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Abstract

The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated
by three major stress sensors IRE-1a, PERK, and ATF6a. Studies described the UPR as a critical network in selection,
adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review,
we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying
genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic,
clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual
UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an

attractive novel target in acute leukemias.
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Introduction

Although the therapy of acute leukemias either originat-
ing from myeloid (acute myeloid leukemia (AML)) or
lymphoid lineage (acute lymphoblastic leukemia (ALL))
has improved in recent decades, the heterogeneous gen-
etic landscape of these diseases causes relapse in the ma-
jority of patients. The unfolded protein response (UPR)
is a conserved adaptive signaling pathway aiming to re-
store protein homeostasis mainly in the ER. Recent stud-
ies suggest an important function in acute leukemias. In
this review, we will summarize these results highlighting
the druggability of the UPR and give an outlook of po-
tential mechanisms.

The unfolded protein response

Cell survival is largely dependent on correct production,
control, and folding of proteins. To maintain cellular
protein homeostasis (proteostasis) and to be shielded
against stress stimuli accumulating within the endoplas-
mic reticulum (ER) causing “ER stress,” cells are mainly
dependent on the cytoprotective network of the UPR
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[1-3]. While under acute conditions, UPR activation
acts pro-survival; continuous and chronic stress causes a
shift of UPR signaling in acting pro-apoptotic [4, 5].
Thereby, understanding the complex role of the UPR is
also understanding not only the specific pathways and
molecules both in their time but also cell-specific con-
text [3, 6].

The correct function of the UPR is mediated through
three distinct signaling branches in a time- and stimuli-
specific manner, namely inositol-requiring enzyme 1
alpha (IRE-1a), PKR-like ER kinase (PERK), and activat-
ing transcription factor 6 alpha (ATF6a) [7]. Under un-
stressed conditions, the stress sensors of PERK, IRE-1a,
and ATF6a are maintained inactive through binding to
the ER chaperone heat shock 70 kDa protein 5/78 kDa
glucose-regulated protein (HSPA5/GRP78). Through
various stimuli, such as accumulation of misfolded pro-
teins within the ER, GRP78 binds with a higher affinity
to their exposed hydrophobic domains, dissociating from
UPR sensors, thereby priming IRE-la and PERK for
oligomerization and autotransphosphorylation [8] and
revealing an ER export motif in ATF6a [7].
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PERK-elF2a

Upon activation, PERK phosphorylates eukaryotic transla-
tion initiation factor 2 subunit alpha translation initiation
factor (elF2a) at serine 51 (S51) [9], thereby attenuating
global protein synthesis to reduce the number of proteins
entering ER, imparting a pro-survival effect on the cells.
This prevents assembly of the 80S ribosome translation ini-
tiation complex and allows selective expression of activating
transcription factor 4 (ATF4). ATF4 then enters the nucleus
activating ER stress-response genes involved in protein
folding, antioxidant responses, autophagy, amino acid me-
tabolism, and apoptosis promoting cell survival [10-13].
Moreover, PERK activation leads to nuclear factor (eryth-
roid-derived 2)-like 2 (NRF2) phosphorylation and subse-
quent control of the antioxidant pathway [14].

ATF6a

The second branch is represented by the basic leucine zip-
per transcription factor ATF6a. ATF6a activation occurs in
the Golgi complex following export from the ER upon ER
stress [15]. ATF6a is then cleaved on both sides of the
membrane by site-1 (S1P, also named membrane-bound
transcription factor peptidase, site 1 MBTPS1) and site-2
proteases (S2P, also named membrane-bound transcription
factor peptidase, site 2 MBTPS2) generating an active
transcription factor through regulated intramembrane pro-
teolysis [16]. Following its cleavage, the ATF6a cytosolic
domain translocates to the nucleus and activates specific
transcriptional programs that promote adaptation, includ-
ing upregulation of various components of ER-associated
degradation (ERAD) [17].

