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Abstract 

Background:  Endocan, also known as endothelial cell specific molecule-1 (ESM1), is a 50 kDa soluble proteoglycan 
which is frequently overexpressed in many cancer types. Whether it is dysregulated in head and neck squamous cell 
carcinoma (HNSCC) has not been investigated.

Methods:  We analyzed the expression of ESM1 using bioinformatics analysis based on data from The Cancer 
Genome Atlas (TCGA), and then validated that ESM1 was significantly overexpressed in human HNSCC at the protein 
level using immunohistochemistry. We also analyzed the genes co-expressed with ESM1 in HNSCC.

Results:  The most correlated gene was angiopoietin-2 (ANGPT2), a molecule which regulates physiological and path-
ological angiogenesis. Several transcription factor binding motifs including SMAD3, SMAD4, SOX3, SOX4, HIF2A and 
AP-1 components were significantly enriched in the promoter regions of the genes co-expressed with ESM1. Further 
analysis based on ChIP-seq data from the ENCODE (Encyclopedia of DNA Elements) project revealed that AP-1 is an 
important regulator of ESM1 expression.

Conclusions:  Our results revealed a dysregulation of ESM1 and a potential regulatory mechanism for the co-expres-
sion network in HNSCC.

Keywords:  ESM1, Head and neck cancer, Regulation

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Head and neck squamous cell carcinoma (HNSCC) 
includes many cancers in the head and neck originating 
from a variety of sub-sites including the lip, oral cavity, 
nasopharynx, oropharynx, and larynx. HNSCC is the 
sixth most common cancer worldwide. There are about 
650,000 new cases and nearly 350,000 patient deaths 
from HNSCC annually [1]. The most common causes 
include tobacco and alcohol consumption, but human 
papilloma virus (HPV) has been shown to be a primary 
cause of oropharyngeal cancers [2]. Our understanding of 
the molecular and genetic abnormalities leading to onco-
genesis of HNSCC has greatly increased over the past 
decade. Many studies based on genomic and expression 
profiles have provided a more thorough understanding 

of the molecular abnormalities in head and neck cancer 
to help guide the development of new therapeutic agents 
[3]. For example, mutational analysis has revealed that 
many genes such as TP53, CDKN2A, PTEN, PIK3CA, 
HRAS, NOTCH1, IRF6, and TP63 are frequently mutated 
in HNSCC [4]. As for gene expression, many genes, such 
as βIII-tubulin (TUBB3) [5], TMEM16A/ANO1 [6], 
homeobox gene family (HOX) members [7] and metal-
loproteinases (MMPs) [8], have been found to be dys-
regulated in HNSCC. It is crucial to investigate novel 
molecular mechanisms involved in proliferation, apop-
tosis, and invasion of HNSCC and provide effective bio-
markers or drug targets for diagnosis and prevention of 
the disease.

Endocan, also called endothelial cell specific mol-
ecule-1 (ESM-1), is an endothelial cell-associated pro-
teoglycan [9]. It is up-regulated by pro-inflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α), 
interleukin (IL)-1 and microbial lipopolysaccharide, as 
well as by proangiogenic molecules such as vascular 

Open Access

Cancer Cell International

*Correspondence:  xuhongbo76@163.com;  
huangzhigang1968@sohu.com 
Department of Otolaryngology‑Head and Neck Surgery, Key Laboratory 
of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, 
Capital Medical University, Beijing 100730, China

http://orcid.org/0000-0001-9946-2915
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-019-0833-y&domain=pdf


Page 2 of 11Xu et al. Cancer Cell Int          (2019) 19:118 

endothelial growth factor (VEGF) [10]. ESM1 is pos-
sibly involved in neoangiogenesis, and as a promising 
biomarker of endothelial dysfunction and inflamma-
tion, it has being increasingly studied in recent years in 
a wide spectrum of healthy and pathophysiological pro-
cesses [11–14]. ESM1 is preferentially expressed in tumor 
endothelium [15], and is dramatically overexpressed in 
many cancers including non-small cell lung cancer [16], 
colorectal cancer [17], clear cell renal cell carcinoma [18], 
gastric cancer [19], hepatocellular carcinoma [20], pitui-
tary adenoma [21], ovarian cancer [22], and brain cancers 
[23]. In addition, serum endocan was reported to be a 
potential marker for cancer diagnosis and prognosis [19, 
24–28]. Therefore, ESM-1 may be useful as a therapeutic 
cancer target.

