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Abstract

As a promising technology in the context of m-health and e-medical, wireless body area networks (WBANs) have a
stringent requirement in terms of transmission reliability. Meanwhile, the wireless channel in WBANs is prone to deep
fading due to multiple reasons, such as shadowing by the body, reflection, diffraction, and interference. To meet the
challenge in transmission reliability, the dynamic slot scheduling (DSS) methods have attracted considerable interest
in recent years. DSS method does not require extra hardware or software overhead on the sensor side. Instead, the
hub optimizes the time-division multiple access slots by selecting the best permutation at the beginning of each
superframe to improve the transmission reliability. However, most existing DSS works optimize the time slot
scheduling based on a two-state (“good” or “bad”) Markov channel model, which is insufficient for human daily life
scenarios with a variety of irregular activities. In this paper, we first collect the channel gain data in the real human
daily scenarios and analyze the autocorrelation of wireless channels based on this real database. Motivated by the
significant temporal autocorrelation, we then propose a new DSS method, which applies a temporal autocorrelation
model to predict the channel condition for future time slots. The new method is designed to be compatible with IEEE
802.15.6 standard. Compared to the classical Markov model-based methods, simulation results show that the newly
proposed DSS method achieves up to 12.9% reduction in terms of packet loss ratios.

Keywords: Dynamic slot scheduling, Channel autocorrelation, Scheduled access, Wireless body area networks, IEEE
802.15.6

1 Introduction
Wireless body area networks (WBANs) are radio net-
works of sensors and/or actuators, placed on, in, or
around the human body, and represent the latest gen-
eration of personal area networks [1]. The development
of WBANs is of great importance for a wide range of
applications, including healthcare, emergency services,
sports, and consumer entertainment. However, due to the
peculiarities of WBAN channels, WBANs still face many
challenges in the medium access control (MAC) layers.
One of the crucial challenges is ensuring the transmis-

sion reliability for major WBAN-based applications, such
as e-health and patient care. Different from other typ-
ical wireless radio channels, a large number of factors
may result in the severe attenuation (over 100 dB has

*Correspondence: hz697@uowmail.edu.au
1School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong, Northfields Ave, 2522 Wollongong, Australia
2Artificial Intelligence Research Center, National Innovation Institute of
Defense Technology, 10091 Beijing, China

been observed) inWBAN channels. These factors include
diffraction, reflection, energy absorption and consump-
tion, antenna losses, shadowing by the body tissue, and
body posture [2–7]. It has been demonstrated by many
research works, such as [8, 9], that the shadowing effect
from the human body is the dominant factor that leads to
the severe attenuation. Moreover, the deep fading effect
in WBANs might last from 10 to 300 ms [10, 11], which
is longer than cellular networks. On the other hand, con-
strained by the miniaturization of WBAN sensor nodes,
both energy supply and processing/storage capacity are
very limited. Therefore, designing a reliable and efficient
data transmission strategy for WBANs becomes impera-
tive to promote the prevalence of WBANs.
In recent years, many dynamic schemes which adjust

key transmission parameters in accordance with the real-
time channel state or application requirements have been
proposed to meet the transmission challenges inWBANs.
Among these works, adaptive duty cycle (ADC) [12–15]
and transmission power control (TPC) [16–22] are the
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two key research topics. However, both ADC and TPC
methods require additional hardware or software cost on
the sensor side. In this paper, we will focus on the dynamic
slot scheduling (DSS) method, which dynamically opti-
mizes the permutation of time slots in each superframe.
Because of the advantages in collision-free and energy
efficiency, the TDMA-based approach is put forth as
one of the most appropriate MAC solutions. However,
due to the high volatility of on-body channels, a simple
static TDMA allocation may lead to significant waste.
Specifically, if a time slot is assigned to a particular sensor
node with a bad channel to the hub (coordinator or sink),
the data packets from this sensor are prone to be lost.
However, the slot cannot be used by any other node that
may have a good link. This not only wastes the energy but
also decreases the throughput. Ideally, we would like to
allocate a transmission slot to a sensor node only when the
state of its link to the hub allows a successful data transfer.
The core idea of DSS method is scheduling the time slots
according to the variation of link conditions rather than a
fixed scheduling. It is worth noting that all the additional
controls are added to the hub, and there is no increase in
sensors’ complexity.
The core idea of DSS has been somewhat mentioned

in the literature, which is usually referred to as
“opportunistic scheduling” in the context of cellular net-
works [23]. However, traditional opportunistic scheduling
approaches are not compatible with WBAN systems
as they require that the slave nodes are continuously
available for communication [9]. This requirement is
unacceptable for the energy-constrained sensors, which
are in a sleep mode most of the time. Besides, most
opportunistic scheduling methods for cellular networks
do not consider the peculiarities of WBAN chan-
nels, e.g., high variation and predominant shadowing
from the body.
Recently, some DSS works are proposed in the context

of WBANs. In [24, 25], the authors use a two-state
(“good” or “bad”) Gilbert model [26] to describe the vari-
ation of on-body channels. Based on the Markov channel
model, a DSS scheme, named flipping, is proposed tomax-
imize the expected number of successful transmissions in
a TDMA round. The flipping scheme schedules all bad
links of the previous superframe last and preserves the
order in time in which they were observed while schedules
all good links first but reversing the order in which they
were observed in the previous superframe. The rationale
behind flipping method is that all bad links are given the
longest time to recover (i.e., getting out of the outage),
while the flipped ordering of the good links takes advan-
tage of the most recently observed good links to ensure
a high probability of success in the next transmissions
round. Some other research works are also based on the
assumption of two-state Markov channel model. To tackle

the dynamic fluctuation of on-body channels, the work in
[27] presents a novel transitionmatrix estimationmethod.
In [28], the authors focus on adapting the slot order to
improve the effectiveness of retransmission. The node
with the worst channel condition is scheduled to occupy
the first time slot to get the highest chance of discover-
ing a relaying node, and the best channel is scheduled
at the last. In [29–31], the authors propose a flipping-
like scheduling approach which also adopts Gilbert model
to describe the on-body channel. Besides, the Quality of
Service (QoS) requirements, including energy efficiency,
data rate, and packet reception rate, are taken into
account to optimize not only the slot order but also
slot number.
However, the main limitation of these Markov model-

