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Sphingolipids in cardiovascular diseases
and metabolic disorders
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Abstract

Many investigations suggest the pivotal role of sphingolipids in the pathogenesis of lifestyle diseases such as
myocardial infarction, hypertension, stroke, diabetes mellitus type 2 and obesity. Some studies suggest that
sphingolipids are important factors in cellular signal transduction. They serve as biologically active components of
cell membrane and are involved in many processes such as proliferation, maturation and apoptosis. Recently,
ceramide and sphingosine-1-phosphate have become the target of many investigations. Ceramide is generated in
three metabolic pathways and many factors induce its production as a cellular stress response. Ceramide has
proapoptotic properties and acts as a precursor for many other sphingolipids. Sphingosine-1-phosphate is a
ceramide derivative, acting antiapoptotically and mitogenically and it is importantly involved in cardioprotection.
Further research on the involvement of sphingolipids in cellular pathophysiology may improve the prevention and
therapy of lifestyle diseases.
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Introduction
Many experimental and clinical studies have described
the role of sphingolipids in the pathogenesis of lifestyle
diseases such as myocardial infarction, hypertension,
stroke and diabetes mellitus. They are involved in the
regulation of numerous cellular processes, including
apoptosis [1]. The aim of this article is to summarize
and present the role of selected sphingolipids in cardio-
vascular diseases and metabolic disorders.

Review
General characteristics of sphingolipids
Sphingolipids – derivatives of amino alcohol sphingosine –
are biologically active components of cell membranes.
Sphingolipids play an important role in intracellular signal
transduction and regulate cellular processes such as prolif-
eration, maturation and apoptosis, and are also involved
in cellular stress responses. One of the most important
sphingolipids is ceramide (CER), which serves as a pre-
cursor for other biologically active sphingolipids, including
sphingosine (SPH) and sphingosine-1-phosphate (S1P)
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[2, 3]. Many factors such as glucocorticosteroids, growth
factors, interleukins, interferons, ionizing radiation and
several chemotherapeutics induce cellular production of
ceramide. There are three metabolic pathways involved
in ceramide generation: 1) de novo synthesis in the cyto-
solic layer of endoplasmic reticulum via serine palmi-
toyltransferase (SPT); 2) hydrolysis of sphingomyelin via
sphingomyelinase; and 3) production of ceramide from
sphingosine via sphinganine N-acyltransferase (ceramide
synthase) – salvage pathway (Fig. 1) [4–6]. De novo syn-
thesis is the major source of ceramide in cells, although
the hydrolysis of sphingomyelin via acid sphingomyelinase
(aSMase) generates a large cellular amount of ceramide.
There are three types of sphingomyelinases: magnesium-
dependent acid sphingomyelinase, magnesium-independent
neutral sphingomyelinase and alkaline sphingomyelinase.
They differ in the optimum value of pH, molecular mass
and reliance on divalent ions [4, 5]. Ceramidase catalyzes
the hydrolysis of ceramide and leads to the production
of sphingosine and a fatty acid. Sphingosine kinases
(sphingosine kinase type 1; SK1 and sphingosine kinase
type 2; SK2) may phosphorylate sphingosine to gener-
ate sphingosine-1-phosphate (S1P) [7].
As mentioned above, ceramide is the precursor of S1P,

so any alteration of CER levels may increase the level of
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Fig. 1 Pathways of ceramide generation
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S1P. The main molecular mechanism of the functioning
of sphingolipids is the activation of enzyme proteins,
such as Ceramide-Activated Protein Kinase, Ceramide-
Activated Protein Phosphatase, Mitogen Activated Pro-
tein Kinase, c-Jun-N-Terminal Protein Kinase [8]. CER
acts as a second messenger, regulating many different pro-
cesses such as cell growth, differentiation, senescence, ne-
crosis, proliferation and apoptosis. Ceramide is also
involved in regulation of protein kinase C, raf-1, kinase-
suppressor of Ras, cellular protease cathepsin D and in-
hibition of phospholipase D [9, 10]. However, S1P plays
a role in proliferation, cell growth, cell survival, cell mi-
gration, inflammation, angiogenesis, vasculogenesis and
resistance to apoptotic cell death. The effect of S1P is
mediated by the S1P receptors connected with different
types of G-proteins, which results in activation of intra-
cellular signaling pathways [9].