The differential expression of ESM1 has not been inves-
tigated in HNSCC. In this study, we analyzed the expres-
sion of ESM1 in cancerous and adjacent normal HNSCC 
tissue using RNA-seq data from The Cancer Genome 
Atlas (TCGA) [29], and we used immunohistochemis-
try to examine whether ESM1 was overexpressed at the 
protein level in HNSCC tissue. We also identified a set of 
genes co-expressed with ESM1, and found that transcrip-
tion factor binding motifs including SMAD3, SMAD4, 
SOX3, SOX4, HIF2A and AP-1 components were signifi-
cantly enriched in the promoter regions of these corre-
lated genes. We further confirmed reliable motifs using 
ChIP-seq data from the ENCODE (Encyclopedia of DNA 
Elements) project via the University of California, Santa 
Cruz (UCSC) genome browser [30]. Our results show 
that AP-1 plays an important role in the regulation of 
ESM1 expression, and provide important functional clues 
about ESM1 dysregulation and its regulatory mechanism 
in HNSCC.

Materials and methods
Data set
The Cancer Genome Atlas (TCGA) data related to 
HNSCC were downloaded from Xena public data hubs 
(http://xena.ucsc.edu/). In the UCSC-hosted database, 
TCGA data sets are normalized and can be explored and 
downloaded.

TCGA copy number profile was measured experi-
mentally using whole genome microarray. Gene-level 
copy number variation (CNV) was estimated using the 
GISTIC2 method [31]. GISTIC2 further thresholded 
the estimated values to − 2, − 1, 0, 1, 2, representing 
homozygous deletion, single copy deletion, diploid nor-
mal copy, low-level copy number amplification, or high-
level copy number amplification.

The BioXpress database, which also uses TCGA data, 
was used to query differential expression [32].

Samples and immunohistochemical analysis
After informed consent had been obtained, all specimens 
were collected from patients. Twenty-one cases of laryn-
geal or hypopharyngeal squamous cell carcinoma were 
studied. Paraffin embedded cancer tissue and peri-can-
cerous tissue were selected for the immunohistochemical 
tests. After dehydration, transparent, paraffin embed-
ded, frozen tissues were made into 2 μm serial sections. 
Slides of tissue were incubated for 40 min at 70 °C, rehy-
drated in alcohol solution, and then washed with water. 
Then the slides were treated with 3% H2O2 for 10  min, 
and then EDTA pH 9.0 for 1 min 50 s. For immunohis-
tochemical analysis, the slides were incubated with anti-
ESM1 (ab56914, Abcam, Cambridge, England) (1:300) 
for 1  h at 37  °C. After thorough washing with PBS, the 
slides were incubated with horseradish peroxidase (HRP) 
conjugated anti-rabbit IgG at 37 °C for 15 min, and then 
thoroughly washed again. After washing, bound antibody 
was detected using the 3,3′-diaminobenzidine (DAB) 
reaction. Nuclear counterstaining was performed with 
hematoxylin. Control sections were subjected to the 
same procedure except that the first antibody was elimi-
nated from the incubation. Positive staining was seen as 
a brown color of varying intensity, and a positivity score 
was assigned for statistical analysis (Chi squared test).

Immunofluorescence assay
For immunofluorescence staining of ESM1 and 
ANGPT2, paraffin-embedded 3  μm serial sections of 
five cases of laryngeal or hypopharyngeal squamous cell 
carcinoma samples were deparaffinized and rehydrated. 
Preheat EDTA 8.0 was used for repairing in the high 
pressure cooker. Polyclonal rabbit anti-human primary 
antibodies anti-ESM1/FITC (ab103590, Abcam, Cam-
bridge, England) and anti-ANGPT2/TRITC (Abcam, 
Cambridge, England) (1:100) were applied overnight at 
4  °C. After washing, fluorescently conjugated secondary 
antibodies were used. Nuclear counterstain was achieved 
using DAPI staining. All fluorescently stained images 
were taken using an Olympus BX-51 upright light micro-
scope (Olympus, Tokyo, Japan). Each site was imaged 
in all channels and overlaid in DPViewer version before 
examination in Photoshop.