based schemes is that the condition of on-body links
is limited to only two states: good and bad, which are
insufficient to describe the on-body channel states in the
complexWBAN application scenarios, especially the daily
scenarios with mixed activities. Besides, these studies do
not consider the correlation between links. In fact, due
to the variability of human movements and postures, the
independent Markov process is insufficient to model the
on-body channels.
In this study, motivated by the significant temporal

autocorrelation of the on-body channels in the human
daily activity scenarios, a temporal autocorrelation-based
DSS method (DSS-TA) is proposed. DSS-TA utilizes a
temporal autocorrelation model to estimate the on-body
channel condition for future time slots and then opti-
mizes the permutation of scheduled time slots for all
connected sensor nodes based on the estimation results.
The new method is designed to be compatible with the
IEEE 802.15.6 standard [1].
The major contributions of this paper are as follows:

• We collect the channel realizations in the real daily
life scenarios with mixed activities. Then, we offer
insight into the autocorrelation of on-body channels
and point out that there is an untapped potential for
leveraging the significant autocorrelation features for
DSS in WBANs.

• We first propose to utilize a temporal autocorrelation
model to optimize the slot scheduling and detail its
implementation in the IEEE 802.15.6. The new
method jointly takes the latest and historical channel
states into consideration, thus achieving a more
accurate prediction of channel conditions.

• We evaluate the performance of our DSS-TA method
through importing the real channel realizations into
the simulation model. Simulation results show that,
compared to conventional DSS methods, the newly
proposed DSS method achieves up to 12.9%
reduction in terms of packet loss ratios.
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The rest of the paper is organized as follows. Section 2
provides the autocorrelation analyses of on-body chan-
nels with the experimental investigation. Then, the sys-
tem model and problem formulation are presented in
Section 3. Section 4 details the newly proposed DSS-TA
method. Performance evaluation results based on the real
channel realizations are presented in Section 5. Finally,
Section 6 concludes the paper.

2 On-body channel measurement and
autocorrelation analysis

2.1 Measurement setups
In this paper, a one-hop star topology composed of one
hub and five sensors is considered. The deployment of
the transceivers is depicted in Fig. 1, where the transmit-
ter (acting as the hub) is placed on the abdomen and five
receivers (acting as sensor nodes) are mounted on limbs
and head. The receiver mounted on the left wrist is named
as SNLW. Corresponding to the positions of the other
receivers, the other four receivers are named as SNRW
(right wrist), SNLA (left ankle), SNRA (right ankle), and
SNH (head).
The wireless transceivers work at the 2.4 GHz ISM band,

which is one of the candidate carrier frequencies for the
IEEE 802.15.6 BAN standard [1]. The wireless transceivers
are assembled by commercial components, which are easy
to build. The structure of the portable transceiver is shown
in Fig. 2. The main function of these transceivers is to
transmit and receive continuous data packets to/from
each other and record the received signal strength indi-
cator (RSSI) values into a micro SD card. More detailed
description of the hardware can be found in [6–8].
When the measurement begins, the transmitter contin-

uously broadcasts sample packets to the five receivers with
the transmission (Tx) power of 0 dBm, and the sample
packet transmission frequency is 200 Hz (i.e., sending 200
packets per second). Upon receiving the sample packet,
the receivers record the packet sequence number, the
timestamp, and the RSSI value into a text trace file. If the
gap of sequence numbers between two successive sam-
ple packets, which a receiver receives successfully, exceeds
one, some packets between these two packets have been
lost due to the severe channel condition. In this case, the
records of these lost packets will be added to the trace
file with RSSI = – 100 dBm. It should be mentioned that
the RSSI values can be less than – 100 dBm. The value
– 100 dBm is chosen as a reference value to indicate a
severe channel condition that would result in the packet
loss. Taking the case in Fig. 3 as an example, the hub
broadcasts four sample packets (Pkt16 − Pkt19) to the sen-
sors nodes, but SNLW only receives two packets (Pkt16 and
Pkt19) and loses two packets (Pkt17 and Pkt18). Accord-
ingly, after receiving Pkt19, SNLW will add two more data
rows in the trace file with RSSI = – 100 dBm, i.e., the

middle two records in the data file of Fig. 3. In addition, as
the Tx power is set to 0 dBm, the RSSI value can be con-
sidered as the channel gain and the inverse of the RSSI is
the path loss.
In this study, we focus on mixed activities encountered

in typical daily scenarios, so the measurement environ-
ments include indoor office, gym, home, walkway, and car.
Meanwhile, we do not limit the types of activities that
the test subjects should conduct. These activities include
standing, walking, jogging, running, sitting, driving, and
many other irregular movements. Two male subjects and
two female subjects are invited to conduct the measure-
ments. Each test subject conducts four measurements on
four different days. For eachmeasurement, the test subject
is required to wear six wireless transceivers for 1 h, and the
subject continues their daily life just like every other nor-
mal day. Corresponding to the five receivers, each mea-
surement produces five trace files, each of which stores
72×104 records (200 packets/second× 3600 s). Each trace
file is a channel realization for one particular channel, e.g.,
from the hub to SNLW. The five trace files collected from
one measurement form one dataset, and we refer to each
dataset as a channel dataset. Since 16 measurements are
conducted, there are 16 channel datasets in total, and they
are named CD1 to CD16, respectively.