IRE-1a—XBP1/RIDD

The most evolutionary conserved arm of the UPR is me-
diated by IRE-la, which is activated by autophosphoryl-
ation and oligomerization upon accumulation of misfolded
proteins in the ER. IRE-1a contains an endoribonuclease
(RNase) and a kinase domain. So far, the most described
function of the RNase domain is to reduce ER load through
unconventional splicing of the X-box binding protein 1
(XBP1) mRNA [18]. This unconventional splicing leads to
removal of a 26-nucleotide intron. Recently, it was uncov-
ered that a multimeric protein complex tRNA splicing lig-
ase is responsible for ligation of IRE-la-cleaved XBP1
mRNA 5’ and 3" extremities of which the RNA 2°,3"-cyclic
phosphate and 5'-OH ligase (RTCB, also named HSPC117/
C220rf28) seems to be the most essential subunit [19-22]
and demonstrated a physiological role in plasma-cell differ-
entiation [19]. This causes a frameshift in the XBP1 reading
frame, thus generating a transcriptionally active protein
(XBP1s). XBP1s controls expression of genes involved
in protein folding, secretion, ERAD, and lipid synthe-
sis [23, 24]. IRE-1a RNase activity is also involved in
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RNA degradation (pathway known as regulated IRE-
la-dependent decay or RIDD) [25].

The complex cellular mechanisms which lead to
activation of the UPR and in-depth genetic functions in
solid cancer cells have already been extensively discussed
in a number of excellent review articles [26, 27, 1, 6, 2,
3, 28, 29]. Thereby, we will focus here on the novel role
of the UPR network in acute leukemias.

Role of the UPR in AML

AML originates from a myeloid-committed hematopoietic
stem cell (HSC) and is characterized by acquisition of gen-
etic and epigenetic changes [30-35]. These cause aberrant
activation of signaling pathways [36-38] contributing to
AML pathogenesis and progression [39]. Mechanistically,
for instance, transcription factor CCAAT /enhancer binding
protein alpha (C/EBPa) [40] is frequently deregulated by
genomic mutations causing maturation defects [41, 42].
Others include internal tandem duplications in the FMS-
like tyrosine kinase 3 gene (FLT3-ITD) which correlates
with poor outcome [43] or the balanced translocation
t(15;17) (namely PML-RAR«) representing the main
oncogenic driver of the acute promyelocytic leukemia
subset [44].

With a median age of 66 years at diagnosis and an
overall survival rate for older AML patients of less than
10 %, the treatment response has not changed dramatic-
ally within three decades [45-47]. In younger patients,
remission rates are more promising, while also in this
population, ultimately ~50 % of the patients relapse
within the first 5 years [38, 39, 45-50].

UPR and C/EBPa in AML

Studies showed that the IRE-1a/XBP1s branch of the
UPR was activated in 17.4 % of AML cases [51, 52]. Be-
sides the expression of XBP1s (16 out of 92 patients),
equally that of GRP78 and the ER protein quality control
lectin calreticulin were increased [52]. Characteristically,
these patients were poor risk (44 % vs 25 %), although
this was not significant, potentially because of the low
patient numbers. The important role of calreticulin was
then shown by the same research group, providing evi-
dence that it was able to bind and block the translation
of C/EBPa [53]. Here, calreticulin did bind to the C/
EBPa mRNA and form a stem-loop secondary structure
preventing translation. Similarly, the UPR-related mol-
ecule disulfide isomerase protein (PDI), a thiol-disulfide
oxidoreductase residing in the ER lumen, did equally
bind to this stem-loop region of the C/EBPa mRNA
[54]. Together, they formed a complex and regulated the
translation of C/EBPa. Still, this observation remains
surprising as both calreticulin and PDI are localized in
the lumen of the ER and are not predicted to be present
in the same compartment as C/EBPa mRNA.
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UPR and PML-RARa in AML

In the majority of PML-RARa® AML patients, retinoic
acid receptor alpha (RARa) is fused to the promyelocytic
leukemia (PML) open reading frame on chromosome 15
[55]. The resulting fusion molecule PML-RAR«a acts as
transcriptional repressor in a dominant-negative manner by
blocking retinoic acid-induced myeloid differentiation [56].
In PML-RARa" AML, only one study described a potential
therapeutic role for the UPR. Mechanistically, wild-type
RARa forms heterodimers with the soluble nuclear recep-
tor co-repressor 1 (N-CoR) family of co-repressors mediat-
ing transcriptional repression [57, 58] and releases the
co-repressors in response to cognate agonists such as all-
trans-retinoic acid (ATRA) leading to myeloid differenti-
ation [56]. Additionally, the N-CoR protein is critical for
transcriptional repression by the tumor suppressor Max
dimerization protein 1 (MAD) [59, 60].

Here, a mechanism is through increased binding to N-
CoR by PML-RARa [60]. This binding causes an abnormal
protein conformation and insolubility of the N-CoR pro-
tein. The misfolded N-CoR protein is then recruited to the
ER and targeted by the ERAD system. Thereby, the tumor-
suppressive function of MAD is missing. This suggests that
the UPR is a critical promoter of aberrant activation of
PML-RARa through ubiquitination of N-CoR [61] (Fig. 1).

