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Abstract

To ensure the security of digital information, information needs to be stored and processed in the encryption
domain during the cloud storage process, during which the user does not allow the cloud provider (CP) to access
the image contents, and the CP must embed additional information in the image. Therefore, reversible data hiding
in an encryption domain (RDHEI) has emerged. This paper presents an adaptive and separable multiary RDHEI
method. First, the image is divided into two parts that consist of reference pixels and non-reference pixels. Next, we
compute the prediction errors of the non-reference pixels, followed by a replacement of the original non-reference
values with the computed prediction errors. Then, the entire image is encrypted with a specially designed stream
cipher strategy so that the CP can embed additional information by modifying the prediction errors without
knowing the original image. In addition, although our method vacates space before encryption, the CP can
adaptively control the reserved space, unlike traditional RDHEI schemes which also vacate space before encryption.
Because our method is separable, the embedded message can be extracted from both encryption and plaintext
domains accurately. The experimental results demonstrate the efficacy of the proposed method.
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1 Introduction
Data hiding technology can achieve the purposes of secret
transmission and content authentication by embedding se-
cret information into the host [1–4]. As a significant branch
of data hiding, reversible data hiding (RDH) is an algorithm
that embeds additional data into a specific payload, such as
image, video, or audio signals, and recovers the additional
data and the payload without any loss. Traditional RDH
can be roughly divided into four categories: (1) lossless
compression (LC) [5], in which the space for data hiding is
generated by LC of the image, (2) histogram shifting (HS)
[6, 7], in which the embedding space is generated by shift-
ing the gray-scale histogram of the image, (3) difference ex-
pansion (DE) [8] [9], in which the differences between
nearby pixels are expanded to reserve space, and (4) predic-
tion error expansion (PEE) [10–14], in which the space for

embedding is generated by shifting the prediction error
histogram (PEH).
All the methods mentioned above were applied in the

plaintext domain. However, with the rapid development
of Internet technology and cloud storage applications, a
new requirement for RDH has emerged. On the one
hand, many images must be uploaded to a cloud server,
followed by message embedding and other post-
processing procedures; on the other hand, the content of
the images should not be accessible by the cloud pro-
vider (CP), especially in the case of critical and private
images, such as medical images that are private, and
military images that relate to national security. In order
to deal with this paradox, RDH has inevitably emerged
in the encryption domain. While original images must
be protected and recovered losslessly, we expect to
achieve the highest embedding capacity. In order to ob-
tain an optimal balance of security and embedding cap-
acity, several studies have been carried out. The existing
RDH in encrypted images (RDHEI) can be mainly di-
vided into two categories: methods based on reserving
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room before encryption (RRBE), and methods based on
vacating space after encryption (VRAE).
For an RRBE-based method, Ma et al. [15] proposed an

RDHEI method that reserved a room for hiding by embed-
ding some pixels in the original image using a traditional
RDH algorithm. Zhang et al. [16] proposed calculating the
prediction error to replace the image pixels, followed by an
encryption with a traditional encryption algorithm so the
data hider can embed the additional data by modifying the
prediction error. Cao et al. [17] provided a method that im-
plemented a patch-level sparse representation technique to
create vacated space for data hiding. Xu and Wang [18]
proposed a scheme to enable a traditional PEE strategy in
the plaintext domain to be effective in the encryption do-
main. Yi and Zhou [19] provided a binary-block embedding
strategy to improve embedding capacity and visual quality
in marked decrypted images. Li et al. [20] proposed a separ-
able RDH scheme, in which encryption quality was im-
proved by combing the permutation and stream cipher
during the encryption process, and the embedding rate
(ER) was increased by replacing pixels with their corre-
sponding prediction errors.
For a VRAE-based method, Qian et al. [21] proposed a

method based on progressive recovery that consisted of
three agents, including the content owner, the data hider,
and the recipient. In [22], the use of HS with a public-key
cryptosystem was implemented to realize RDHEI. Agrawal
and Kumar [23] presented a method based on additive
modulo 256 and utilized a property of the mean to hide
data. Singh and Raman [24] proposed an RDHEI scheme
based on a Chinese remainder theorem (CRT)-based shar-
ing scheme to transmit media information over cloud
architecture and prove its original ownership. Xiao et al.
[25] proposed a separable RDHEI method by utilizing
pixel value ordering to embed secret data in each block in
an additive homomorphic encrypted image. Liu and Pun
[26] presented a redundant space transfer (RST) scheme
to create redundant space for data hiding in which trad-
itional RDH technology could be applied. Qin et al. [27]
presented an RDHEI method in which owners used an
analog stream cipher and block permutation to encrypt
blocks of original images that did not overlap, and the data
hider could classify blocks and use data hiding keys when
embedding. Khelifi et al. [28] used a special encryption
method for original images, and then compressed the en-
cryption image to a bit series to create space for data hid-
ing. Wu et al. [29] presented a method applied in
homomorphic encrypted images so that some of the hid-
den data could be extracted in the encryption domain,
and the rest could be extracted in the plaintext domain.
Fu et al. [30] encrypted a host image via block scrambling
and a stream cipher, followed by an adaptive compression
of the most significant bit (MSB) layer to vacate space for
data hiding. Qin et al. [31] scrambled an image with three

