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Abstract

Background: Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on
molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a
facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks.

Results: Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial
and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study
remain detectable with half-lives of 0.5–1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and
archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity.
Personal care product effects last for weeks and produce highly individualized responses, including alterations in
steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics.

Conclusions: These findings may lead to next-generation precision beauty products and therapies for skin disorders.
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Background
The human skin is the most exposed organ to the exter-
nal environment and represents the first line of defense
against external chemical and microbial threats. It
harbors a microbial habitat that is person-specific and
varies considerably across the body surface [1–4]. Recent
findings suggested an association between the use of an-
tiperspirants or make-up and skin microbiota compos-
ition [5–7]. However, these studies were performed for a
short period (7–10 days) and/or without washing out the
volunteers original personal care products, leading to in-
complete evaluation of microbial alterations because the
process of skin turnover takes 21–28 days [5–9]. It is
well-established that without intervention, most adult
human microbiomes, skin or other microbiomes,

remain stable compared to the differences between
individuals [3, 10–16].
Although the skin microbiome is stable for years [10],

little is known about the molecules that reside on the
skin surface or how skin care products influence this
chemistry [17, 18]. Mass spectrometry can be used to
detect host molecules, personalized lifestyles including
diet, medications, and personal care products [18, 19].
However, although the impact of short-term dietary in-
terventions on the gut microbiome has been assessed
[20, 21], no study has yet tested how susceptible the skin
chemistry and Microbiome are to alterations in the sub-
jects’ personal care product routine.
In our recent metabolomic/microbiome 3D cartog-

raphy study [18], we observed altered microbial commu-
nities where specific skin care products were present.
Therefore, we hypothesized that these products might
shape specific skin microbial communities by changing
their chemical environment. Some beauty product ingre-
dients likely promote or inhibit the growth of specific
bacteria: for example, lipid components of moisturizers
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could provide nutrients and promote the growth of lipo-
philic bacteria such as Staphylococcus and Propionibac-
terium [18, 22, 23]. Understanding both temporal
variations of the skin microbiome and chemistry is
crucial for testing whether alterations in personal habits
can influence the human skin ecosystem and, perhaps,
host health. To evaluate these variations, we used a
multi-omics approach integrating metabolomics and
microbiome data from skin samples of 11 healthy hu-
man individuals. Here, we show that many compounds
from beauty products persist on the skin for weeks
following their use, suggesting a long-term contribution
to the chemical environment where skin microbes live.
Metabolomics analysis reveals temporal trends corre-
lated to discontinuing and resuming the use of beauty
products and characteristic of variations in molecular
composition of the skin. Although highly personalized,
as seen with the microbiome, the chemistry, including
hormones and pheromones such as androstenone and
androsterone, were dramatically altered. Similarly, by ex-
perimentally manipulating the personal care regime of
participants, bacterial and molecular diversity and struc-
ture are altered, particularly for the armpits and feet.
Interestingly, a high person-to-person molecular and

bacterial variability is maintained over time even though
personal care regimes were modified in exactly the same
way for all participants.

Results
Skin care and hygiene products persist on the skin
Systematic strategies to influence both the skin chemis-
try and microbiome have not yet been investigated. The
outermost layer of the skin turns over every 3 to 4 weeks
[8, 9]. How the microbiome and chemistry are influ-
enced by altering personal care and how long the chemi-
cals of personal care products persist on the skin are
essentially uncharacterized. In this study, we collected
samples from skin of 12 healthy individuals—six males
and six females—over 9 weeks. One female volunteer
had withdrawn due to skin irritations that developed,
and therefore, we describe the remaining 11 volunteers.
Samples were collected from each arm, armpit, foot, and
face, including both the right and left sides of the body
(Fig. 1a). All participants were asked to adhere to the
same daily personal care routine during the first 6 weeks
of this study (Fig. 1b). The volunteers were asked to
refrain from using any personal care product for weeks
1–3 except a mild body wash (Fig. 1b). During weeks 4–