UPR and hypoxia in AML

Hypoxic environments such as the bone marrow, where
the majority of leukemia cells reside [62], lead to activa-
tion of the hypoxia-inducible factor (HIF) pathway. HIF
is a heterodimer consisting of an unstable alpha subunit
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(such as HIF-1a) and a stable beta subunit (HIF-1f) bind-
ing DNA through hypoxia-response elements. Under nor-
moxic conditions, HIF members are hydroxylated and
thereby inactivated by prolyl hydroxylase domain family
members generating a binding site for the von Hippel-
Lindau (pVHL) tumor suppressor. This leads to ubiquitina-
tion of HIF-a when oxygen is available. Under hypoxic con-
ditions through the functional lack of pVHL, HIF-a
accumulates and dimerizes with HIF-p family members ac-
tivating several hundred genes [63].

PML-RARa has been shown to transcriptionally acti-
vate HIF-1a, while this was not through direct physical
interaction. Furthermore, downregulation of HIF-1a by
shRNA negatively affected self-renewal, migration, and
neo-angiogenesis of PML-RARa" AML cells. Addition-
ally, inhibition of HIF-1a together with ATRA was syn-
ergistic [64]. The correlation between expression of HIF
factors and the prognosis of AML patients is divergent.
For instance, HIF-la negatively impacted survival of
normal karyotype (NK) AML patients, where low HIF-
la expression was associated with improved event-free
survival (p =0.04, hazard ratio = 0.22). Multivariate ana-
lysis showed that HIF-1a expression was an independent
prognostic marker [65]. A very recent study showed an
opposite result, where HIF-2a expression was not associ-
ated with poor prognosis. HIF-2a expression was even
higher in good risk subgroups such as inv(16) (p=
0.0031) and t(15;17) (p = 0.04) [66, 67].

Hypoxic conditions are well-described stress inducers
leading to activation of the UPR [68]. The link between
hypoxia and UPR in AML was suggested by the description
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Fig. 1 A schematic overview on how PML-RARa causes ER stress in AML is provided. Here, under physiological conditions, RARa can dissociate
from coreceptors such as N-CoR. In PML-RARa™ AML, the binding is significantly increased. This leads to a conformational change of the N-CoR
protein. The misfolded N-CoR protein is degraded by ERAD through activation of ATFéa. Through the lack of soluble and functional N-CoR,
protein myeloid differentiation is prevented and activity of the tumor suppressor MAD is reduced
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that HIF-2«a protected AML cells against ER stress [69].
Genetic silencing of HIF-2a did not only affect survival of
long-term repopulating HSCs, but also caused an increase
of ER stress and production of reactive oxygen species
(ROS). The increased production of ROS and UPR led to
apoptosis in AML cells [69].

In PML-RARa" AML cell lines, such as HL60, the link
between oxidative stress and UPR was shown as activa-
tion of the NADPH oxidase by phorbol-12-myristate-13-
acetate (PMA) led to increased ROS production and
caused ER stress as shown by expression and phosphor-
ylation of different UPR genes including GRP78, elF2aq,
and XBP1s [70].

Role of the UPR in B-ALL

In contrast to AML, ALL originates from either the B-cell
(B-ALL) or T-cell lineage (T-ALL). B-ALL is the most com-
mon type of childhood leukemia and is frequently found in
adults. Here, other B-ALL specific genetic alterations such
as fusion genes, e.g., translocation between breakpoint clus-
ter region and tyrosine kinase abelson murine leukemia
viral oncogene homolog 1 (BCR-ABL1) [71], activating
point mutations such as NRAS'?P, rearrangements in the
mixed lineage leukemia gene (MLLr) [72], and aberrations
in fundamental genes of B-cell development, e.g., paired
box 5 (PAX5) and ikaros family zinc finger protein 1
(IKZF1) [73, 74], define B-ALL progression as well as sub-
sequent relapse [75, 76, 74, 77].

Mutations in the RAS/RAF pathway have been identified
in ~20-30 % of B-ALL patients correlating with poor prog-
nosis [78]. Interestingly, the recent identification that RAS
mutations are significantly increased in relapsed B-ALL pa-
tients further underlines their critical clinical importance
[79]. Therapeutically, activating RAS mutations such as
NRASS'?P s very challenging as they confer resistance to-
wards chemotherapy [80]. More importantly, a pivotal dis-
advantage of targeted tyrosine kinase inhibitor (TKI)
therapy, such as imatinib is paradoxical activation (off-tar-
get) of the RAS pathway [81].