2.2 Channel autocorrelation
Next, these channel realizations collected from the daily
scenarios are used to characterize the temporal autocorre-
lation of the on-body channels. Specifically, the autocorre-
lation coefficients of each channel for time delay from 5 to
500 ms are calculated. The following equation is adopted
to evaluate the autocorrelation

γ (k) =
∑N−k

n=1
(
G(n) − Ḡ

) (
G (n + k) − Ḡ

)

∑N
n=1(G(n) − Ḡ)2

(1)

where Ḡ is the mean value of N channel gain (or RSSI)
values, i.e., {G(1), G(2). . .G(N)}, and k is the time shifting
index in the record sequence. As the sampling frequency
in our experiment is 200 Hz, k also represents a time lag
of k×5 ms. As demonstrated in [32], the on-body channel
may not satisfy the wide-sense stationary (WSS) assump-
tion when the time window is longer than 500 ms. Hence,
in this paper, we focus on exploring the autocorrelation
within a time lag of 500 ms, i.e., k is set from 1 to 100. N
is the size of channel gain (or RSSI) data points, which is
72×104 for each on-body channel when the whole channel
realization records are considered.
First, two channel datasets are picked to show the auto-

correlation variation between different links and different
test subjects. Figure 4 shows the autocorrelation coeffi-
cients of the five on-body channels. The results displayed
in Fig. 4a are calculated based on the first channel dataset
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Fig. 1 The deployment of transceivers

performed by the male subject 1, i.e., CD1, and the results
of Fig. 4b correspond to the first channel dataset from
the female subject 1, i.e., CD9. In Fig. 4, γrw represents
the autocorrelation coefficient of channel “SNRW-Hub.”
Correspondingly, γh, γlw, γla, and γra represent the

autocorrelation coefficient for channel “SNH-Hub,”
“SNLW-Hub,” “SNLA-Hub,” and “SNRA-Hub,” respectively.
Clearly, due to the variations of activities, environment,
and sensor position, the autocorrelation of on-body
channels varies with the change of test subject and the

Fig. 2 Components of the portable transceiver
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Fig. 3 Channel data recording when packets are lost

location of the receiver. On the one hand, there are clear
distinctions between the autocorrelation curves for dif-
ferent channels. On the other hand, the autocorrelation
coefficient for a certain channel also varies in different
channel realizations. For example, the autocorrelation
coefficient of channel “SNRW-Hub” (denoted as γrw) drops
rapidly with the increase of time lag in CD1. Whereas, γrw
exhibits a much smoother and smaller decline in CD9.
However, in spite of the discrepancy resulting from

different test subjects and different sensor positions,
all five on-body channels exhibit significant autocor-
relation characteristics within a time lag of 500 ms.
To have more insights into the on-body channel auto-
correlation, we explore the ensemble average of auto-
correlation coefficient over all 16 channel datasets. As
shown in Fig. 5, γ̄h, γ̄lw, γ̄rw, γ̄la, and γ̄ra represent the
ensemble average of autocorrelation coefficient for chan-
nel “SNH-Hub,” “SNLW -Hub,” “SNRW-Hub,” “SNLA-Hub,”
and “SNRA-Hub,” respectively. If the coherence time is
defined as the period when the autocorrelation coefficient
is above 0.7, the average coherence times for the five on-
body channels all exceed 500 ms, which is much longer
than the coherence time in the monotone walking or
running activity scenarios [33] (23–73 ms). The main rea-
son may be because the daily scenarios are mixed with
multiple activities, but most activities are relatively static,
e.g., standing and sitting. More specifically, the channel
between the torso and the head exhibits the most striking
autocorrelation. It is mainly because the relative distance
as well as the shadowing effect in this channel are more
stable than the other four channels. Besides, the channels
between the torso and two ankles show a more significant
autocorrelation than the channels between the torso and
two wrists. The main reason for this phenomenon may be

because the movement of the upper limbs is more drastic
than the lower limbs.
In summary, the autocorrelation of on-body channels

varies with the change of test subject and the location
of receiver. However, in the daily scenarios, the on-body
channels exhibit a significant autocorrelation within a
time lag of 500 ms. This general characteristic may pro-
vide a great potential in channel condition estimation.
This untapped feature has inspired us to optimize the
TDMA slot schedule as mentioned in this paper. In addi-
tion, due to the dynamic variation of body’s shadowing
effect and reflection from surrounding objects, the auto-
correlation for a specific on-body channel on a certain
subject fluctuates in the timeline. Accordingly, if we want
to predict the channel condition by using the on-body
channel autocorrelation, the autocorrelation coefficient
should be kept up to date. The detail of channel informa-
tion collection mechanism and real-time autocorrelation
calculation will be presented in Section 4.

3 Systemmodel and problem formulation
3.1 Systemmodel
In this paper, we consider a one-hop star topology com-
posed of one hub and a number of sensors. As the health
monitoring is considered as the application of interest, all
sensors periodically upload data packets to the hub. In the
MAC layer, the MAC model of the IEEE 802.15.6 stan-
dard [1] is adopted. In the IEEE 802.15.6 standard, a hub
shall operate in three types of access modes: beacon mode
with superframes, non-beacon mode with superframes,
and non-beacon mode without superframes. As the bea-
con mode with superframes provides the most flexible
option in terms of access phases, we consider this mode
in this paper. As shown in Fig. 6, one active superframe
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(a) (b)
Fig. 4 The autocorrelation in two typical channel datasets. a Channel dataset (CD1). b Channel dataset 9 (CD9)

(beacon period) consists of two access phases: random
access phase (RAP1) and managed access phase (MAP).
Both RAP1 andMAP consist of several time slots with the
same length, i.e., Ts. In the RAP1, the carrier sense multi-
ple access/collision avoidance (CSMA/CA) access method
is performed to exchange management and control pack-
ets, including the connection request and assignment
packets. In the MAP, the TDMA access method is uti-
lized to schedule the upload interval for sensor nodes.
After the scheduling of the hub, the exclusive upload inter-
vals for the sensor nodes are located in the MAP. For
brevity, we call the exclusive interval as SUI, i.e., sched-
uled upload interval. In this study, we assume that the
hub assigns the same length of SUI to each sensor in
one superframe, and we call this constraint as “fairness

constraint.” It is worth noting that for comparison, we
also consider the method which the hub allocates the
time slots only based on the channel condition, with-
out the restriction of the equal SUI length. However, as
will be presented in Section 5, there exists a significant
imbalance in the data rate of different sensors in the lat-
ter case. For the radio layer, all wireless devices operate
in a half-duplex mode and no relay nodes are used in
the network. All sensors are configured with the same
Tx power level. As the hub device is usually less energy-
constrained, the Tx power level of the hub is higher than
that of sensors. Therefore, the downlink channels (from
the hub to the sensors) are assumed to be much more
reliable than the uplink channels (from the sensors to
the hub).