different levels and vacated the embedding space by using
sparse matrix coding to compress the least significant
bit (LSB) of the encrypted image.
From the researches mentioned above, RDHEI has de-

veloped to a certain degree. However, unlike traditional
RDH in the plaintext domain, there are still many lines
of research to follow. Motivated by Xu’s work [18],
which was devoted to applying the traditional PEE
method in the encryption domain, in this work, we
propose a method for improving encryption quality and
the ER. Specifically, compared with [18], the proposed
method offers the following three improvements: (1) in
[18], the vacated space for data hiding was determined
by the image owner; in our work, the image owner needs
only to encrypt the image, while the work of creating
space is conducted by the data hider, thereby reducing
the workload. (2) A new encryption progress is proposed
so that the encrypted image is less noticeable and better
able to resist attacks from hackers. (3) A new method is
presented to increase the ER by shifting the PEH based
on the unique characteristics of the encryption domain.
This article is organized as follows: Section 2 describes

the proposed method in detail, Section 3 presents the
experimental results of the proposed method, and finally,
Section 4 concludes this paper.

2 Methods/experimental
In this section, we propose a separable RDHEI scheme,
which mainly consists of prediction and replacement, en-
cryption, data hiding, data extraction, and image recovery.
Specifically, the image owner uses our method to encrypt
the image and vacate space for data hiding during a subse-
quent procedure, which is conducted by the CP. The CP
then uses the reserved room to embed data. If he does not
have the encryption keys, he can hide data but he will not
access the original content, so the original owner can keep
his images safe and the data hider can guarantee his rights
by embedding additional information. A flow diagram of en-
cryption and data hiding is briefly shown in Fig. 1.

2.1 Prediction and replacement
Suppose that the original image X is an 8-bit gray-scale
image with a size of M ×N, and its pixels are denoted as
X(i, j), 1 ≤ i ≤M, 1 ≤ j ≤N. First, we divide all the pixels
using a checkerboard pattern into two sets, defined as
the reference and non-reference pixels. In detail, the
pixels in odd rows and odd columns are selected as ref-
erence pixels, and the other pixels are non-reference
pixels. Figure 2 shows the division between reference
and non-reference pixels, which are denoted in gray and
white, respectively. To predict one non-reference pixel,
we tend to use the four adjacent reference pixels for the
sake of accuracy. Depending on whether there are
enough reference pixels around the non-reference pixels,
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all non-reference pixels are then further divided into two
sets. For some non-reference pixels, there is a sufficient
number of reference pixels around them, and we denote
them as Δ. For other non-reference pixels, due to the
lack of adjacent reference pixels, we use the prediction
results of their adjacent non-reference pixels as refer-
ences, and we denote these pixels as Ω.
The prediction process is executed following an order

that predicts the pixels belonging to Δ first, followed by

the prediction of pixels belonging to Ω. Their corre-
sponding prediction values P(i, j) can be computed as

P i; jð Þ ¼ roundð½X i−1; j−1ð Þ þ X iþ 1; j−1ð Þ þ X iþ 1; jþ 1ð Þ
þX i−1; jþ 1ð Þ�=4Þ; if X i; jð Þ∈Δ;

ð1Þ

and

Fig. 1 Flow diagram of encryption and data hiding

Fig. 2 Division of pixels for prediction
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P i; jð Þ ¼ roundð½X i−1; jð Þ þ X iþ 1; jð Þ þ P i; j−1ð Þ
þP i; jþ 1ð Þ�=4Þ; if X i; jð Þ∈Ω;

ð2Þ

Then, we compute the prediction error E(i, j) as

E i; jð Þ ¼ X i; jð Þ−P i; jð Þ; if X i; jð Þ∈ Δ∪Ωð Þ: ð3Þ
Note that in theory, the value range of E(i, j) is from −

