 measurable street-level landmarks

in Chinese Mainland, New York State (USA), and Hong
Kong (China) have been measured for 14 days and 3000
times with nine probes located in Beijing, Chengdu,
Shanghai, Wuhan, Washington, Silicon Valley, New
York, Atlanta, and Seattle. A large amount of path and
delay information has been obtained.
The path acquisition part of the method combines the

method of merging router aliases such as Ally, Mercator
[25, 26], and the anonymous route parsing method in
[27]. Merge the routers in the path from each probe to
the landmark and select the most frequently occurring
path as the path information, then set β to 30 empiric-
ally when encoding the path.
In order to obtain more accurate delay information, during

network measurement, the delay from the probes to the
landmarks is repeatedly measured, and the minimum delay
on the stable path is selected as the delay information. The
delay information on the stable path often represents the net-
work stability and less congestion. Therefore, the obtained
delay information is closer to the true propagation delay.

When training neural networks, MLP neural networks
[28] are used, with formula (1) as the input of the neural
networks, and the latitude and longitude of the land-
mark as the output of the neural networks. A neural net-
work is trained for each training set.

Fig. 4 The CDF (cumulative distribution function) of geolocation error under different training set sizes and thresholds. The red dashed line, blue dot line,
and the black solid line indicate the cumulative error distribution of all neural networks formed by the training sets with the landmarks greater than
100,300 and 500 in each training set for the corresponding entities geolocation, respectively. a Threshold is 0.9. b Threshold is 0.8. c Threshold is 0.7

Table 4 The proportion of geolocation error when the
threshold is 0.9

Training
set size

Geolocation method PGE
< 10 km▲

PGE
< 20 km

PGE
< 40 km

> 100 Proposed method 80.1% 91.9% 98.5%

SLG method [21] 60.5% 83.6% 94.1%

TNN method [23] 37.2% 83.7% 94.9%

> 300 Proposed
method

84.3% 95.2% 99.5%

SLG method [21] 55.4% 79.7% 90.1%

TNN method [23] 35.7% 81.4% 94.2%

> 500 Proposed method 86.7% 97.2% 99.9%

SLG method [21] 58.0% 81.7% 91.2%

TNN method [23] 34.4% 78.5% 94.7%
▲“PGE < X” is short for “proportion of the entities within geolocation error
being X”.
The experimental results show that the proposed method can achieve street-
level geolocation for the given IP of covert communication entity. Compared
with the existing typical geolocation methods, the proposed method improves
the deficiency that similar delays do not necessarily mean close geographical
locations of the IPs, thereby improving geolocation accuracy. This is because
the existing typical methods only rely on the delay for geolocation, while the
delay in the network only has the significance of distance. The similar delays
do not necessarily mean close geographical locations of the IPs, because their
measurement paths may be completely different, which makes the existing
typical methods less reliable. The proposed method combines the distance
meaning of delay and the direction meaning of path to estimate the location
of the entity. The entities with similar delay and path must have similar
geographical location, so as to solve the above problem and improve the
reliability of location
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4.1 Experiment of entity geolocation with different
parameters
Based on the experimental setups in Table 1, we verify
the effect of the geolocation method for the location of
the covert communication entity in this subsection. To
verify the geolocation error, 80% of the landmarks are
randomly selected from each region as the candidate set
of the training set for training network, and the
remaining 20% of the landmarks (a total of 10,686) are
used as the covert communication entities for geoloca-
tion verification. The landmarks can be divided into 145
categories by using the landmarks clustering in the

method. Table 2 shows the relationship between the size
of the training set, the number of clusters and the geo-
graphical location thereof.
Table 3 shows the geolocation effects of training sets in

different training sizes and different geolocation thresh-
olds on the corresponding entities.
Figure 4 shows the geolocation error cumulative dis-

tribution of the entities that can be geolocated under
different training set sizes and different threshold
conditions.
Table 3 and Fig. 4 show that as the training scale N in-

creases, the number of samples in a single training set is

Fig. 5 Comparison on IP geolocation error under the same conditions. The black line, red dashed line, and blue dot line indicate the geolocation error
cumulative distribution of the proposed method, SLG method, and TNN method, respectively. a The training set size > 100, and the threshold is 0.9. b
The training set size > 100, and the threshold is 0.8. c The training set size > 100, and the threshold is 0.7. d The training set size > 300, and the
threshold is 0.9. e The training set size > 300, and the threshold is 0.8. f The training set size > 300, and the threshold is 0.7. g The training set size >
500, and the threshold is 0.9. h The training set size > 500, and the threshold is 0.8. i The training set size > 500, and the threshold is 0.7
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increasing, but the total number of landmarks in the
landmark set is decreasing, the number of locatable en-
tities is also decreasing, and the geolocation error is de-
creasing. The reason is that the network trained by the
training set that does not satisfy a certain sample num-
ber is not universal, which is statistically reasonable. It
can also be seen that different geolocation thresholds
have different degrees of impact on the number of
localizable entities and geolocation error. From the ex-
perimental results, this method has certain advantages in
street-level geolocation.

4.2 Comparative verification
In this subsection, we compare the geolocation effect of
the proposed method with the typical geolocation
methods under the situations of same entities and land-
marks. Table 4 shows the statistical results of proposed
method, SLG method, and TNN method when the geo-
location threshold is 0.9, and the geolocation error is 10
km, 20 km, and 40 km. Fig. 5 shows the geolocation cu-
mulative distribution of the proposed method in this
paper, the SLG method and the TNN method.
As can be seen from Table 4 and Fig. 5, the reliability

of the street-level positioning method of this method at
10 km, 20 km, and 40 km is better than the existing typ-
ical street-level methods.

5 Conclusions
Traditional steganalysis mainly detect whether the inves-
tigated object carries secret messages, while a few works
are reported for the payload location, the embedding key
restore, the secret message extraction and the stegano-
grapher detection. The geolocation of the covert com-
munication entity reveals the physical location of the
steganography on the Internet based on the IP address
in the IP packages of the stegos. This paper presents a
method for the geolocation of the covert communication
entity based on hop-hot path coding. We do a prelimin-
ary work on the geolocation of the covert communica-
tion entity and there are still some geolocation errors as
it is difficult to locate the covert communication entity
within the last kilometer. Nevertheless, our method is
very helpful to geolocate the covert communication en-
tity in a certain area, and the geolocation accuracy is im-
proved compared with the existing geolocation methods.
In addition, the hop-hot path coding method in this
paper is just an attempt. Whether there is a better cod-
ing method that is worth further exploring.
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