Transcription factor binding motifs
The HOMER (Hypergeometric Optimization of Motif 
EnRichment) program package (v4.9, http://homer​.ucsd.
edu/) [33] was used for transcription factor binding motif 
analysis according to the procedure in the online guide. 
The region – 500 bp to + 100 bp from the transcription 
start site (TSS) in gene sets of interest was searched for 
enriched motifs against random background regions 

http://xena.ucsc.edu/
http://homer.ucsd.edu/
http://homer.ucsd.edu/
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using the findMotifs.pl program. Enriched motifs were 
further validated by ChIP-seq data integrated in the 
transcription factor ChIP-seq (161 factors) track on the 
UCSC genome browser (http://genom​e.ucsc.edu).

Results
ESM1 is overexpressed in HNSCC
The Cancer Genome Atlas (TCGA) data have become an 
important and widely used resource in cancer research 

[29]. As for HNSCC, currently there are 522 cancerous 
and 44 normal samples that have been sequenced at the 
RNA level using high-throughput sequencing technology. 
As shown in Fig.  1a, the RNA-seq revealed that ESM1 
was dramatically overexpressed in HNSCC. Because 
genetic instability such as gene copy number alteration 
is a general potential factor affecting gene expression 
in cancers, we therefore also examined the relation-
ship between ESM1 copy number and gene expression 

Fig. 1  ESM1 is overexpressed in HNSCC from TCGA data. a Comparison of expression levels between HNSCC and normal tissues. b Copy number 
does not affect gene expression of ESM1. Positive and negative values indicate gain and loss of copy number, respectively. c The BioXpress database 
reveals that ESM1 is widely overexpressed in human cancers. The frequencies of patients who have an over- (blue) or under- (orange) expression of 
ESM1 in each cancer type are shown. During paired analysis between cancerous and adjacent tissues, all log2 fold change (log2FC) values greater 
than zero for ESM1 are considered to be overexpression, less than zero to be under-expression. The abbreviations are as follows: BLCA: urinary 
bladder cancer; BRCA: breast cancer; CESC: cervical squamous cell carcinoma; COAD: colon adenocarcinoma; ESCA: esophageal cancer; HNSC: head 
and neck cancer; KICH: kidney chromophobe adenocarcinoma; KIRC: kidney renal clear cell carcinoma; KIRP: kidney papillary renal cell carcinoma; 
LIHC: liver cancer; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; PAAD: pancreas adenocarcinoma; PRAD: prostate cancer; 
READ: rectum adenocarcinoma; SARC: sarcoma; STAD: stomach cancer; THCA: thyroid cancer; UCEC: uterine cancer

http://genome.ucsc.edu
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in 514 common HNSCC samples. As shown in Fig.  1b, 
ESM1 has frequent heterozygous loss of copy number 
in HNSCC with a ratio of about 36.97% (193/522) com-
pared to gain of copy number (about 9.39%, 49/522). 
However, there is no apparent correlation between copy 
number variation (CNV) and gene expression (Fig.  1b), 
suggesting that some other mechanisms may control the 
up-regulated expression of ESM1 in HNSCC. The over-
expression of ESM1 in HNSCC and other cancers was 
also confirmed based on paired analysis of TCGA data 
(Fig. 1c).

Because these results from TCGA data were at the 
RNA level, we then detected ESM1 expression at the pro-
tein level in the 21 laryngeal or hypopharyngeal cancer 
samples. As shown in Table 1, Fig. 2 and Additional file 1, 
ESM1 was significantly overexpressed at the protein level 

in these cancers but there was no apparent correlation 
with clinical or pathologic stage.