a b

Fig. 1 Study design and representation of changes in personal care regime over the course of 9 weeks. a Six males and six females were recruited
and sampled using swabs on two locations from each body part (face, armpits, front forearms, and between toes) on the right and left side. The
locations sampled were the face—upper cheek bone and lower jaw, armpit—upper and lower area, arm—front of elbow (antecubitis) and forearm
(antebrachium), and feet—in between the first and second toe and third and fourth toe. Volunteers were asked to follow specific instructions for the
use of skin care products. b Following the use of their personal skin care products (brown circles), all volunteers used only the same head to toe
shampoo during the first 3 weeks (week 1–week 3) and no other beauty product was applied (solid blue circle). The following 3 weeks (week 4–week
6), four selected commercial beauty products were applied daily by all volunteers on the specific body part (deodorant antiperspirant for the armpits,
soothing foot powder for the feet between toes, sunscreen for the face, and moisturizer for the front forearm) (triangles) and continued to use the
same shampoo. During the last 3 weeks (week 7–week 9), all volunteers went back to their normal routine and used their personal beauty products
(circles). Samples were collected once a week (from day 0 to day 68—10 timepoints from T0 to T9) for volunteers 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, and 12,
and on day 0 and day 6 for volunteer 8, who withdraw from the study after day 6. For 3 individuals (volunteers 4, 9, 10), samples were collected twice
a week (19 timepoints total). Samples collected for 11 volunteers during 10 timepoints: 11 volunteers × 10 timepoints × 4 samples × 4 body sites =
1760. Samples collected from 3 selected volunteers during 9 additional timepoints: 3 volunteers × 9 timepoints × 4 samples × 4 body sites = 432. See
also the “Subject recruitment and sample collection” section in the “Methods” section
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6, in addition to the body wash, participants were asked
to apply selected commercial skin care products at spe-
cific body parts: a moisturizer on the arm, a sunscreen
on the face, an antiperspirant on the armpits, and a
soothing powder on the foot (Fig. 1b). To monitor
adherence of participants to the study protocol, molecu-
lar features found in the antiperspirant, facial lotion,
moisturizer, and foot powder were directly tracked with
mass spectrometry from the skin samples. For all partici-
pants, the mass spectrometry data revealed the accumu-
lation of specific beauty product ingredients during
weeks 4–6 (Additional file 1: Figure S1A-I, Fig. 2a
orange arrows). Examples of compounds that were
highly abundant during T4–T6 in skin samples are avo-
benzone (Additional file 1: Figure S1A), dexpanthenol
(Additional file 1: Figure S1B), and benzalkonium chlor-
ide (Additional file 1: Figure S1C) from the facial
sunscreen; trehalose 6-phosphate (Additional file 1:
Figure S1D) and glycerol stearate (Additional file 1: Fig-
ure S1E) from the moisturizer applied on arms; indolin
(Additional file 1: Figure S1F) and an unannotated
compound (m/z 233.9, rt 183.29 s) (Additional file 1:
Figure S1G) from the foot powder; and decapropylene
glycol (Additional file 1: Figure S1H) and nonapropylene
glycol (Additional file 1: Figure S1I) from the antiper-
spirant. These results suggest that there is likely a com-
pliance of all individuals to study requirements and even
if all participants confirmed using each product every
day, the amount of product applied by each individual
may vary. Finally, for weeks 7–9, the participants were
asked to return to their normal routine by using the
same personal care products they used prior to the
study. In total, excluding all blanks and personal care
products themselves, we analyzed 2192 skin samples for
both metabolomics and microbiome analyses.
To understand how long beauty products persist on

the skin, we monitored compounds found in deodorants
used by two volunteers—female 1 and female 3—before
the study (T0), over the first 3 weeks (T1–T3) (Fig. 1b).
During this phase, all participants used exclusively the
same body wash during showering, making it easier to
track ingredients of their personal care products. The
data in the first 3 weeks (T1–T3) revealed that many
ingredients of deodorants used on armpits (Fig. 2a) per-
sist on the skin during this time and were still detected
during the first 3 weeks or at least during the first week
following the last day of use. Each of the compounds
detected in the armpits of individuals exhibited its own
unique half-life. For example, the polyethylene glycol
(PEG)-derived compounds m/z 344.227, rt 143 s (Fig. 2b,
S1J); m/z 432.279, rt 158 s (Fig. 2b, S1K); and m/z
388.253, rt 151 s (Fig. 2b, S1L) detected on armpits of
volunteer 1 have a calculated half-life of 0.5 weeks
(Additional file 1: Figure S1J-L, all p values < 1.81e−07),