Fig. 5 Ensemble average autocorrelation vs. time lag
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Fig. 6 Superframe structure

3.2 Problem formulation
In the classical TDMA method, upon accomplishing the
scheduling in the first TDMA round, the order of SUI
for all sensor nodes will remain the same in the following
TDMA rounds. However, some time slots may be occu-
pied by a sensor with a bad channel condition to the hub.
These time slots cannot be assigned to another sensor
that may have a better link. Moreover, as the sensor is
assigned to an interval with a bad channel condition, it
also loses the opportunity to have a good channel condi-
tion in another interval. Unlike the static TDMAmethod,
DSS methods focus on the problem of how to dynamically
schedule the time slots in each superframe. Ideally, DSS
methods aim to allocate transmission slots to a sensor only
when the state of its link to the hub allows a successful
data transfer.
Assuming there are n sensors (SN1 − SNn) in the net-

work, and each MAP is split into m slots with the same
duration (cf. Fig. 6), denoted as TS1, TS2, . . . , TSm. Each
sensor node is assigned with q slots to upload data packets
in MAP, so there are �m/q� available intervals. We denote
K(i) as the SUI assigned to SNi, 1 � K(i) � �m/q�, and
vector K = (K(1),K(2), ...,K(n)) represents the SUI per-
mutation in one MAP. Theoretically, the total number of
possible values of K is the n-permutation of �m/q�, i.e.,∏n−1

i=0 (�m/q� − i), for each superframe. In DSS methods,
the K does not remain the same across different super-
frames, which is the key different compared to a static
TDMA assignment. Let us consider the example in Fig. 7.
Assuming there are three sensors in the network and five
time slots in one MAP, each sensor is assigned one time
slot, i.e., m = 5, n = 3, and q = 1. In the previous bea-
con period, TS2, TS1, and TS4 are assigned to SN1, SN2,
and SN3, respectively, i.e., K = (2, 1, 4). In static TDMA
method, K remains the same for all TDMA rounds. The
problem of DSS methods lies on how to choose the opti-
mal value of vector K for current superframe based on the
historical channel information.
The main target of all DSS methods is to minimize the

packet loss from the sensors to the hub. More specifically,
at the start of each superframe, the permutation of SUI for
the current superframe should be optimized based on the
following criteria:

min−→
K

n∑

i=1
pi(K(i))

for i �= j, K(i) � �m/q� and K(i) �= K(j)

(2)

where pi(K(i)) represents the average packet loss ratio
(PLR) of the link “SNi-Hub” in the K(i)th time inter-
val. Since the number of intervals is �m/q� and K(i)
denotes the SUI assigned to SNi, we have the first con-
straint, i.e., K(i) � �m/q�. Besides, the second con-
straint K(i) �= K(j) is provided as two sensors possess
two independent SUIs. Based on Eq. (2), the more accu-
rate estimation of pi(K(i)), the better performance of the
DSS method. However, estimating the full channel state
information at the start of each round is not trivial, espe-
cially in the dynamic WBAN scenarios. The key challenge
of DSS schemes is how to predict the channel condi-
tions by using the channel information from the previous
superframes and then optimizing the time slot schedul-
ing in the current superframe based on the prediction
results.

4 The proposed DSS-TAmethod
In the proposed DSS-TA method, the hub predicts the
channel condition based on a temporal autocorrelation
model at the beginning of each superframe. Specifi-
cally, DSS-TA consists of three parts: channel informa-
tion collection, PLR prediction, and slot permutation
optimization. Except for the first part that needs the
assistance of sensor nodes, DSS-TA is mainly imple-
mented on the hub side, which is considered to be
less constrained by energy, storage, and computation
resources.

4.1 Channel information collection
As presented in Eq. (1), historical channel gains are
needed at the granularity of time slots to calculate the lat-
est autocorrelation coefficient. Intuitively, the hub could
collect the channel conditions by receiving the upload
packets from the sensor nodes. However, every sensor
node only uploads the data packets during their SUI,
which misses the channel information during the other
time slots. Meanwhile, if multiple sensor nodes simulta-
neously upload packets to the hub, it may result in severe
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Fig. 7 Time slot scheduling problem

signal collisions. Therefore, broadcast from the hub to all
sensors, i.e., downlink transmission, is used to track the
channel condition. As demonstrated in [34, 35], the on-
body channels show prominent reciprocity in narrowband
communication environments, which means the channel
profiles of downlink and uplink are about the same. There-
fore, the channel gain of uplink channels can be estimated
by the measurement of the downlink channel. Specifically,
the hub keeps broadcasting control or sample packets to
all sensors, then the sensor nodes will feedback the RSSI
values to the hub during their SUIs.
Consider an example in Fig. 8. There are five time

slots (TS1 − TS5) in the MAP, and three sensor nodes
(SN1 − SN3) are assigned one time slot each. In order
to record the channel gain for each time slot, we intro-
duce an extra subslot in the tail of each time slot. On the
hub side, depending on whether the current time slot is
free or not, the hub shall broadcast one control or sample
data packet, respectively, to all sensor nodes in the extra

subslot. If the current time slot is assigned to a sensor
(i.e., TS1 − TS3 in Fig. 8), the hub shall broadcast a B-Ack
packet during the extra subslot. The B-Ack packet means
block acknowledgment packet, which is combined with
the block acknowledgment later (L-Ack) packet to sup-
port the L-Ack &B-Ack acknowledgment policy of IEEE
802.15.6. In DSS-TA, L-Ack & B-Ack policy is adopted in
the uplink data transmission. That means the Ack policy
field of all data packets would be set to L-Ack, except the
last data packet in each time slot which is set to B-Ack. On
the other hand, if the current time slot is set as free (TS4
and TS5 in Fig. 8), instead of broadcasting the acknowl-
edgment packet, the hub shall broadcast a sample packet
to all sensor nodes during the extra subslot. At the sensor
side, if the current time slot is assigned to a certain sensor,
this sensor will stay in a normal active state. Otherwise,
the sensor will be in the sleep state. During the extra sub-
slots, three sensor nodes will stay in Rx (reception) state
to receive B-Ack or sample packets from the hub. Upon