Identification of ANGPT2 as the gene most correlated 
with ESM1 in HNSCC
Since up-regulation of ESM1 was not associated with 
copy number alteration in HNSCC, we next investigated 
the potential regulatory mechanisms, mainly focusing 
on transcription factors (TFs). Generally, transcription 
factor search tools identify potential TF binding sites 
(TFBSs) by sequence matching, which often results in 
dozens or even hundreds of candidate TFBSs and thus it 
is difficult to identify the true transcription factors that 
have important regulatory roles. Therefore, we first iden-
tified the co-expressed genes based on Pearson correla-
tion. In total, there were 85 genes with r ≥ 0.45 and all of 
these genes were significantly overexpressed in HNSCC 
based on our analysis (Table 2). Some of them have been 
reported to be associated with HNSCC. The gene most 
correlated was ANGPT2 (angiopoietin 2, also known 
as Ang-2) with a correlation coefficient (r) of 0.7133 (p 
value = 3.95E−89) (Fig.  3a), suggesting that a tightly 
co-regulated mechanism exists between ESM1 and 
ANGPT2. ANGPT2 was also up-regulated in HNSCC 
(Fig. 3b, Table 2).

We further confirmed the co-expression of ANGPT2 
and ESM1 using immunofluorescence assay. The results 
showed that both of ESM1 and ANGPT2 could be 
expressed in the same tissues, either in the cancerous epi-
thelial cells (Fig. 4a) or interstitial tissues (Fig. 4b).

Identification of AP‑1 as an important regulator of ESM1
Next, we used the Homer program to identify possible 
enriched motifs in the promoter regions from – 500 to 
+ 100 bp around the transcription start site (TSS) of the 
85 correlated genes. As shown in Fig.  5a, seven motifs 

Table 1  Correlations between  ESM1 expression 
and  clinical features of  laryngeal or  hypopharyngeal 
cancer

a  Grade and stage were referred to the American Joint Committee on Cancer 
(AJCC) TNM staging classification for laryngeal and hypopharyngeal cancer (7th 
edition, 2010)

Clinical factor Sample size Correlation 
coefficient

p value

Age 21 − 0.493 0.023

Gradea − 0.138 0.552

 1 3

 2 13

 3 5

Stagea − 0.044 0.850

 I 3

 II 5

 III 7

 IV 6

Fig. 2  Immunohistochemical analysis shows that ESM1 is overexpressed in HNSCC
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Table 2  List of 85 genes co-expressed with ESM1 and with r ≥ 0.45