Pathophysiological mechanisms of sphingolipids action
Cellular apoptosis and stress responses are largely asso-
ciated with ceramide. Many factors, including infection
with, for example, Pseudomonas aeruginosa, Staphylo-
coccus aureus, Neisseria gonorrhoeae, Rhinovirus, and
also UV-light and some chemotherapeutics activate
aSMase (Fig. 2). Some of these factors stimulate a trans-
location of aSMase to the outer leaflet of the cell mem-
brane, leading to ceramide release and the formation of
ceramide-enriched membrane domains. These domains
serve to cluster membrane receptors to amplify signal-
ing, which is required in the induction of apoptosis [11].
Many studies suggest that the relation between sphingo-
lipids and apoptosis is important in the pathogenesis of
many diseases, such as both diabetes mellitus type 1 and
2, stroke and myocardial infarction [6, 12, 13].
The aggregated lipoproteins isolated from human ath-

erosclerotic lesions are enriched with ceramide. More-
over, an animal model of atherosclerosis suggested that
treatment with myriocin, which is an inhibitor of SPT,
may be associated with a protective lipoprotein profile.
Although experimental observations suggest associations
between sphingolipids, lipoproteins and atherosclerosis,
the exact mechanisms still need to be determined [14].
The important role of sphingolipids in the pathogen-

esis of lifestyle diseases may be a result of their influence
on the immune system. Experimental studies show the
involvement of sphingolipids in trafficking and regula-
tion of processes of immune cells such as T cell apop-
tosis, modification of Th1 vs Th2 T-cell balance,
phagocytosis, inflammation and allergic excitability
[15–20]. Some papers also suggest that inflammation
may alter sphingolipid metabolism and S1P receptor
activity [15, 21].

Sphingolipids and other factors involved in cardiovascular
diseases
The renin-angiotensin-aldosterone system plays an im-
portant role in vasoconstriction and salt and water
retention. It can also cause, in some pathophysiological
conditions, vascular hypertrophy and lead to hyperten-
sion. Ceramide seems to be responsible for some of
these pathophysiological effects. In vitro studies per-
formed on rat pheochromocytoma PC12W cells have
shown that activation of angiotensin II type 2 receptors
results in elevation of the intracellular CER level and



Fig. 2 Pathophysiological mechanisms of sphingolipids action
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apoptosis. Ceramide may also play a role in angiotensin
II type 2 receptor-induced growth inhibition and apop-
tosis in cardiac and vascular tissues [22].
The increase in risk of cardiovascular and metabolic

diseases has been described in some genetic disorders
related to sphingolipid metabolism alterations. The ab-
normal glycosphingolipids accumulation in many types
of tissues, which was observed in patients with Fabry
disease probably was one of the causes of cardiovascular
complications such as: valvular disease, coronary artery
disease leading to myocardial infarction and also sudden
cardiac death [23]. In Gaucher disease, in which lyso-
somal accumulation of glucocerebroside was presented,
severe congestive cardiomyopathy and mitral and aortic
valves disease were observed [24]. In lipid storage disor-
ders such as Niemann-Pick and Sandhoff diseases and
GM1 gangliosidosis, metabolic cardiomyopathy was also
diagnosed [24].
The role of sphingolipids in the cardiovascular system
Sphingolipids are components of the cardiomyocytes’
cell membrane. Some biologically active substances, for
example, tumor necrosis factor-α (TNF-α) may induce
synthesis of ceramide from sphingomyelin via sphingo-
myelinase. Ceramide, in turn, may act as a second mes-
senger, promoting the apoptosis of cardiomyocytes
[25–28]. On the other hand, sphingosine-1-phosphate
is cardioprotective [27, 29, 30].
Sphingolipids in ischemic heart disease
Experimental studies
Cordis et al. [31] observed a significant 50 % decrease in
levels of sphingomyelin associated with significantly in-
creased concentrations of ceramide during in vitro re-
perfusion of cardiomyocytes. Investigations performed in
the animal model of myocardial ischemia/reperfusion
demonstrated decreased activity of both acidic and neu-
tral sphingomyelinase and significantly increased levels
of ceramide [32].

Human studies
S1P serum level is a significant predictor of coronary ar-
tery disease (CAD) in patients undergoing coronary
angiography [33]. Egom et al. [34] reported significantly
increased plasma levels of S1P and SPH in patients 1
and 5 min after percutaneous coronary intervention,
most probably resulting from transient ischemia.