UPR and BCR-ABL1 in B-ALL

The Philadelphia chromosome (Ph) is the result of a re-
ciprocal translocation of BCR on chromosome 22 (re-
gion ql1) and ABL1 on chromosome 9 (region q34)
resulting in the constitutive active tyrosine kinase BCR-
ABL1 [82]. The BCR-ABL1 fusion gene defines a high-
risk subset (Ph" ALL) correlating with very poor survival
rates [83].

Initial studies showed that both XBP1ls and GRP78
were higher expressed in Ph* leukemia cell lines, while
detailed functional studies were missing [84]. Addition-
ally, withdrawal of imatinib in Ph* leukemia caused hy
peractivation of the BCR-ABLI kinase leading to metabolic
reprogramming accommodated with an increase of
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ATP production through glycolysis. This led to in-
creased ER swelling and stress and subsequent activa-
tion of XBP1s and CCAAT/enhancer-binding protein
homologous protein (CHOP) [85], a known inducer of
UPR-related apoptosis [86].

We showed that for instance, GRP78, IRE-la, and
XBP1 were upregulated in the high-risk Ph* and MLLr"
B-ALL subsets [87]. Additionally, their promoters were
also hypomethylated in B-ALL cases. Furthermore, gen-
etic deletion of Grp78 or Xbpl caused apoptosis in
mouse models of BCR-ABL1 und NRAS-mutated B-
ALL. Mechanistically, expression of XBP1s was linked to
BCR-ABL1 kinase activity. Both genetic and pharmaco-
logical inhibition of BCR-ABL1 downstream signaling
such as signal transducer and activator of transcription 5
(STATS5), mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK), or protein kinase
B alpha (AKT) led to reduction of XBPls expression.
BTB and CNC homology 1, basic leucine zipper tran-
scription factor 2 (BACH2), a tumor suppressor in B-
ALL [88], was also able to negatively regulate expression
of XBP1s [87].

In the Ph" ALL subsets, TKIs such as imatinib or dasati-
nib directly targeting the BCR-ABL fusion oncogene are es-
sential for a successful therapy [89, 73, 83, 90]. In Ph* ALL
primary cases, imatinib treatment downregulated XBPls
expression, while not entirely abolishing it [87]. This sug-
gests that a potential dual strategy targeting both the IRE-
1a/XBP1 axis with a TKI could be beneficial.

Clinically, high mRNA expression of XBP1 correlated
with poor prognosis [87], both in univariate and multi-
variate analysis in B-ALL, even in the Ph™ ALL subset.

UPR and stem cells
In the physiological stem cell hierarchy, the UPR has
been shown to regulate the self-renewal capacities of
HSCs. Through single cell analysis, it was possible to
study exact expression levels in individual progenitor
populations [91]. Gene expression analysis revealed that
in HSCs, PERK was predominately activated compared
to downstream progenitor populations (Fig. 2) [92].

Further experiments showed that HSCs were sensitive
to induced ER stress, for instance through ER stressing
agents such as tunicamycin. HSCs were equally more
sensitive towards ER-induced apoptosis, when com-
pared to progenitor populations, which was mainly
mediated by activation of the PERK-elF2a-ATF4-
CHOP pathway. A pharmacological PERK inhibitor
(GSK2606414) caused apoptosis in the HSC popula-
tion, while progenitor populations were resistant, even
at high concentrations [92].

While these studies were conducted in physiological
HSC populations, they raise the question, if similarly in-
dividual UPR genes play an important role in leukemia
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Fig. 2 The expression profile of different UPR genes is shown by microarray analysis in HSC and different progenitor populations (multipotent
progenitors (MPP), common myeloid progenitors (CMP), multipotent lymphoid progenitors (MLP), megakaryocytic-erythroid progenitors (MEP)
and granulocyte-monocyte progenitors (GMP). The hierarchical tree is based on van Galen et al.
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stem/initiating cells (LSCs/LICs). LICs share common
characteristics of normal HSCs such as self-renewal,
pluripotency, and quiescence [93] and are considered a
fundamental source of relapse [94—96]. Considering the
probability of trans-differentiation of cancerous stem
cells into non-stem cell state and vice versa, they are
usually not affected by conventional and even targeted
therapies [94]. Nevertheless, thus far, an extensive study
addressing whether leukemia stem cells are dependent
on either global activation of the UPR or individual
branches of the UPR is still missing. This could have dir-
ect therapeutic implications, since small-molecule inhib-
itors which target both PERK and IRE-1la signaling are
currently available [87, 97-102].