Gene symbol Correlation 
with ESM1

P value* Adjusted p value* Status P value** Adjusted p value**

ESM1 1.00E+00 0.00E+00 0.00E+00 Up-regulation 1.16E−15 2.52E−14

ANGPT2 7.13E−01 3.95E−89 4.00E−85 Up-regulation 1.41E−13 1.94E−12

COL4A1 6.32E−01 1.63E−64 1.10E−60 Up-regulation 1.28E−21 1.75E−19

COL4A2 6.05E−01 6.72E−58 3.40E−54 Up-regulation 7.94E−20 5.22E−18

SPRY4 5.80E−01 3.88E−52 1.57E−48 Up-regulation 3.66E−18 1.49E−16

LOXL2 5.74E−01 5.31E−51 1.79E−47 Up-regulation 2.00E−22 4.31E−20

APLN 5.53E−01 1.47E−46 4.25E−43 Up-regulation 1.04E−13 1.48E−12

COL10A1 5.45E−01 3.51E−45 8.90E−42 Up-regulation 1.48E−22 3.72E−20

ITGA1 5.41E−01 2.37E−44 5.34E−41 Up-regulation 9.44E−13 1.12E−11

ADAM12 5.40E−01 3.40E−44 6.88E−41 Up-regulation 3.23E−22 6.24E−20

NID2 5.38E−01 9.24E−44 1.70E−40 Up-regulation 7.21E−15 1.31E−13

FLT1 5.37E−01 1.15E−43 1.94E−40 Up-regulation 2.76E−06 9.80E−06

MMP11 5.35E−01 3.88E−43 6.05E−40 Up-regulation 1.52E−24 1.62E−21

BMP8A 5.33E−01 6.04E−43 8.74E−40 Up-regulation 8.76E−24 4.93E−21

DLL4 5.30E−01 2.53E−42 3.42E−39 Up-regulation 5.77E−09 3.33E−08

CTHRC1 5.29E−01 4.40E−42 5.57E−39 Up-regulation 5.26E−19 2.76E−17

STC2 5.24E−01 3.76E−41 4.49E−38 Up-regulation 1.73E−21 2.22E−19

HAPLN1 5.19E−01 2.39E−40 2.69E−37 Up-regulation 1.54E−19 9.23E−18

COL13A1 5.13E−01 2.87E−39 3.06E−36 Up-regulation 6.35E−22 9.97E−20

SOX11 5.11E−01 5.37E−39 5.44E−36 Up-regulation 1.29E−15 2.79E−14

MMD 5.10E−01 7.91E−39 7.63E−36 Up-regulation 5.97E−15 1.11E−13

LEPRE1 5.04E−01 7.37E−38 6.78E−35 Up-regulation 2.31E−21 2.71E−19

COL5A2 5.01E−01 3.05E−37 2.69E−34 Up-regulation 3.63E−20 2.74E−18

ADAMTSL2 5.00E−01 3.78E−37 3.19E−34 Up-regulation 1.19E−16 3.32E−15

LAMA4 4.96E−01 2.00E−36 1.62E−33 Up-regulation 3.53E−07 1.46E−06

CLIC4 4.94E−01 3.11E−36 2.43E−33 Up-regulation 7.44E−13 9.03E−12

P4HA1 4.93E−01 5.24E−36 3.84E−33 Up-regulation 1.32E−17 4.60E−16

EXTL2 4.93E−01 5.30E−36 3.84E−33 Up-regulation 2.34E−09 1.45E−08

GPR4 4.93E−01 5.69E−36 3.95E−33 Up-regulation 1.19E−10 9.38E−10

GJC1 4.93E−01 5.85E−36 3.95E−33 Up-regulation 6.71E−22 1.05E−19

CCDC102B 4.92E−01 9.19E−36 6.01E−33 Up-regulation 6.92E−08 3.28E−07

PLOD1 4.90E−01 1.41E−35 8.68E−33 Up-regulation 7.59E−19 3.80E−17

P4HA3 4.90E−01 1.41E−35 8.68E−33 Up-regulation 4.71E−15 9.05E−14

TMEFF1 4.89E−01 2.22E−35 1.29E−32 Up-regulation 5.29E−18 2.05E−16

C12orf23 4.89E−01 2.43E−35 1.37E−32 Up-regulation 8.80E−09 4.91E−08

SC65 4.88E−01 3.24E−35 1.77E−32 Up-regulation 1.17E−18 5.49E−17

IKBIP 4.88E−01 3.88E−35 2.07E−32 Up-regulation 3.88E−19 2.11E−17

ZNF697 4.86E−01 7.28E−35 3.78E−32 Up-regulation 5.98E−13 7.38E−12

CERCAM 4.85E−01 8.37E−35 4.24E−32 Up-regulation 1.69E−14 2.81E−13

SPARC​ 4.85E−01 9.04E−35 4.47E−32 Up-regulation 1.52E−14 2.57E−13

PXDN 4.85E−01 1.12E−34 5.38E−32 Up-regulation 2.28E−13 3.03E−12

ACAN 4.84E−01 1.35E−34 6.35E−32 Up-regulation 1.53E−12 1.75E−11

CHN1 4.83E−01 2.04E−34 9.18E−32 Up-regulation 1.93E−16 5.06E−15

IBSP 4.83E−01 2.35E−34 1.02E−31 Up-regulation 4.11E−20 3.01E−18

FNDC3B 4.83E−01 2.38E−34 1.02E−31 Up-regulation 3.99E−14 6.13E−13

THY1 4.82E−01 2.76E−34 1.16E−31 Up-regulation 4.95E−13 6.18E−12

FKBP10 4.81E−01 3.59E−34 1.48E−31 Up-regulation 4.85E−12 5.00E−11

COL1A1 4.80E−01 5.38E−34 2.18E−31 Up-regulation 6.42E−19 3.29E−17

CD276 4.79E−01 9.39E−34 3.73E−31 Up-regulation 5.95E−22 9.68E−20
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including Smad3, Smad4, c-Jun, AP-1, Sox3, Sox4 and 
HIF2α were significantly enriched, suggesting they play 
important roles in regulating the correlated network of 
ESM1.