Sphingolipids – myocardial infarction
Experimental studies
In vitro experiments performed on isolated murine hearts
treated with ischemic preconditioning (IPC) revealed sig-
nificantly increased activity of SK, an elevated level of S1P
and a reduction of the infarction area. Dimethylsphingo-
sine, an inhibitor of SK, significantly decreased the cardio-
protective effect of IPC [35].
Experimental myocardial infarction induced in male

Wistar rats showed significant alterations of sphingolipid
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levels in plasma, erythrocytes and platelets after ligation
of the left coronary artery. The plasma levels of S1P
significantly decreased, but the plasma levels of CER sig-
nificantly increased at 1 and 6 h after myocardial infarc-
tion, but both sphingolipids returned to the control
values after 24 h from the cardiac incident [27]. Knapp
et al. [12] observed, in the uninfarcted area of the left
ventricle, a significant triple reduction in the S1P level at
1 and 6 h after incident and a further reduction after
24 h. The ceramide level was significantly decreased 6 h
after myocardial infarction. The authors suggested that
alteration of the S1P/CER ratio may be responsible for
apoptosis of the cardiomyocytes from the uninfarcted
area of the myocardium.

Human studies
Analysis of patients with CAD has shown that plasma
ceramide levels and SMase activity were elevated in the
stable angina pectoris (SAP), unstable angina pectoris
(UAP) and acute myocardial infarction (AMI) groups. In
the group of patients with UAP, there was a significant
increase in SMase activity and ceramide concentration
in comparison to the control and SAP groups, although
the increased activity of SMase was transient. In the
AMI group, the significantly elevated level of ceramide
was noted up to 7 days following the cardiac incident in
comparison to the control and SAP groups, whereas en-
hancement in activity of SMase occured only 3 days after
infarction. The authors of this study suggest that higher
ceramide levels and SMase activity in patients with
coronary heart disease may be an important factor in
the development of atherosclerosis and changes in the
plasma concentration of sphingolipids may indicate their
involvement in the molecular mechanism of plaque
destabilization [36].
The plasma concentration of CER in patients with

acute myocardial infarction after admission to the inten-
sive heart care unit was not significantly changed when
compared to the control group, whereas the concentra-
tion of S1P was decreased by a significant 50 % [37]. An-
other investigation revealed that the plasma level of S1P
was significantly decreased in patients admitted to hos-
pital with STEMI (ST-elevation myocardial infarction)
and ceramide level was reduced 5 days post-infarct com-
pared to the control group, although the reduction in
ceramide level reached statistical significance 30 days
following infarction. Two years after the infarction the
plasma S1P level almost completely recovered, whereas
the decreased ceramide level was maintained. Erythro-
cytes from STEMI patients showed accumulation of S1P
and ceramide during the thirty days following infarction,
although only the elevated level of S1P reached statistical
significance during the whole time of observation. After
two years of observation the concentration of CER and
S1P decreased to the control levels, although these find-
ings were not statistically significant [38].
Sphingolipids in hypertension
Experimental studies
In vitro experiments performed on carotid arteries iso-
lated from spontaneously hypertensive rats (SHR) dem-
onstrated significant contraction of vessels after the
application of sphingomyelinase or SK inhibitors. This
effect was not observed in arteries isolated from normo-
tensive WKY rats [39]. Presumably, ceramide, which
causes elevated thromboxane A2 release from the endo-
thelium, contributed to the contraction of the isolated
arteries.
S1P triggers both vasoconstriction and vasodilation,

depending on the type of activated receptor. S1P triggers
endothelial nitric oxide synthase-dependent vasodilation
in epinephrine preconstricted mesenteric arterioles from
either rats or mice. Many studies have proven that the
activation of nitric oxide synthase may be mediated by
the S1P1 receptor. S1P induces vasoconstriction in basi-
lar arteries from wild type and S1P2 knockout mice,
which presumably results from the activation of S1P3
subtype. In addition, the vasoconstricting activity of S1P
was lost in S1P3 knockout animals [40].
Fryer et al. [41] observed dose-dependent and sus-