255 to 255, which requires a nine-bit number to repre-
sent. However, according to our observation, to correctly
show an image, E(i, j) generally ranges from − 127 to
127. Thus, in our work, we continue to use 8 bits to rep-
resent the prediction error. Here, we only use the least

significant 7 bits to show the absolute value of errors,
and the MSB to indicate the sign, i.e., “0” and “1” indi-
cate positive and negative signs, respectively. Because
the prediction error represented in our work only varies
from − 127 to 127, prediction errors out of range of the
set are modified as

E0 i; jð Þ ¼
E i; jð Þ−127; if E i; jð Þ > 127;

E i; jð Þ þ 127; if E i; jð Þ < −127;
E i; jð Þ; otherwise:

8<
: ð4Þ

Fig. 3 PEH before and after stream cipher

Fig. 4 Examples of encryption and data hiding
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Fig. 5 Six standard test images

Fig. 6 Encryption results of our work
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Fig. 7. Encryption results of Xu and Wang’s work [18]

Fig. 8. Encryption results of Li et al.’s work [20]
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Note that we reserved (10000000)2, and use
(00000000)2 to represent the particular case E'(i, j) = 0.
We record the coordinates of the prediction errors,
which are initially outside the range of [− 127, 127], and
save them as a location map, denoted as O. Finally, we
replace all the non-reference pixels with their corre-
sponding modified prediction errors E'(i, j) to generate a
new image, denoted as I. It is worth pointing out that
the prediction criterion in our work is not limited to
Eqs. (1) and (2), and any precise prediction strategy can
be used to further improve the efficiency of our entire
performance.

2.2 Image encryption
First, we only shuffle E'(i, j) in I via an encryption key
KEY1 to convert E'(i, j) to E''(i, j). For an easier descrip-
tion, we denote the reference pixels as Y(i, j). We use a
stream cipher to encrypt Y(i, j) and E''(i, j) separately.
Specifically, in our work, we use another encryption key,
KEY2, to generate a pseudorandom matrix R of size M ×
N, in which each element is a 7-bit number and denoted
as R(i, j). We only encrypt the lowest 7-bit plane of Y(i, j)
as

Y 0 i; jð Þ ¼ Y i; jð Þ⨁R i; jð Þ; ð5Þ

where Y'(i, j) represents the encrypted value of Y(i, j),
and ⨁ indicates the exclusive or (XOR) operation.

Meanwhile, to encrypt E''(i, j), we need to find two peak
points, Tp and Tn, in advance. E''(i, j) is then encrypted
as

~E i; jð Þ ¼ E00 i; jð Þ; if E00 i; jð Þ ¼ Tp or Tn;
E00 i; jð Þ⨁R i; jð Þ; otherwise;

�
ð6Þ

where ~Eði; jÞ represents the encrypted value of E''(i, j).
It must be pointed out that if ~Eði; jÞ equals Tp or Tn

after the XOR operation, we need to add one or subtract
one to avoid confusing the original pixels with E''(i, j) =
Tp or Tn, and we use a new location map O1 to record
those ~Eði; jÞ.
Next, we extract the MSB plane of Y'(i, j). Both the

MSB plane and the location maps O and O1 are next
compressed via LC coding. Here, arithmetic coding is
used in our work because all the elements for compres-
sion are made up of “0”s and “1”s. We then replace the
MSB of Y'(i, j) with the following parts: compression
code of the original MSB plane of Y'(i, j) and its length,
and compression codes of O and O1 and their lengths.
We denote the replacement version of Y'(i, j) as Y''(i, j).
Finally, we composite ~Eði; jÞ and Y''(i, j) to generate the

final encrypted image, denoted as I', and send it to the
cloud server. Fig. 3a, b shows the PEHs before and after
the stream cipher, respectively. As can be seen in Fig. 3b,
the values approximately obey a uniform distribution after
the stream cipher, except for the reserved space.
To explain the security of our encryption methods, we

suppose that there is an image of size 512 × 512 running
through the entire encryption process. In the first part of
the encryption, there are 512� 512� 1

4 ¼ 65; 536 refer-
ence pixels that remain unchanged during the shuffling,
and 512� 512� 3

4 ¼ 196; 608 non-reference pixels that

are rearranged. Therefore, there are P196608
196608 possibilities in

total after rearrangement, which is a rather large number
for probability analysis. In the second part of the stream
cipher, we suppose that 25% of pixels are working as pay-
load, and the remaining 75% of pixels are XOR with a ran-
dom 7-bit sequence produced by KEY2. As a result, there
are 512 × 512 × 0.75 × 27 = 25,165,824 possibilities after
the stream cipher. After running through the entire en-
cryption process, there are P196608

196608 � 25; 165; 824 possibil-
ities in total that are different from the original image. It is
difficult or even impossible to detect only one original
image from such a multitude of probabilities. In addition,
Khelifi et al. [28] presented a mathematical security ana-
lysis of shuffling followed by a stream cipher.