Fig. 8 Channel information collection
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receiving the B-Ack or sample packet from the hub, the
sensor nodes record the RSSI values and assemble them
into the headers of data packets, which would be uploaded
during the next superframe. Note that the hub knows the
Tx power level of the B-Ack or sample packets; thus, it
is easy to calculate the channel gain (or path loss) after
receiving the historical RSSI values. By this approach, the
hub keeps track of the channel conditions of each channel
in every time slot, while the sensor nodes only stay active
during the extra subslots and its allocated interval.
In DSS-TA, the hub stores the channel gain data of

the latest 2 s, which contain 400 channel gain values for
each sensor. Note that, choosing an appropriate sample
size to estimate the autocorrelation is not a trivial task.
On the one hand, with the increase of sample size, more
data points are utilized to calculate the channel autocor-
relations, which may appear to result in a more accurate
estimation of autocorrelation. On the other hand, since
the sampling frequency is fixed, a bigger sample size
means these data points are collected from a wider time
span. However, as demonstrated in [32], on-body chan-
nels show a low probability of WSS assumption outside
the time span of 500 ms. In other words, the timeliness of
autocorrelation calculation is weakened with the increase
of sample size. In fact, there exists a trade-off between
accuracy and timeliness when choosing the sample size.
We will explore the effect of the sample size in Section 5.

4.2 Packet loss ratio prediction
We first introduce the temporal autocorrelation model
used to predict the PLR. Suppose the sensor node SNi
transmits a data packet to the hub with the transmission
power PTx, and the hub receives the packet with the power
PRx. Then, the channel gain for the channel “SNi-Hub” is
defined as

Gi|dB = PRx|dBm − PTx|dBm. (3)

Meanwhile, as proved in [34, 36–38], the lognormal
distribution provides a good fit for the long-term aver-
age on-body channel gain. Therefore, the channel gain in
the channel “SNi-Hub” can be described by a Gaussian
random variable (r.v.)

Gi|dB ∼ N
(
μi, σ 2

i
)
, (4)

where μi and σi are the mean and standard deviation
of the channel gain, respectively. Note that both μi and
σi depend directly on the type of human activity, the
position of transmitting and receiving nodes, and propa-
gation environment. In this study, we assume the variation
of the channel gain is a WSS process within 500 ms;
thus, μi and σi remain the same within 500 ms. Accord-
ingly, the channel gains within this period follow the same
distribution

Gi (T0) ∼ N
(
μi, σ 2

i
)
, (5)

Gi (T0 + τ) ∼ N
(
μi, σ 2

i
)

τ � 500 ms (6)

where Gi(T0) and Gi(T0 + τ) are the channel gains at
the time instants T0 and T0 + τ , respectively. Therefore,
the joint distribution of the two channel gains recorded at
different time instants can be expressed as [39]

(Gi (T0) ,Gi (T0 + τ)) ∼ N
(
μi,μi, σ 2

i , σ 2
i , ρi(τ )

)
(7)

where ρi(τ ) denotes the autocorrelation coefficient for a
time lag of τ . Furthermore, the conditional distribution of
Gi(T0 + τ) can be deduced to [39]:

Gi (T0 + τ ) ∼ N
(
(1 − ρi(τ )) μi + ρi(τ )Gi (T0) ,

(
1 − ρ2

i (τ )
)
σ 2
i
)
. (8)

The PLR is the probability of the received signal power
below the pre-defined receiving power threshold. Thus,
the PLR for the time instant T0 + τ is given by

pi (T0 + τ ) = Prob
(
PRx (T0 + τ ) � PRx∗)

= Prob
(
Gi (T0 + τ ) + PTx (T0 + τ ) � PRx∗)

= Prob
(
Gi (T0 + τ ) � G∗)

(9)

where pi(T0 + τ) is the PLR, PTx(T0 + τ) and PRx(T0 + τ)

are the signal transmitting and receiving power, respec-
tively, PRx∗ is the pre-defined receiving power threshold,
and G∗ = PRx∗ − PTx(T0 + τ) is defined as the channel
gain threshold. Consequently, combining Eqs. (8) and (9),
pi(T0 + τ) can be predicted by

pi (T0 + τ ) =
∫ G∗

−∞
fGi(T0+τ) (Gi) dGi

= �

⎛

⎜
⎝
G∗ − (1 − ρi(τ )) μi − ρi(τ )Gi (T0)

σi

√(
1 − ρ2

i (τ )
)

⎞

⎟
⎠

(10)

where fGi(T0+τ)(Gi) is the probability density function of
Gi(T0+τ) and�(·) is the cumulative distribution function
of the standard normal distribution.
Equations (8)–(10) are called as the temporal autocor-

relation model (TAM), which is first proposed in [39].
In [39], the TAM model is used to choose dynamically
between the relay and direct transmissions. In DSS-TA,
the collected historical channel gain data is combinedwith
TAM at the hub side to predict the PLR for each channel.
Based on Eq. (10), the following parameters: Gi(T0), μi,

σi, and ρi(τ ) are required in the hub side. Firstly, the latest
channel gain record in the previous superframe is chosen
asGi(T0). Then, the channel gain expectationμi and stan-
dard deviation σi can be estimated by the sample mean
(μ̂i) and sample standard deviation (σ̂i)

μ̂i = Ḡi = 1
n

n∑

x=1
Gi(x) (11)

σ̂i =
√
√
√
√1

n

n∑

x=1

(
Gi(x) − Ḡi

)2 (12)
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where Gi(x) (x = 1, 2, . . . , n) are the historical chan-
nel gain records, and n = 400 is the sample size.
Next, we will calculate the autocorrelation coefficient
ρi(τ ). We convert the time lag of τ to the number of
time slots, i.e., �τ/Ts�. Hence, ρi(τ ) can be estimated
as γi(�τ/Ts�), based on Eq. (1). In addition, in order to
predict the channel condition for multiple future time
slots, the hub should calculate an autocorrelation coeffi-
cient vector for each channel. In DSS-TA, the autocor-
relation coefficients within the time lag of 500 ms are
calculated. For instance, if the length of one time slot is
5 ms, each autocorrelation vector has 500/5 = 100 ele-
ments, which are denoted for the channel “SNi-Hub” as
	γi = (γi(1), γi(2), γi(3), . . . , γi(100)). Besides, when the
time lag exceeds 500 ms, the autocorrelation coefficient is
considered as γi(100).