while polypropylene glycol (PPG)-derived molecules m/z
481.87, rt 501 s (Fig. 2c, S1M); m/z 560.420, rt 538 s
(Fig. 2c, S1N); m/z 788.608, rt 459 s (Fig. 2d, S1O); m/z
846.650, rt 473 s (Fig. 2d, S1P); and m/z 444.338, rt 486 s
(Fig. 2d, S1Q) found on armpits of volunteers 3 and 1
(Fig. 2a) have a calculated half-life ranging from 0.7 to
1.9 weeks (Additional file 1: Figure S1M-Q, all p values
< 0.02), even though they originate from the same
deodorant used by each individual. For some ingredients
of deodorant used by volunteer 3 on time 0
(Additional file 1: Figure S1M, N), a decline was
observed during the first week, then little to no traces of
these ingredients were detected during weeks 4–6 (T4–
T6), then finally these ingredients reappear again during
the last 3 weeks of personal product use (T7–T9). This
suggests that these ingredients are present exclusively in
the personal deodorant used by volunteer 3 before the
study. Because a similar deodorant (Additional file 1:
Figure S1O-Q) and a face lotion (Additional file 1:
Figure S1R) was used by volunteer 3 and volunteer 2, re-
spectively, prior to the study, there was no decline or ab-
sence of their ingredients during weeks 4–6 (T4–T6).
Polyethylene glycol compounds (Additional file 1:

Figure S1J-L) wash out faster from the skin than poly-
propylene glycol (Additional file 1: Figure S1M-Q)(HL
~ 0.5 weeks vs ~ 1.9 weeks) and faster than fatty acids
used in lotions (HL ~ 1.2 weeks) (Additional file 1:
Figure S1R), consistent with their hydrophilic (PEG) and
hydrophobic properties (PPG and fatty acids) [25, 26].
This difference in hydrophobicity is also reflected in the
retention time as detected by mass spectrometry.
Following the linear decrease of two PPG compounds
from T0 to T1, they accumulated noticeably during
weeks 2 and 3 (Additional file 1: Figure S1M, N). This
accumulation might be due to other sources of PPG
such as the body wash used during this period or the
clothes worn by person 3. Although PPG compounds
were not listed in the ingredient list of the shampoo, we
manually inspected the LC-MS data collected from this
product and confirmed the absence of PPG compounds
in the shampoo. The data suggest that this trend is char-
acteristic of accumulation of PPG from additional
sources. These could be clothes, beds, or sheets, in
agreement with the observation of these molecules
found in human habitats [27] but also in the public
GNPS mass spectrometry dataset MSV000079274 that
investigated the chemicals from dust collected from
1053 mattresses of children.

Temporal molecular and bacterial diversity in response to
personal care use
To assess the effect of discontinuing and resuming the
use of skin care products on molecular and microbiota
dynamics, we first evaluated their temporal diversity.
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Fig. 2 (See legend on next page.)
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Skin sites varied markedly in their initial level (T0) of
molecular and bacterial diversity, with higher molecular
diversity at all sites for female participants compared to
males (Fig. 3a, b, Wilcoxon rank-sum-WR test, p values
ranging from 0.01 to 0.0001, from foot to arm) and
higher bacterial diversity in face (WR test, p = 0.0009)
and armpits (WR test, p = 0.002) for females (Fig. 3c, d).
Temporal diversity was similar across the right and left
sides of each body site of all individuals (WR test, mo-
lecular diversity: all p values > 0.05; bacterial diversity: all
p values > 0.20). The data show that refraining from
using beauty products (T1–T3) leads to a significant
decrease in molecular diversity at all sites (Fig. 3a, b,
WR test, face: p = 8.29e−07, arm: p = 7.08e−09, armpit:
p = 1.13e−05, foot: p = 0.002) and bacterial diversity
mainly in armpits (WR test, p = 0.03) and feet (WR test,
p = 0.04) (Fig. 3c, d). While molecular diversity declined
(Fig. 3a, b) for arms and face, bacterial diversity (Fig. 3c,
d) was less affected in the face and arms when partici-
pants did not use skin care products (T1–T3). The
molecular diversity remained stable in the arms and face
of female participants during common beauty products
use (T4–T6) to immediately increase as soon as the vol-
unteers went back to their normal routines (T7–T9)
(WR test, p = 0.006 for the arms and face)(Fig. 3a, b). A
higher molecular (Additional file 1: Figure S2A) and
community (Additional file 1: Figure S2B) diversity was
observed for armpits and feet of all individuals during the
use of antiperspirant and foot powder (T4–T6) (WR test,
molecular diversity: armpit p = 8.9e−33, foot p = 1.03e−11;
bacterial diversity: armpit p = 2.14e−28, foot p = 1.26e
−11), followed by a molecular and bacterial diversity
decrease in the armpits when their regular personal
beauty product use was resumed (T7–T9) (bacterial