2.3 Data hiding
After receiving I', due to the lack of KEY1 and KEY2, the
CP cannot access to the original image. However, he can
embed data in ~Eði; jÞ without any knowledge of the ori-

Table 1 PSNR comparisons among Xu and Wang’s work [18], Li
et al.’s work [20], and ours

PSNR (dB)

Li et al. (2018) Xu and Wang (2016) Proposed

Lena 8.50 8.21 5.92

Couple 8.71 9.15 5.58

Boat 7.19 7.59 5.47

Man 8.25 8.66 6.33

Peppers 7.28 7.48 6.50

Baboon 8.01 9.00 5.13

Table 2 Operation time comparisons among Xu and Wang’s
work [18], Li et al.’s work [20], and ours. (unit: s)

Li et al. (2018) Xu and Wang (2016) Proposed

Lena 0.6506 0.2766 0.5849

Couple 0.6276 0.2835 0.6749

Boat 0.6588 0.2823 0.6261

Man 0.6542 0.3090 0.5576

Peppers 0.6616 0.2978 0.5820

Baboon 0.6648 0.2912 0.7068

Average 0.6529 0.2901 0.6221
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ginal image. In this paper, owing to the elaborately de-
signed encryption method, applying PEE in the encryp-
tion domain becomes feasible. The three steps of our
data hiding strategy are listed in detail as follows.
Step 1: The data hider selects the multiary parameter

Q, which is suggested to be set to 2, 3, and 4 according
to the actual embedding requirement. The reason why Q
is recommended to be set to 2, 3, and 4 is that we need
to shift histogram during the data embedding process

and it will cause inevitably underflow/overflow issues. In
our method, we use a location map to deal with these is-
sues. If Q is set to be higher than 4, the size of the loca-
tion map will increase correspondingly and the
embedding capacity might be influenced by the limited
space in the bit plane of reference pixels. Before embed-
ding, to increase the security of the proposed method, a
new key KEY3 is used to shuffle the to-be-embedded
message and transfer the message to the corresponding

Fig. 9 ERs for nine standard pictures

Fig. 10. ERs for UCID images
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Q-ary format. Note that our method belongs to RRBE,
and if we encrypt the message before the embedding
phase, all we need to do is extract the encrypted message
and then decrypt this message in a reverse manner. The
peak points Tp and Tn from the histogram of ~Eði; jÞ are
then searched for.
Step 2: Shift the histogram of ~Eði; jÞ to vacate space

for data hiding as

~E0ði; jÞ ¼
~Eði; jÞ þ Q−1; if ~Eði; jÞ > Tp;

~Eði; jÞ−Qþ 1; if ~Eði; jÞ < Tn;

~Eði; jÞ; otherwise:

8><
>: ð7Þ

where ~E
0
ði; jÞ stands for the shifted value for data hid-

ing. Note that a new location map O2 is needed to rec-

ord ~E
0
ði; jÞ with underflow/overflow issues. O2 can then

be compressed and embedded into Y''(i, j) via an MSB
replacement, similar to O and O1.
Step 3: Embed the message as

~E00ði; jÞ ¼
~E0ði; jÞ þW ; if ~E0ði; jÞ ¼ Tp;

~E0ði; jÞ−W ; if ~E0ði; jÞ ¼ Tn;

~E0ði; jÞ; otherwise;

8><
>: ð8Þ

where ~E00ði; jÞ denotes the ultimate value after data
hiding, and W stands for the Q-ary message. Finally, the
marked encrypted image is composited by Y''(i, j) and ~E00
ði; jÞ.
For the ease of understanding, Fig. 4a, b shows two

simple examples of the encryption and data embedding
processes. In Fig. 4a, we suppose a 3 × 3 block through
the prediction process, in which the pixels valued “1”
and “0” are determined to carry additional data. We first

apply KEY1 to shuffle the prediction errors, and then
XOR the block with a random matrix generated by KEY2.
Finally, we obtain an encrypted version of this block.
Figure 4b illustrates the schematic diagram during the
data hiding process when Q is set to 2, 3, or 4. Pixels
with values that are not 1 and 0 are shifted by (Q − 1) to
reserve space for data hiding and are denoted by the
dashed lines in Fig. 4(b). Moreover, the pixels valued “1”
and “0” are modified to carry additional Q-ary message
data, which have been shuffled by KEY3 in advance to
guarantee the data security, as shown in Fig. 4b by the
solid lines.