We then used ChIP-seq data from the ENCODE pro-
ject to filter the results. We found that only AP-1, which 

is a heterodimer composed of proteins belonging to the 
c-Fos, c-Jun, ATF and JDP families, overlapped in the 
promoter region of ESM1 (Fig.  5b). We also observed 
that AP-1 or its subunit binding sites exist in the pro-
moter region (Fig. 5c). These results further confirmed 
that AP-1 is an important regulator of ESM1.

Table 2  (continued)

Gene symbol Correlation 
with ESM1

P value* Adjusted p value* Status P value** Adjusted p value**

HEYL 4.78E−01 1.22E−33 4.76E−31 Up-regulation 3.39E−11 2.95E−10

IL11 4.78E−01 1.37E−33 5.25E−31 Up-regulation 1.09E−24 1.38E−21

SERPINH1 4.77E−01 1.43E−33 5.35E−31 Up-regulation 1.85E−22 4.31E−20

GUCY1A2 4.77E−01 1.58E−33 5.80E−31 Up-regulation 1.97E−09 1.25E−08

LAMB1 4.77E−01 1.88E−33 6.81E−31 Up-regulation 5.98E−16 1.41E−14

PDIA5 4.75E−01 2.87E−33 1.00E−30 Up-regulation 3.81E−17 1.17E−15

TTYH3 4.75E−01 2.94E−33 1.01E−30 Up-regulation 6.54E−21 6.76E−19

COL6A1 4.75E−01 3.49E−33 1.18E−30 Up-regulation 4.47E−14 6.78E−13

COL5A1 4.74E−01 4.53E−33 1.50E−30 Up-regulation 5.00E−20 3.57E−18

CALU 4.74E−01 5.09E−33 1.66E−30 Up-regulation 3.39E−14 5.29E−13

KDELR3 4.74E−01 5.45E−33 1.75E−30 Up-regulation 3.66E−08 1.83E−07

COL6A3 4.71E−01 1.34E−32 4.18E−30 Up-regulation 2.98E−14 4.71E−13

EPOR 4.69E−01 2.75E−32 8.44E−30 Up-regulation 2.58E−12 2.82E−11

COL11A1 4.68E−01 3.42E−32 1.03E−29 Up-regulation 1.48E−15 3.16E−14

ENO2 4.67E−01 4.78E−32 1.42E−29 Up-regulation 3.28E−20 2.51E−18

PPAPDC1A 4.67E−01 5.91E−32 1.74E−29 Up-regulation 4.50E−20 3.24E−18

FN1 4.67E−01 6.12E−32 1.77E−29 Up-regulation 2.33E−14 3.78E−13

POSTN 4.66E−01 8.39E−32 2.36E−29 Up-regulation 2.13E−16 5.50E−15

ADAMTS12 4.65E−01 8.94E−32 2.48E−29 Up-regulation 3.76E−14 5.81E−13

NOX4 4.65E−01 1.15E−31 3.10E−29 Up-regulation 1.49E−14 2.52E−13

GLT25D1 4.64E−01 1.30E−31 3.46E−29 Up-regulation 3.17E−26 1.61E−22

ADAMTS7 4.61E−01 3.73E−31 9.69E−29 Up-regulation 1.64E−17 5.55E−16

MFAP2 4.58E−01 9.93E−31 2.55E−28 Up-regulation 3.26E−22 6.24E−20

RCN3 4.57E−01 1.38E−30 3.50E−28 Up-regulation 6.41E−15 1.19E−13

TNFAIP6 4.57E−01 1.57E−30 3.89E−28 Up-regulation 1.36E−07 6.10E−07

C5orf13 4.56E−01 1.77E−30 4.26E−28 Up-regulation 1.84E−13 2.48E−12

VEGFA 4.56E−01 1.92E−30 4.58E−28 Up-regulation 6.16E−09 3.54E−08

COL3A1 4.55E−01 2.53E−30 5.95E−28 Up-regulation 9.35E−16 2.07E−14

TBXA2R 4.55E−01 2.84E−30 6.62E−28 Up-regulation 4.57E−09 2.68E−08

PCDH12 4.55E−01 3.20E−30 7.38E−28 Up-regulation 1.34E−08 7.24E−08

CDR2 4.53E−01 4.71E−30 1.07E−27 Up-regulation 1.71E−11 1.58E−10