tained elevation in mean arterial blood pressure in Spra-
gue Dawley rats resulting from oral administration of
unselective S1P receptor agonist (FTY720). Four weeks
of treatment with losartan or hydralazine significantly
decreased blood pressure and vascular CER level, with
no concomitant reduction of plasma ceramide concentra-
tion, suggesting that only vascular CER level is sensitive to
antihypertensive therapy [42]. The exact mechanism, in
which falling blood pressure leads to the reduction of vas-
cular ceramide levels is currently unknown. Although
stimulation of angiotensin II receptor type 2 increases cel-
lular ceramide levels, it does not explain the interaction
between losartan, an antagonist of angiotensin II type 1
receptor, and vascular levels of ceramide [22]. A mechan-
ism, which may explain the observed effect of both hydral-
azine and losartan on the vascular ceramide level, has
been proposed by Czarny et al. The authors suggested that
neutral SMase in plasma membrane acts as a mechano-
sensor, whose activity may be enhanced by high shear
stress, which results in the generation of ceramide [43].
The link between hypertension and ceramides suggests a
novel pathophysiological mechanism leading to endothe-
lial dysfunction and abnormal blood pressure regulation,
which needs to be determined. This mechanism can also
suggest the target for new drugs modulating the sphingo-
lipid system and metabolism to improve the pharmaco-
logical treatment of hypertension [42].
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Human studies
Spijkers et al. reported that the ceramide level is increased
in patients with hypertension and that the concentration
of ceramide correlates with the severity of disease [39].

Sphingolipids in stroke
Experimental studies
In vitro experiments on neuroblastoma cells indicated
that an elevated ceramide level in neurons during
ischemia/reperfusion was responsible for apoptosis,
however, a low level was a factor for the survival of the
neurons [5, 13, 44].
Sphingolipids are presumably involved in the patho-

genesis of stroke. Nakane et al. [45] observed a signifi-
cant increase in ceramide level and also a significant
decrease in sphingomyelin level in the hippocampus of
the gerbil after 30 min and 24 h following 5 min of is-
chemia. Middle cerebral artery occlusion (MCAO) in-
duced an elevation of ceramide concentration in the rat
cerebral cortex [46, 47]. In SHR rats, transient ischemia
performed prior to the MCAO (preconditioning) signifi-
cantly reduced ceramide levels both in ischemic and
perifocal areas [47]. In the mouse model of ischemic
stroke, attenuation of SMase activity significantly re-
duced brain tissue injury [48, 49].
Sphingosine-1-phosphate, contrary to ceramide, is neu-

roprotective during ischemia [50, 51]. In mice with middle
cerebral artery thrombosis, the level of S1P significantly
decreased 3 days after ischemic stroke and then progres-
sively increased, reaching maximum concentration 14
days after occlusion [51]. Peritoneal application of S1P
agonist (FTY720) activated S1P1 receptors in Sprague
Dawley rats with MCAO and significantly reduced the
area of damaged brain tissue [52]. Presumably S1P regu-
lates prosurvival mechanisms through suppression of
proapoptotic factors, including caspase 3, and activation
of protein kinase B (Akt) and extracellular regulated-
signal kinases (ERKs), both involved in cell survival [52].

Human studies
Kubota et al. reported that the neural ceramide level was
increased in patients with an acute case of internal carotid
artery occlusion. Presumably, this elevation resulted from
excessive degradation of ganglioside-sphingolipids, which
are present in high concentration in the central nervous
system. In cells, gangliosides are localized in the outer
leaflets of plasma membranes and cell surface microdo-
mains, participating in cell-cell recognition, adhesion and
signal transduction [53, 54].

Sphingolipids in diabetes mellitus
Experimental studies
Many in vitro investigations confirm the contribution of
sphingolipids to the pathogenesis of diabetes mellitus
type 1 and 2. Incubation of β cells isolated from wild
type mice in ceramide induced apoptosis [55]. Isolated
murine β cells lacking caspase 8 – a crucial substance in
death receptor-mediated apoptosis, incubated in cer-
amide, showed increased viability in comparison to the
control β cells, suggesting that ceramide is importantly
involved in β cell apoptosis [56].
Maestre et al. [57] observed that in the presence of fatty

acids (for example, palmitic acid – a substrate for de novo
synthesis of ceramide) INS-1 cells (a line of pancreatic β
cells) demonstrated increased permeability of the mito-
chondrial membrane to cytochrome c and Apoptosis Indu-
cing Factor. Moreover, the concentration of proapoptotic
protein Bax was also elevated. Birbes et al. [58] studied the
involvement of ceramide in the increase of mitochondrial
membrane permeability to cytochrome c using proapopto-
tic protein Bax in breast cancer cells MCF7. Ceramide pre-
sumably induces apoptosis through disruption of electron
transport in complex I and III of the mitochondrial re-
spiratory chain and activation of the mitochondrial
NADPH oxidase, which contributes to increased synthesis
of the Reactive Oxygen Species [6, 59, 60].
In vitro and in vivo experiments suggest the role of