2.4 Data extraction and image recovery
Because the proposed scheme is separable, the restore
process can be divided into two cases, which are de-
scribed as follows.
Case #1: Data extraction before image recovery
To extract the data correctly, Q, Tp, and Tn are essen-

tial, and all these parameters can be observed from the
histogram of ~E00ði; jÞ. In conjunction with O2, which can
be extracted from Y''(i, j), we can remove the pixels with
overflow/underflow issues that may influence the data
extraction. Then, W can be extracted as

W ¼
~E00ði; jÞ−Tp; if ~E00ði; jÞ∈½Tp;Tp þ Q−1�;
Tn−~E00ði; jÞ; if ~E00ði; jÞ∈½Tn−Qþ 1;Tn�:

(
ð9Þ

Eventually, we use KEY3 to restore the original message
data.
After data extraction, the recovery process can be di-

vided into four steps as
Step 1: Recover the histogram to the condition before

embedding, as

Table 3 Comparison among four methods in terms of PSNR and maximum ER

Method Parameter
setting

Lena Couple Boat Man Peppers Baboon

PSNR
(dB)

ER
(bpp)

PSNR
(dB)

ER
(bpp)

PSNR
(dB)

ER
(bpp)

PSNR
(dB)

ER
(bpp)

PSNR
(dB)

ER
(bpp)

PSNR
(dB)

ER
(bpp)

Li et al. (2018) T = 1 51.17 0.338 49.83 0.224 48.36 0.560 50.77 0.586 50.20 0.260 n/a n/a

Xu and Su (2019) β = 0 31.55 0.221 28.06 0.155 29.27 0.154 29.97 0.194 27.36 0.196 24.80 0.078

β = 1 30.88 0.377 27.22 0.279 28.72 0.272 29.38 0.340 25.38 0.342 24.47 0.144

Xu and Wang
(2016)

Tn = − 1
Tp = 0

49.99 0.176 49.88 0.109 49.86 0.147 49.77 0.124 49.83 0.141 49.58 0.056

Tn = − 1
Tp = 1

45.98 0.279 46.29 0.164 45.83 0.223 45.88 0.171 45.85 0.200 45.60 0.083

Tn = − 2
Tp = 1

44.88 0.345 43.98 0.213 45.86 0.266 44.15 0.213 44.23 0.252 43.84 0.103

Proposed Q = 2 58.68 0.176 60.70 0.111 60.73 0.111 59.17 0.158 59.51 0.146 63.65 0.056

Q = 3 53.46 0.279 55.49 0.176 55.52 0.175 53.94 0.250 54.28 0.231 58.43 0.089

Q = 4 50.24 0.352 52.27 0.222 52.30 0.221 50.74 0.316 51.07 0.292 55.19 0.113

n/a not available
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~Eði; jÞ ¼

~E00ði; jÞ; if ~E00ði; jÞ∈ðTn;Tp Þ;
Tp; if ~E00ði; jÞ∈½Tp;Tp þ Q−1�;
Tn; if ~E00ði; jÞ∈½Tn−Qþ 1;Tn�;

~E00ði; jÞ þ Q−1; if ~E00ði; jÞ < Tn−Qþ 1;
~E00ði; jÞ−Qþ 1; otherwise:

8>>>>>>>><
>>>>>>>>:

ð10Þ
Step 2 Extract the compressed code of O, O1, and ori-

ginal MSB plane of Y'(i, j) from the MSB plane of Y''(i,
j). We recover them by using the corresponding decom-
pression method. Next, we replace the MSB plane of Y''(i,
j) with the MSB plane of Y'(i, j) to recover Y'(i, j). The
original reference pixels can then be recovered as

Y i; jð Þ ¼ Y 0 i; jð Þ⊕R i; jð Þ: ð11Þ
Step 3: Increase or decrease ~Eði; jÞ by one if its corre-

sponding element in O1 is equal to one. We then
process ~Eði; jÞ as

E00 i; jð Þ ¼
~E i; jð Þ; if ~E i; jð Þ ¼ Tn or Tp

� �
and O1 i; jð Þ ¼ 0ð Þ;

~E i; jð Þ⊕R i; jð Þ; if ~E i; jð Þ ¼ Tn or Tp
� �

and O1 i; jð Þ ¼ 1ð Þ;
~E i; jð Þ⊕R i; jð Þ; otherwise;