The UPR as a druggable target

Concept of proteotoxicity as a therapeutic approach

The concept of proteotoxicity was mainly studied in
secretory cells such as plasma cells, which as antibody-
producing cells are strongly dependent on a well-
developed secretory system and are pruned to potential
protein overload. Here, proteasomal degradation repre-
sents the main pathway for ERAD [103]. Thereby, most
studies focused on a better understanding, how plasma-
cell derived malignancies, namely multiple myeloma,
could be targeted through the proteasome. This led to
development of the proteasome inhibitor bortezomib
which blocks the 20S proteasome with great clinical suc-
cess [104]. Despite great initial clinical success, extensive
use caused multiple mechanisms of resistance [105] in-
cluding point mutations, such as a point mutation
(G322A) in the B-subunit of the binding pocket of borte-
zomib [106]. Another mechanism of resistance is activa-
tion of alternative degradation pathways including the
aggresome [107], upregulation of heat shock proteins, or

dedifferentiation of multiple myeloma cells to become
less dependent on an effective ER stress control [108].
These developments have to be considered, despite the
fact that disrupting proteostasis is a potential novel ap-
proach in acute leukemias (Fig. 3).

Targeting PERK

As the UPR has already been suggested as a potential
oncogenic network, the therapeutic efforts to date have
focused mainly on the PERK/elF2a and IRE-1a/XBP1
signaling axes. In the case of PERK, selective ATP-
competitive PERK kinase inhibitors such as GSK2606414
or GSK2656157 [97, 98] were anti-proliferative in mul-
tiple cancer models in vivo including multiple myeloma.
So far, pharmacological inhibition of PERK kinase activ-
ity has not yet been shown to be effective in leukemia
cells. Still, a potential hint in this direction is that loss of
PERK kinase activity using dominant-negative mutants
already showed to negatively affect leukemia survival, al-
beit in chronic myeloid leukemia, but not acute
leukemia cells [109].

Targeting GRP78
Targeting GRP78 has been achieved by epigallocatechin
gallate (EGCQ), a green tea extract [110] which binds to
the ATP-binding site of GRP78. This binding modulates
its ATPase activity leading to conformational conversion
into the inactive oligometric form. In B-ALL cells, treat-
ment with EGCG caused apoptosis [111]. Additionally,
targeting GRP78 also sensitized B-ALL cells towards vin-
cristine, a chemotherapeutic drug commonly used in the
therapy of B-ALL patients.

In a second approach, Pep42, a cyclic 13-mer peptide
[112], was used to target both cell surface and intracellu-
lar GRP78 after receptor-mediated endocytosis and was
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Fig. 3 A schematic overview of the UPR network and the currently available inhibitors targeting the individual signaling molecules and
subsequent pathways

equally able to induce apoptosis in B-ALL cell lines
[111]. So far, two clinical studies are studying GRP78 as a
therapeutic target. EGCG is currently being evaluated in
Alzheimer’s disease (clinical trial ID: NCT00951834), while
a novel monoclonal IgM antibody (PAT-SM6) against
GRP78 [113, 114] is being evaluated in multiple myeloma
with moderate clinical response (clinical trial ID:
NCTO01727778) [115]. Single treatment with PAT-SM6
led to a stable disease in four out of 12 patients (Table 1).

Targeting IRE-1a/XBP1s signaling

Most currently available small-molecule inhibitors block
the RNase activity either through direct inhibition of the
RNase [101, 102] or through modulation of the kinase do-
main [99]. The currently available preclinical small-
molecule inhibitors (MKC-3946, STF-083010, A-I06 and
4p8c) aim to prevent XBP1 mRNA splicing and production
of the transcriptionally active XBP1s protein [87, 97-102,
116]. In the concept of using proteotoxicity as a therapeutic
approach, most initial studies focused on multiple myeloma
with only partially convincing results. For instance, treat-
ment with MKC-3946 led to apoptosis in multiple myeloma

cells [101]; nevertheless, this is in contrast to other studies
which suggest that multiple myeloma cells can survive with-
out functional XBP1s [108].