PDGFB 4.53E−01 5.51E−30 1.23E−27 Up-regulation 8.78E−07 3.40E−06

ITGA5 4.52E−01 6.49E−30 1.41E−27 Up-regulation 8.03E−19 3.96E−17

FOXS1 4.51E−01 1.06E−29 2.28E−27 Up-regulation 2.77E−16 7.04E−15

PPEF1 4.50E−01 1.31E−29 2.77E−27 Up-regulation 9.05E−23 2.58E−20

IGFBP7 4.50E−01 1.37E−29 2.86E−27 Up-regulation 3.15E−10 2.28E−09

The column ‘Correlation with ESM1’ indicates Pearson correlation coefficients between indicated genes and ESM1. The null hypothesis is no correlation or no 
differential expression. The functions “cor.test” and “p.adjust” in R software environment are used for p value calculation and p value adjustment (method = “BH”)

*Statistical test for correlation analysis

**Statistical test for differential expression between cancerous and adjacent tissues
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Discussion
Endocan is a 50  kDa soluble proteoglycan secreted by 
vascular endothelial cells, especially from the inflamed 
endothelium, thereby it is also thought to play a role in 
the pathogenesis of vascular disorders, inflammation and 
endothelium dysfunction [9]. It can bind to the leukocyte 
integrin LFA-1 (CD11a/CD18), and prevents the specific 
binding of ICAM-1 to LFA-1, and may therefore influ-
ence both the recruitment of circulating lymphocytes 
to inflammatory sites and LFA-1-dependent leukocyte 
adhesion and activation [34]. Endocan is clearly over-
expressed in many cancers and has also been shown to 
be directly involved in tumor progression as observed 
in mouse models of human tumor xenografts [9]. In the 
current study, we have confirmed that endocan is also 
dramatically overexpressed in HNSCC. A recent study 
revealed that ESM1 could mediate nerve growth fac-
tor receptor (NGFR)-induced invasion and metastasis 
in murine oral squamous cell carcinoma [35]. All these 
results indicate that ESM1 may be a potential therapeutic 
target in HNSCC.

An early study showed that Ets-binding motifs were 
mainly responsible for endothelial-cell-specific expression 

Fig. 3  ANGPT2 is the gene most correlated with ESM1 and is also overexpressed in HNSCC. a The distribution of Pearson correlation coefficients 
between ESM1 and other genes. The dash lines in red indicate confidence intervals. The black dash line represents a cut-off r value with 0.45. b 
Kernel density distribution of all r values in a. c. The expressional correlation between ESM1 and ANGPT2, with a linear regression estimation shown. 
The shade band indicates a 95% confidence interval. d ANGPT2 is also overexpressed in HNSCC