4.3 Slot permutation optimization
As presented in Eq. (2), the aim of DSS approaches is to
find a permutation of SUI, i.e., K, to minimize the sum
of PLR of all links. In fact, the process of finding an opti-
mal K for the current superframe can be converted into
a minimum-cost matching problem in a bipartite graph.
The bipartite graph can be denoted as G = (U ,V ,E),
whereU and V denote the sensor node set and time inter-
val set, respectively, E denotes the edges between the two
subsets. In the DSS-TA, the cost of the edge from the sen-
sor SNi to the time interval x, namely TIx, is weighted
by the average PLR of the link “SNi-Hub” during TIx. If
each sensor is assigned with q time slots, the length of
one time interval equals q×Ts, and the predicted PLR for
one time interval is estimated as the mean value of q pre-
dicted PLR values within that time interval. Accordingly,
using the PLR prediction algorithm mentioned before, a
|U| × |V | adjacency matrix can be built to represent the
bipartite graph, and the entries of the matrix are all esti-
mated PLR values. |U| and |V | denote the size of the sets
U and V, respectively. The assignment problem in the
bipartite graph can be solved by the Hungarian algorithm
[40], which is also called as Kuhn-Munkres algorithm. In
addition, the time complexity in the worst cases of this
algorithm is O(J3), J = max{n, �m/q�}, where n is the
number of sensors and �m/q� is the number of time inter-
vals. Considering both n and m are below 256 [1], this
complexity is acceptable.
Figure 9 illustrates the process of finding the minimum-

cost matching. There are three sensor nodes in the net-
work and five time slots in one MAP, and suppose each
sensor is assigned with one time slot, i.e., n = |U| = 3,
m = |V | = 5, and q = 1. Figure 9a presents the pre-
dicted PLR matrix for the current superframe. The entry
at the coordinate (a, b) denotes the predicted average PLR
for the channel “SNa-Hub” during TSb. By performing the
Hungarian algorithm on this matrix, the selected edges

are depicted in Fig. 9b. The optimal slot scheduling is
that TS5, TS4, and TS1 are assigned to SN1, SN2, SN3
respectively, i.e., K = (5, 4, 1). The cases when q > 1
are similar, except that the cost of each edge is the mean
value of q predicted PLR values within the considered time
interval.
In short, at the start of each beacon period, the hub

performs the PLR prediction algorithm to predict the
PLRs for each time interval in the MAP and then per-
forms the Hungarian algorithm to calculate the optimal
permutation vector K. Then, the optimal K is inserted
into the beacon packet, which would be broadcasted to
all sensor nodes. Upon receiving the beacon packet, sen-
sor nodes obtain their exclusive upload intervals, set radio
state timer, and control their data uploading process in the
scheduled time slots.

5 Performance evaluation
In this section, we evaluate the performance of the pro-
posed DSS-TA. To do that, we build a simulation model as
follows. The channel datasets collected from ourmeasure-
ment campaigns are imported into the simulation model
to represent the variation of actual on-body channels in
the daily scenarios. To demonstrate the effectiveness of
DSS-TA, we compare the performance of the DSS-TA
method with the following methods.

1. Static TDMA: The uplink time slots of all sensors
are fixed after being assigned in the first superframe.
The order of sensors’ SUIs is chosen randomly in the
first superframe.

• Random: Unlike the static approach, the random
scheme re-schedules the time slots at the start of
each superframe, and the permutation of SUI is
selected randomly.

2. Flipping: The flipping method schedules all “bad”
links of the previous superframe last, preserving the
order in time in which they were observed.
Meanwhile, it schedules all “good” links first but
reversing the order in which they were observed in
the previous superframe. The original flipping [24, 25]
method assumes the number of sensors is identical to
the number of available upload intervals. In this
section, we consider a more general version where the
number of available upload intervals may be larger
than the number of sensors. Accordingly, some slots
located in the middle of the MAP may remain idle.

3. Perfect prediction: This scheme is designed to
explore the upper bound of DSS approaches. The hub
is assumed to know exactly the channel gain of any
time slot in the next beacon period. Therefore, the
perfect prediction method can optimize the
assignment based on the accurate value of channel
gain. This method is infeasible for real WBAN
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(a) (b)
Fig. 9 An example of finding the minimum cost matching. a predicted PLR matrix. b selected minimum edges

systems because it assumes perfect prediction of
future states.

4. Fairness unconstrained: Unlike all the
aforementioned methods, this method does not
restrict the SUI length for the sensors. A sensor may
obtain the whole time slots if the channel condition
from the sensor to the hub is predicted as the best
during the MAP. On the other hand, another sensor
may not be allocated any time slot to upload packets
due to its bad channel conditions. For the purpose of
comparison, the fairness unconstrained method
adopts the PLR prediction mechanism which we
propose in the DSS-TA method. The hub adopts a
greedy strategy to schedule the time slots, each time
slot is assigned to the sensor with the lowest
predicted PLR.