In B-ALL, we tested the efficacy of IRE-1a inhibition
and were able to show that treatment with different preclin-
ical IRE-1a inhibitors caused apoptosis in primary B-ALL
cases in a dose-dependent manner [87]. XBP1s splicing was
significantly reduced in primary B-ALL cases, and this was
accommodated with ER stress as shown by increased accu-
mulation of a specific ER-tracker [117]. Pharmacological in-
hibition of IRE-1a was able to cause not only apoptosis, but
also cell cycle arrest in B-ALL xenografts and prolonged
survival of B-ALL-bearing mice in vivo [87].

Nevertheless, small-molecule inhibitors for IRE-la
seem to vary substantially in their efficacy and specificity
[99, 116, 100, 101]. The identification of a new class of
hydroxy-aryl-aldehydes of IRE-1a inhibitors [118] might
help to improve our understanding of small-molecule in-
hibitor design [119], allowing improved inhibition of
IRE-1a RNase activity.

Additionally, the identification of the RIDD mechan
ism, through which IRE-1a can splice mRNAs containing a

Table 1 Overview of clinical trials investigating the therapeutic usefulness of the UPR

Stage of clinical development References

Compound Molecular target Disease
Epigallocatechin gallate (EGCG) GRP78 Alzheimer's disease
PAT-SM6 GRP78 Multiple myeloma

NCT00951834
NCT01727778, Rasche et al. [115]

Clinical, phase 2 and 3

Clinical, phase 1
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Table 2 Overview of preclinical studies studying the therapeutic usefulness of the UPR

Compound Molecular target Disease Stage of clinical development References
STF-083010 IRE-1 Multiple myeloma Preclinical Papandreou et al. [99]
ALL Kharabi Masouleh et al. [87]
CLL Kriss et al. [116]
A106 IRE-1 CLL Preclinical Kriss et al. [116]
ALL Kharabi Masouleh et al. [87]
MKC-3946 IRE-1 Multiple myeloma Preclinical Volkmann et al. [100]
Mimura et al. [101]
4u8c IRE-1 Multiple myeloma Preclinical Cross et al. [102]
GSK2606414 PERK Multiple myeloma Preclinical Axten et al. [98]
GSK2656157 Pancreatic cancer
Epigallocatechin gallate (EGCG) GRP78 ALL Preclinical Uckun et al. [111]
PAT-SM6 GRP78 Melanoma Preclinical Rosenez et al. [113]
Multiple myeloma Rasche et al. [114]
Pep42 GRP78 ALL Preclinical Uckun et al. [111]

specific consensus sequence which is recognized by the
RNase domain [120], suggests that genetic and pharmaco-
logical results may vary, depending for instance on the type
of cancer, or lead to activation of other secondary pathways.
For instance, pharmacological inhibition of the RNase
domain of IRE-1a predominantly blocked splicing of XBP1,
while RIDD remained intact [121]. This suggests that
splicing of RIDD targets and XBP1 differs substantially, and
both should be considered as distinct pharmacological
targets.

A final aspect is the acquisition of secondary muta-
tions or resistance, a major therapeutic challenge for in-
stance in TKI-treatment. Until now, no mutations for
XBP1 have been identified yet in B-ALL patients, sug-
gesting that this pathway is active. Still, the identification
of two loss-of-function mutations of XBP1 in multiple
myeloma [108] suggests that the use of IRE-1a inhibitors
could lead to acquisition of mutations in acute leuke-
mias [122, 108] (Table 2).

Concluding remarks

Taken together, the role of the UPR in acute leukemia
subsets has only recently begun to be elucidated, while
further studies are required to answer several questions
and comprehend the global impact of UPR signals in
such disease. Several studies indicate that different UPR
genes play an important role in both AML and B-ALL.
Still, both diseases are quite heterogeneous, and it has to
be elucidated how different oncogenes cause activatio of
UPR. For instance, BCR-ABL1 kinase signaling signifi-
cantly differs to that of MLLr. Still, in both B-ALL sub-
sets, XBP1ls expression was highly upregulated [87].
Additionally, the impact of the UPR on LSCs is

unknown. The study by van Galen et al. suggests that
different progenitor populations show distinct expres-
sion and dependencies on the UPR [92]. Translating
these findings to LSCs suggests that LSCs might not be
dependent equally on all UPR pathway, rather only on
individual pathways, while such a study has not yet been
conducted.

Finally, the finding that expression of XBP1s is signifi-
cantly reduced but not abolished upon treatment with
different pharmacological inhibitors (MEK, AKT, or
BCR-ABL) suggests that potential combinational therap-
ies with IRE-1a inhibitors might be useful [87].
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