8<
:

ð12Þ
where O1(i, j) is an element in O1. After the stream ci-

pher, we use KEY1 to restore E'(i, j).
Step 4: Modify E'(i, j)according to O as

E i; jð Þ ¼
E0 i; jð Þ−127; if E0 i; jð Þ < 0ð Þ and O i; jð Þ ¼ 1ð Þ;
E0 i; jð Þ þ 127; if E0 i; jð Þ > 0ð Þ and O i; jð Þ ¼ 1ð Þ;

E0 i; jð Þ; otherwise;

8<
: ð13Þ

where O(i, j) is an element in O. At last, according to
Section 2.1, we compute the prediction values P(i, j) and
add them to the corresponding E(i, j) so that we can re-
cover the original image without any error.
Case #2 Data extraction after image recovery
First, we implement the method mentioned in Case# 1

to create an image that includes the additional message.
It is worth noting that we should create a new location
map O3 to mark the pixels of ~E00ði; jÞ that includes the
message and keep them unchanged during the entire re-
covery process. Next, referring to Section 2.1, we com-
pute the prediction errors for the non-reference pixels
and use KEY1 to re-shuffle them. Then, we can use O3 to
identify the prediction errors whether message data is
included or not and extract the message W according to
Eq. (9). Finally, the correct message data can be restored
via KEY3.

3 Results and discussion
In this section, we present a series of experiments imple-
mented to demonstrate the effect of the proposed
method. The standard images we used in our experi-
ments were Lena, Couple, Boat, Man, Peppers, and Ba-
boon, which are shown in Fig. 5. The size of all test
images was 512×512. All the experiments were imple-
mented on a personal computer with an Intel® Core™ i7-
4720HQ, GTX 960M and 12 GB RAM.

3.1 Encryption security
Security is a significant indicator of justifying a method
for RDHEI. As the owner wants only the intended re-
cipient to perceive the information in the encryption
image, we must guarantee the imperceptibility of the
encrypted image. In this section, to demonstrate

Table 4 Comparisons among four methods in terms of SSIM

Method Parameter setting Lena Couple Boat Man Peppers Baboon

Li et al. (2018) T = 1 0.9999 0.9998 0.9998 0.9999 0.9999 n/a

Xu and Su (2019) β = 0 0.9903 0.9744 0.9827 0.9858 0.9820 0.9387

β = 1 0.9887 0.9689 0.9803 0.9839 0.9717 0.9340

Xu and Wang (2016) Tn = − 1
Tp = 0

0.9999 0.9999 0.9998 0.9999 0.9999 0.9956

Tn = − 1
Tp = 1

0.9998 0.9998 0.9996 0.9998 0.9998 0.9948

Tn = − 2
Tp = 1

0.9997 0.9995 0.9994 0.9996 0.9997 0.9944

Proposed Q = 2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Q = 3 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Q = 4 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

n/a not available

Table 5 Comparison among four methods in terms of SSIM,
PSNR, and ER for UCID

Method SSIM PSNR (dB) ER (bpp)

Xu and Wang (2016) 0.9988 45.17 0.337

Li et al. (2018) 0.9962 35.73 0.858

Xu and Su (2019) 0.9764 27.41 0.365

Proposed 0.9997 49.59 0.433
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encryption security, we compare our encryption results
with Xu and Wang’s work [18] and Li et al.’s work [20]
in the two following aspects.
First, a comparison was carried out via subjective vis-

ual effects. Figure 6 shows the encryption results of our
work on six test images. It can be observed in Fig. 6 that
we perceive almost no useful information from the
encrypted images. Figures 7 and 8 show the encryption
results of [18, 20], respectively. As can be observed in
Fig. 7, there are still some contour lines of the original
images in the encryption domain, which is a fatal

weakness for [18]. It should be pointed out that although
the imperceptibility of the encryption images in [20] is
similar to ours in Fig. 8, the shuffling strategy applied in
[20] was based on block shuffling, and it is more likely
that attackers can perceive the contours via a mathemat-
ical analysis of an image encrypted with block shuffling
than one encrypted with our proposed method, which
uses a shuffling strategy based on pixels.
In addition, we used the peak signal-to-noise ratio

(PSNR) as an objective evaluation index to demonstrate
the imperceptibility of the encryption result. Table 1 lists