5.1 Simulation model and configurations
We build the simulation model from wireless channels
to the application layer based on the Castalia framework
[41]. Compared to other simulators, Castalia provides
more realistic network features, such as accurate real-
istic radio model, clock drift, and energy consumption
model. All the important default parameters of the
protocol stack and hardware are listed in Table 1. In
the wireless channel layer, the “TraceChannel” model
is selected, in which the on-body channels are sim-
ulated by the channel datasets collected from our
measurement campaign, i.e., CD1, CD2, . . . , CD16.
Corresponding to the 16 channel datasets, we carry 16
simulations for each simulation configuration by import-
ing different channel datasets to the simulation model.
Because each channel realization lasts 3600 s (1 h), the
simulation time is also set to 3600 s. The functions of
application and routing layer are relatively simple. The
application layer generates sample data packets with the
rate of “PacketRate,” and the routing layer forwards pack-
ets between the application layer and MAC layer. In the
MAC layer, one time slot is set to 5 ms. The 4-ms period

Table 1 Simulation parameters for DSS-TA

Parameter Value

Application layer

PacketSize 87 bytes

PacketRate 30 Pkts/s

Routing layer

PacketOverhead 10 bytes

MAC layer

SuperframeLength 70 ms

RAP1Length 10 ms

SlotLength 5 ms

SubslotLength 1 ms

SUI 10 ms

pTIFS 0.03 ms

Data’s AckType L-Ack & B-Ack

Control’s AckType I-Ack

PacketOverheader 7 bytes

Radio layer

dataRate 250 kbps

modulationType PSK

bandwidth 20 MHz

carrierFreq 2400.0 MHz

noiseFloor – 101 dBm

sensitivity – 95 dBm

CCAthreshold – 95 dBm

symbolsForRSSI 8 bits

Tx Power – 15 dBm

FrameOverheader 6 bytes

pTimeSleepToTx 0.05 ms

pTimeSleepToRx 0.05 ms

Others

Wireless channel TraceChannel

simulationTime 3600 s
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in the front is used for uploading data packets, and the 1-
ms period at the end is the extra subplot used for receiving
B-Ack or sample packets from the hub. As for the radio
layer, all the parameters are set based on a low power RF
transceiver module CC2420 [42]. Besides, taking the over-
heads of different layers into account, the size of one data
frame is 110 bytes (87 + 10 + 7 + 6); hence, the trans-
mission delay for one frame is (110 × 8)/250 = 3.52 ms
(the transmission rate is 250 Kbits/s). Taking the guard
time and pSIFS (short interframe separation time) into
account, the sensor nodes only transmit one data packet
in one time slot.

5.2 Simulation results
As mentioned before, there exists a trade-off between
accuracy and timeliness when choosing the sample size
in DSS-TA. By presenting the relationship between the
PLR and the sample size, we explore the best sam-
ple size for daily scenarios. Four channel datasets col-
lected from four test subjects, i.e., CD1, CD5, CD9, and
CD13, are selected as the examples to show the PLR
as a function of the sample size. As shown in Fig. 10,
the PLR reaches the minimum when the sample size is
about 400. Since the sampling frequency of our mea-
surements is 200 Hz, 400 data points corresponding to
the time duration of 2 s. The accuracy of autocorre-
lation estimation is weakened by a sample size smaller
than 400. On the other hand, when the sample size is
bigger than 400, the PLR increases slightly. The rea-
son is that, when the time duration is longer than 2 s
(corresponding to 400 data points), the non-stationary
property of on-body channels starts to offset the accuracy

despite having more data points, leading to an increase of
the PLR. Accordingly, the latest 400 channel gain values
are chosen as the sample data points to perform the PLR
prediction algorithm in both the proposed DSS-TA and
the fairness unconstrained method.
Next, the comparison between the DSS-TA method

and the fairness unconstrained method is presented. The
comparison will explain the reason for introducing the
“fairness constraint,” where all sensors shall have the same
length of SUI in each MAP. Taking four typical channel
datasets (CD1, CD5, CD9, and CD13) as the examples, the
upload data rate for each sensor and average data rate
are depicted in Fig. 11. As expected, the fairness uncon-
strained method exhibits a better performance in terms of
the average data rate. However, in most cases, the fairness
unconstrained method shows a significant discrepancy of
data rates between different sensor nodes. We consider
the significant discrepancy as “unfairness” between sen-
sors. Specifically, SNRW, SNRA, and SNLA are severely
starved in CD1, CD9, and CD13, respectively. In other
words, the discrepancy of data rates between different
sensor nodes could be significant and unpredictable in
the fairness unconstrained method. If the WBAN appli-
cation aims at the maximum average data rate and does
not require a minimum data rate for the sensor nodes, the
fairness unconstrained method may be the best choice.
However, the unpredictable and significant discrepancy is
not suitable for the majority WBAN applications. This is
the rationale for introducing the “fairness constraint” in
this paper.
The following simulations will focus on the compari-

son among four DSS methods, namely the static, random,

Fig. 10 Packet loss ratio vs. sample size in DSS-TA: superframe = 70 ms, Tx power = – 15 dBm
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(a) (b)

(c) (d)

Fig. 11 The comparison of upload data rate between DSS-TA and the fairness unconstrained method, superframe length 70 ms, PTx = – 15 dBm.
a Channel dataset 1 (CD1). b Channel dataset 5 (CD5). c Channel dataset 9 (CD9). d Channel dataset 13 (CD13)

flipping, perfect prediction, and newly proposed DSS-
TA methods under the “fairness constraint.” Since these
schemes comply with the “fairness constraint,” the data
rates of all sensors would be roughly the same. Hence,
the average upload packet loss ratio is considered to be
the main performance metric. We first explore the PLR
performance when adopting different levels of Tx power.
Clearly, boosting the Tx power can decrease the PLR, but
also increases the power consumption, which is strictly
limited in WBAN systems. On the other hand, a low
Tx power may cause the PLR to exceed the guideline of
PLR in WBAN system. As summarized in [43], a PLR
less than 10% is considered as a guideline in this study.
Accordingly, we set the range of Tx power from − 18 to
− 8 dBm. Figure 12 shows the PLR performance of dif-
ferent scheduling methods by importing the first channel
dataset CD1 into the simulation model. As expected, the
PLR decreases with the increase of Tx power. The pro-
posed DSS-TA is significantly better than the static, flip-
ping, and random methods. Specifically, compared to the
flipping method, DSS-TA achieves a 9.6–12.7% reduction
in terms of PLR.
Figure 13 shows the mean and standard deviation