ceramide in insulin resistance [61–64]. Ceramide signifi-
cantly decreased the expression of insulin mRNA in pan-
creatic β cells isolated from Wistar rats [65]. Interestingly,
in mice, the genetic deficiency of ceramide kinase (CERK),
phosphorylating CER to ceramide-1-phosphate signifi-
cantly improved the insulin sensitivity [61]. Intravenous
infusion of LDL (Low Density Lipoprotein) – ceramide
caused insulin resistance in lean mice with concomitant
reduction in skeletal muscles’ glucose uptake [62].
Oral administration of S1P receptor agonist (FTY720)

significantly increased the mass of pancreatic β cells, sig-
nificantly increased the concentration of insulin in blood
and the normalized blood glucose level, with no effect
on the cellular insulin sensitivity in db/db mice with
genetically determined diabetes mellitus type 2 [66].
Sphingosine kinase knockout mice fed on a high-fat diet
presented diabetes, simultaneous significant reduction of
pancreatic β cell mass and plasma insulin level, whereas
wild type mice developed glucose intolerance, signifi-
cantly increased mass of pancreatic β cells and hyperin-
sulinemia [67].
Sphingolipids are also involved in the development of

diabetic nephropathy. Studies performed on mesangial
cells isolated from the kidney of diabetic rats have
proven that S1P induced mesangial cell proliferation
both under normoglycemic and hyperglycemic condi-
tions, and enhanced the expression of fibronectin [68].

Human studies
The significant elevation of plasma ceramide levels was
observed in patients with diabetes mellitus [62, 63]. The
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Roux-en-Y bypass gastric surgery significantly decreased
the plasma ceramide level in severely obese patients.
After 6 months post operation, the reduction in total
ceramide level was also significantly correlated with ex-
cess weight loss, improvement in insulin sensitivity and
decrease in TNF α concentration [64]. The authors sug-
gest that a reduced inflammatory environment resulting
from the loss of adipose tissue causing lipotoxicity and
cellular dysfunction may explain the observed improve-
ment in insulin sensitivity.
Incubation of human pancreatic β cells with S1P re-

ceptor agonist did not have a negative influence on the
insulin secretion triggered by glucose administration and
did not induce apoptosis [69].
A decreased plasma level of very long chain ceramides

in patients with diabetes type 1 was correlated with pro-
gression to macroalbuminuria in comparison to diabetic
patients with normoalbuminuria [70]. The authors of the
study suggest that ceramides play a regulatory role in
pathways, which may lead to a loss of renal function.
Ceramides are an integral part of cell membrane struc-
ture and they act as signaling molecules. The content of
ceramides in kidney cell membranes may be changed by
interaction with plasma lipoproteins containing altered
ceramide compositions. Changes in cell-lipoprotein in-
teractions may trigger the cell’s signaling pathways al-
tering intracellular sphingolipid metabolism. Many
investigations suggest that ceramides are also involved
strongly in the pathogenesis of insulin resistance,
which together with other metabolic syndrome ele-
ments are known to be risk factors of diabetes compli-
cations and macrovascular disease in patients with and
without type 2 diabetes. Mechanisms leading to the al-
teration of kidney cell membranes’ ceramide compos-
ition and association between plasma lipoproteins and
kidney cell sphingolipid metabolism and its pathophysio-
logical implications in patients with diabetes mellitus and
albuminuria are yet to be determined [70].

Conclusions
Sphingolipids are supposed to play an important role in
the regulation of many cellular functions. Many studies
suggest that interactions between two main sphingoli-
pids, ceramide and sphingosine-1-phosphate are essen-
tial for the appropriate functioning of the human body.
Any disturbances in the balanced relationship between
those two sphingolipids accelerates the induction of
apoptosis, a process involved in the pathogenesis of dis-
eases such as myocardial infarction, stroke and diabetes
mellitus type 2. Pharmacological modification of sphingo-
lipid metabolism may be very important in the treatment
and prevention of lifestyle diseases. It seems that, for ex-
ample, inhibition of de novo ceramide synthesis may be
beneficial to improve myocardial systolic function in
ischemic heart disease, but attenuation of CERK can im-
prove the insulin sensitivity.
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