Fig. 11 Performance comparisons between the methods [18, 20, 33], and the proposed method in terms of ER versus PSNR
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the PSNR results for the three methods. As can be ob-
served from Table 1, the PSNR values from [20] indicate
a performance similar to the method from [18]; however,
the PSNR results of our work are approximately 75% of
the other two methods. From comparisons of the above
two aspects, our method performs the best in terms of
security.
In addition to a comparison of the security level, we

also compared the computing complexity among the
three methods, and we used operation time as a metric
to evaluate the complexity, as is shown in Table 2. From
Table 2, we can find that the method from [18] spent ap-
proximately 0.3 s on each test image to complete the en-
cryption process, which is nearly half the time of the
method from [20] and the proposed method. However,
according to the analysis of the security level, the method
in [18] leaves the contour lines in the encryption version
of all test images. Moreover, the average operation times
for the proposed method and [20] are at the same level.
To summarize, our method strikes a satisfactory balance
between security and computational complexity.

3.2 Embedding capacity
The embedding capacity is another significant indicator
that identifies whether an RDHEI method is efficient. In
order to justify the embedding efficiency of the proposed
method, we added three more test images, i.e., Barbara,
Lake, and Airplane, to our experiments, and we chose
three different Q values, i.e., Q = 2, 3, 4, to compute the
maximum ER for each image with each Q. Figure 9
shows the ER performance of the proposed method on
nine test images.
It can be observed from Fig. 9 that the capacity of our

method mainly depends on the prediction accuracy and
the parameter Q. Specifically, with the increase in Q, the
ER also increases. Except for Baboon, the ERs of all
other images are higher than 0.2 bits per pixel (bpp),
which represents a relatively satisfying result for RDHEI,
when Q is set to 4. As our method depends on the pre-
diction to reserve space for data hiding, images with a
complex texture, such as Baboon, which has neighboring
pixels that vary greatly from one another, cannot be

predicted precisely with the existing prediction algo-
rithms so that limited space can be reserved.
For a comprehensive evaluation of the ER of the pro-

posed method, we tested our method on the uncom-
pressed color image database (UCID) [32] with the
setting Q = 4. Figure 10 shows the ER for each image,
and the average ER for the UCID images is 0.433 bpp,
which is satisfactory for most embedding applications.

3.3 Comparison and discussion
In this section, we compare the ERs and PSNRs of the
recovered images that included additional messages
among the four methods. Note that, in this section, we
also consider a method from [33], which was further de-
velopment of [18].
First, we compared the PSNRs and maximum ERs

among the four methods with different parameter set-
tings for each method. Their corresponding results are
shown in Table 3, where “n/a” strands for “not available,
” for the current parameter setting. From Table 3, for
the method from [20], the average values of PSNRs and
ERs are 50.07 dB and 0.394 bpp, respectively, when T is
set to 1. For the method from [33], when β is set to 0,
the average PSNR and ER are 29.24 dB and 0.184 bpp,
respectively; when β is set to 1, the average PSNR and
ER are 28.32 dB and 0.322 bpp, respectively. For the
method from [18], when Tn is set to −1 and Tp is set to
0, the average PSNR and ER are 49.87 dB and 0.140 bpp,
respectively; when Tn is set to −1 and Tp is set to 1, the
average PSNR and ER are 45.97 dB and 0.207 bpp, re-
spectively; when Tn is set to −2 and Tp is set to 1, the
average PSNR and ER are 44.62 dB and 0.257 bpp, re-
spectively. For our method, the average values of PSNRs
and ERs are 59.76 dB and 0.140 bpp when Q is set to 2,
54.54 dB and 0.222 bpp when Q is set to 3, and 51.32 dB
and 0.280 bpp when Q is set to 4. Note that for a fair
comparison, five test images, not including Baboon, are
used to compute the average PSNRs and ERs with differ-
ent parameters for all four methods, because the add-
itional message could not be embedded in Baboon in the
method from [20]. Comparing the average values be-
tween the proposed method and that from [20], the em-
bedding performance of the method from [20] is better
than the proposed method when Q is set to 2 or 3, and
the embedding performance of the proposed method is
close to the method from [20] when Q is set to 4. How-
ever, it is worth pointing out that the method proposed
in [20] is not entirely separable, and the data can be ex-
tracted correctly only from the encryption domain. On
the contrary, the proposed method is perfectly separable,
and the data can be extracted correctly not only from
the encryption domain but also from the plaintext do-
main. Comparing the average values between the pro-
posed method and the method in [33], we find that the

Table 6 Operation time comparisons among four methods
during the embedding process. (unit:s)

Xu and Wang
(2016)

Li et al.
(2018)