of PLR reduction over the static method for the four

DSS methods, namely the random, flipping, perfect pre-
diction, and DSS-TA. Note that the PLR reduction
over the static method represents the percentage of
the improvement in terms of PLR, compared to the
static method, defined as (PLRstatic − PLRDSS)/PLRstatic.
Clearly, DSS-TA achieves a much better PLR reduction
(6.43–10.28%) in comparison with the conventional flip-
ping method (0–2.89%). Figure 13 also shows that the
PLR reduction of DSS-TA is more significant when the Tx
power is higher.
The superframe length (the duration of one beacon

period) is another key parameter.We now focus on explor-
ing the PLR as a function of the superframe length. To
avoid a significant decrease in throughput when extend-
ing the superframe length, we prolong the SUI for sensors
with the extension of the superframe length. Specifically,
we allocated one more time slot (5 ms) to each sen-
sor when the superframe length is augmented by 35 ms.
Figure 14 presents the simulation results by importing
the first channel dataset CD1, while Fig. 15 illustrates the
mean and standard deviation of the PLR reduction over
the static method.
From Figs. 14 and 15, we have the following observa-

tions. Firstly, as expected, the PLR performances of both
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Fig. 12 PLR vs. Tx power lever: superframe length 70 ms, CD1

static and randommethods do not change with the exten-
sion of the superframe length. Secondly, the performance
of the perfect prediction method continuously improves
with the extension of the superframe length. The reason
may be the “bad” channel has a longer time to recover
when a longer superframe length is adopted. Besides,
since the perfect prediction scheme represents the upper

bound performance of DSSmethods, this observation also
indicates that DSS methods have more potential when a
longer superframe is adopted. Thirdly, the performance
of DSS-TA slightly improves when the superframe length
increases from 35 to 105 ms. Specifically, for the channel
dataset CD1, DSS-TA achieves the best PLR performance
when the superframe length is 105 ms, which is about

Fig. 13 PLR reduction over the static method vs. Tx power level, superframe length 70 ms
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Fig. 14 PLR vs. superframe length, PTx = – 15 dBm, CD1

10.9% PLR reduction in comparison with the flipping
method. Then, the further prolongation of superframe
would undermine the effectiveness of DSS-TA. On the
one hand, when the superframe is too short, there is
not enough time to “revive” the bad channels, even the
TAM model could provide an accurate PLR prediction.
On the other hand, the channel autocorrelation decreases
with the extension of the superframe length. Thus, the

accuracy of PLR prediction results also decreases when a
longer superframe is adopted, which decreases the per-
formance of DSS-TA. At last, we found that when the
superframe length is larger than 490 ms, the flipping and
DSS-TA methods achieve the roughly same performance.
Compared to the flipping method, the TAM used in the
DSS-TA considers not only the latest channel gains but
also the channel gains in the past 2 s. Therefore, this

Fig. 15 PLR reduction over the static method vs. superframe length, PTx = – 15 dBm
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observation indicates that TAM may not provide fur-
ther accuracy in terms of channel condition prediction
when the target future time slot is far away. However,
a superframe length longer than 490 ms is normally
impractical for most WBAN applications, because even
for non-medical applications, the packet latency should
be less than 250 ms [43], which limits the superframe to
at most 250 ms. Accordingly, except for the applications
that are not constrained with respect to packet latency, the
DSS-TA provides a more accurate estimation of future
channel conditions and hence achieves a better transmis-
sion performance in terms of PLR.

6 Conclusions
In this paper, we focus on exploring dynamic slot schedul-
ing (DSS) method in daily activity scenarios for WBAN
system. We first collect the realistic on-body channel
gain data by using our customized wireless transceivers.
Data analyses based on 16 measurements demonstrate
that temporal autocorrelation of the on-body channels
is significant within a time lag of 500 ms, regardless of
the location of transceiver or test subject. Motivated by
the significant autocorrelation, we proposed a new slot
scheduling method, namely DSS-TA. In DSS-TA, the hub
uses a temporal autocorrelation model to predict PLR
for future time slots. Then, the slot scheduling problem
is transformed into a minimum-cost bipartite matching
problem, and the edges in the bipartite are weighted by
predicted average PLR. DSS-TA is designed to be compat-
ible with IEEE 802.15.6 standard. We add an extra subslot
at the tail of each time slot to keep track the variation
of channel gain, and at the beginning of every beacon
period, the hub broadcasts the slot scheduling decision to
the sensor nodes. To conduct a more real performance
evaluation, the real channel realizations are imported into
our simulation model to mimic the channel condition
variation in the daily life scenarios. Simulation results
show that the DSS approach exhibits a great potential
in decreasing the PLR for daily scenarios. Moreover, we
found superframe length is a key parameter which affects
not only the upper bound of DSS method but also the
performance of the flipping and DSS-TA methods. There
exist a superframe threshold for the flipping and DSS-
TA method, when the superframe length is shorter than
the threshold, DSS-TA method is more effective than the
flipping method; whereas, when the superframe length
is longer than the threshold, DSS-TA almost remains
the same performance with the flipping method. In the
daily activity scenarios, the threshold is around 490 ms.
Considering the packet latency requirement for majority
WBAN applications is below 250 ms, DSS-TA is a more
feasible choice. We also explore the effect of Tx power
level on the sensor side. The Tx power level is a key
parameter affecting both PLR and energy consumption,

DSS method may provide a new insight to balance the
trade-off between transmission reliability and energy con-
sumption. In this paper, all sensor nodes are assumed
to have the same Tx power level. The combination of
adaptive transmission power control and DSS methods
remain as our future works. Besides, with the introducing
of extra subslot in each time slot, the extra energy con-
sumption and control overhead is inevitably, even though
the cost is little. How to reduce the cost in the sensor
side while retaining the effectiveness of DSS is another
future work.
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