Fig. 4  Immunofluorescence staining shows that ESM1 and ANGPT2 
both expressed in the same tissues. a Both of ANGPT2 and ESM1 
can be expressed in cancerous epithelial cells. b Similar expression 
pattern was observed in interstitial tissues
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Fig. 5  AP-1 is an important regulator of ESM1 expression. a Homer known motif enrichment result. b Transcription factor ChIP-seq result on UCSC 
genome browser. In the ChIP-seq track, each block represents a peak bound by the corresponding transcription factor. c AP-1 binding sites in the 
promoter region of ESM1. Sequence 500 bp before the transcription start site (TSS) is shown. The shaded base A indicates TSS (+ 1 position). The 
underlined bold bases indicate potential AP-1 binding sites matching the second and fifth motifs in the enriched known Homer motifs
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of ESM1 in vitro, though putative binding sites for GATA, 
AP1, AP4, NF1, and CREB/ATF transcription factors 
were also speculated [36]. We also investigated the regula-
tory mechanism using publically available data and found 
that AP-1 may be a key regulator of ESM1, particularly 
for the co-expressed network centered on ESM1. ESM1 
can be activated by inflammation, cytokines and vascular 
growth factors, and in fact, AP-1 activity is also regulated 
by a broad range of physiological and pathological stim-
uli, including cytokines, growth factors, stress signals and 
infections, as well as oncogenic stimuli [37]. AP-1 medi-
ates regulation involved in many biological processes such 
as proliferation, differentiation, apoptosis and transforma-
tion. A typical upstream signal pathway for activation of 
AP-1 that has been widely studied is the Ras-MAPK-ERK 
pathway, which is one of several important pathways for 
targeting therapy in HNSCC [38].

Besides AP-1, ChIP-seq from the ENCODE project also 
suggests that other transcription factors such as STAT3 
(signal transducer and activator of transcription 3), TBP 
(TATA-box binding protein), GATA2 (GATA binding 
protein 2), RAD21 (RAD21 cohesin complex component) 
and MYC (MYC proto-oncogene, bHLH transcription 
factor) are also potential regulators of ESM1. Consider-
ing the genes co-expressed with ESM1, AP-1 probably 
plays a key role but other factors may synergize the regu-
lation. Further details still need investigation.

We identified the genes co-expressed with ESM1 
in HNSCC and the most correlated gene is ANGPT2. 
ANGPT2 can also be regulated by Ets-1 and AP-1 [39, 
40], further confirming their correlation. As shown in 
Fig.  4, although the expressional patterns of ESM1 and 
ANGPT2 are not fully overlapped, co-expression in some 
of the same cells can be truly observed. However, rela-
tively lower immunofluorescence positivity for ESM1 in 
Fig. 4 was observed as compared with the DAB positiv-
ity pattern in Fig. 2. This may be due to different speci-
men and antibodies used in two assays. On the other 
hand, correlation doesn’t mean co-expression in the same 
cells when bulk RNA-seq data were used, they can be 
expressed in different cell types but could also show posi-
tive correlation. A recent study shows ANGPT2 can be 
regulated by the synaptic protein neuroligin 2 (NLGN2) 
[41], whether ESM1 is also regulated by NLGN2 needs 
further investigation. Angiopoietins, including ANGPT1, 
ANGPT2, ANGPT3 and ANGPT4, are vascular growth 
factors that control microvascular permeability, vasodi-
lation, and vasoconstriction by signaling smooth muscle 
cells. Antiangiogenic agents can normalize the tumor 
microenvironment, combining antiangiogenic therapies 
with immune-checkpoint inhibitors potentially improve 
patient outcomes for the treatment of a range of solid 
tumors [42].

ANGPT1 is critical for vessel maturation, adhesion, 
migration, and survival, but ANGPT2 is an antagonist 
of ANGPT1 promoting cell death and disrupting vascu-
larization; [43] however, VEGF and ANGPT2 appear to 
play crucial roles in the balance between vascular regres-
sion and growth of this subset of tumors, and the com-
bination can promote neo-vascularization. [42, 44] Mice 
deficient in ANGPT2 have abnormalities in the blood 
and lymphatic vasculatures, and also show deficits in 
rapid leukocyte recruitment to sites of inflammation [45]. 
This function is very similar to ESM1; however, whether 
ESM1 and ANGPT2 can be mutually regulated still 
awaits further investigation.

Conclusions
In conclusion, we have identified that ESM1 is overex-
pressed in HNSCC and investigated the regulatory mech-
anism of ESM1-centered co-expression. These results 
provide important functional clues for ESM1 dysregula-
tion and regulation in cancers.

Additional file

Additional file 1. ESM1 expression of 21 paired samples of HNSCC with 
clinical and pathological features.
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