Xu and Su
(2019)

Proposed

Lena 0.0664 0.4456 0.3164 0.1282

Couple 0.0641 0.4021 0.3199 0.1067

Boat 0.0738 0.3448 0.3435 0.1158

Man 0.0758 0.4156 0.3246 0.1308

Peppers 0.0770 0.4269 0.3060 0.1314

Baboon 0.0918 n/a 0.3055 0.1273
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average ER of the method from [33] is slightly higher
than the ER of our method. However, as the cost of
higher ER, the average PSNR of [33] is significantly
lower than that of the other methods. By comparing the
average values between the proposed method and [18], it
can be observed that the embedding performances of
both methods are similar at a low ER. However, with the
increment in the parameters, the increment of the ER of
the proposed method is higher than that of the method
from [18] at a similar PSNR level.
Because PSNR is not sufficient to show the visual

quality of a decrypted image, we also evaluated our
method through another metric, SSIM, which stands for
the structural similarity between a pair of decrypted and
original images. The experimental results are shown in
Table 4. From Table 4, for [20], the average value of
SSIM is 0.9999 when T is set to 1. For [33], the average
values of SSIM are 0.9830 when β is set to 0 and 0.9787
when β is set to 1. For [18], the average values of SSIM
are 0.9999 (when Tn and Tp are set to −1 and 0, respect-
ively), 0.9998 (when Tn and Tp are set to−1 and 1, re-
spectively), and 0.9996 (when Tn and Tp are set to −2
and 1). For the proposed method, the average values of
SSIM are 0.9999, whether Q is set to 2, 3, or 4. Note that
here, for a fair comparison, five test images, not includ-
ing Baboon, were used to compute the average values.
From the results in Table 4, [18, 20], and the proposed
method have the same level in terms of SSIM and
achieve a better performance than [33].
In addition, we also tested the four methods on UCID,

and the average values of SSIM, PSNR, and ER for dif-
ferent methods are shown in Table 5. Note that the pa-
rameters T, β, Tn, Tp, and Q were set to 1, 1, − 2, 1, and
4, respectively. As can be observed in Table 5, our
method achieves the highest average values in terms of
SSIM and PSNR, while the method from [20] achieves
the highest average ER.
Next, we compared performance in terms of ER versus

PSNR among the four methods. Figure 11 illustrates the
performance comparisons among the four methods in
terms of ER versus PSNR. From Fig. 11, it is evident that
all the PSNR curves of the proposed method are higher
than the other three methods under any ER value. It is
worth pointing out that the methods in [18, 33], and the
proposed method can generate a directly decrypted
image while keeping all the embedded data, but [20]
cannot keep the embedded data in the directly decrypted
image.
In addition to comparisons of the capacity and visual

quality of the four methods, we also compared the com-
puting complexity of the four methods during the em-
bedding process. We used operation time as a metric to
evaluate the computing complexity, and set T, β, Tn, Tp,
and Q to 1, 1, − 2, 1, and 4, respectively. The results are

shown in Table 6. The average operation times for [18,
20, 33], and the proposed method are 0.0714 s, 0.4070 s,
0.3220 s, and 0.1226 s, respectively. From Table 6, the
method from [20] consumes the most time because the
embedding strategy in this method is based on bit opera-
tions. Moreover, the operation time of the method from
[33] is also higher than the method from [18] and the
proposed method, due to the fact that the embedding
strategy in the method from [33] is based on module op-
erations. However, both the method from [18] and the
proposed method attain efficient results, with both aver-
age embedding times lower than 0.2000 s. Note that the
reason why our method requires more time than the
method from [18] is because of the overflow/underflow
processing involved in our embedding process.

4 Conclusions
In this study, a separable multiary RDHEI method that
involved prediction and replacement, image encryption,
data hiding, data extraction, and recovery of the original
image was developed. A stream cipher and shuffling
were used to encrypt the original image so that we could
obtain a high-security level. The data hider could embed
additional data into the image without knowing the ori-
ginal image because we had already vacated space for
the data hider. It is worth pointing out that, in our work,
the data hider is also capable of adaptively modifying the
reserved space according to the actual embedding de-
mand. After the receiver acquires the encrypted image
with the additional data, the receiver can extract the en-
tire additional message either from the encryption do-
main or the plaintext domain because our scheme is
entirely separable. It should be noted that there are two
limitations in our method: (1) the amount of overflow/
underflow data increases dramatically with an increase
in Q, and (2) the ER of our method relies heavily on the
accuracy of the predictions. Both issues will be addressed
in our future research.
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