diversity: WR test, p = 4.780e−21, molecular diversity: WR
test, p = 2.159e−21). Overall, our data show that refraining
from using beauty products leads to lower molecular and
bacterial diversity, while resuming the use increases their
diversity. Distinct variations between male and female mo-
lecular and community richness were perceived at distinct
body parts (Fig. 3a–d). Although the chemical diversity of
personal beauty products does not explain these variations
(Additional file 1: Figure S2C), differences observed
between males and females may be attributed to many
environmental and lifestyle factors including different
original skin care and different frequency of use of beauty
products (Additional file 2: Table S1), washing routines,
and diet.

Longitudinal variation of skin metabolomics signatures
To gain insights into temporal metabolomics variation
associated with beauty product use, chemical inventories
collected over 9 weeks were subjected to multivariate
analysis using the widely used Bray–Curtis dissimilarity
metric (Fig. 4a–c, S3A). Throughout the 9-week period,
distinct molecular signatures were associated to each spe-
cific body site: arm, armpit, face, and foot (Additional file 1:
Figure S3A, Adonis test, p < 0.001, R2 0.12391). Mass
spectrometric signatures displayed distinct individual
trends at each specific body site (arm, armpit, face, and
foot) over time, supported by their distinct locations in
PCoA (principal coordinate analysis) space (Fig. 4a, b) and
based on the Bray–Curtis distances between molecular
profiles (Additional file 1: Figure S3B, WR test, all p values
< 0.0001 from T0 through T9). This suggests a high mo-
lecular inter-individual variability over time despite similar
changes in personal care routines. Significant differences
in molecular patterns associated to ceasing (T1–T3)

(See figure on previous page.)
Fig. 2 Monitoring the persistence of personal care product ingredients in the armpits over a 9-week period. a Heatmap representation of the
most abundant molecular features detected in the armpits of all individuals during the four phases (0: initial, 1–3: no beauty products, 4–6:
common products, and 7–9: personal products). Green color in the heatmap represents the highest molecular abundance and blue color the
lowest one. Orange boxes with plain lines represent enlargement of cluster of molecules that persist on the armpits of volunteer 1 (b) and
volunteer 3 (c, d). Orange clusters with dotted lines represent same clusters of molecules found on the armpits of other volunteers. Orange
arrows represent the cluster of compounds characteristic of the antiperspirant used during T4–T6. b Polyethylene glycol (PEG) molecular clusters
that persist on the armpits of individual 1. The molecular subnetwork, representing molecular families [24], is part of a molecular network (http://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f5325c3b278a46b29e8860ec5791d5ad) generated from MS/MS data collected from the armpits of
volunteer 1 (T0–T3) MSV000081582 and MS/MS data collected from the deodorant used by volunteer 1 before the study started (T0)
MSV000081580. c, d Polypropylene glycol (PPG) molecular families that persist on the armpits of individual 3, along with the corresponding
molecular subnetwork that is part of the molecular network accessible here http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
aaa1af68099d4c1a87e9a09f398fe253. Subnetworks were generated from MS/MS data collected from the armpits of volunteer 3 (T0–T3)
MSV000081582 and MS/MS data collected from the deodorant used by volunteer 3 at T0 MSV000081580. The network nodes were annotated
with colors. Nodes represent MS/MS spectra found in armpit samples of individual 1 collected during T0, T1, T2, and T3 and in personal
deodorant used by individual 1 (orange nodes); armpit samples of individual 1 collected during T0, T2, and T3 and personal deodorant used by
individual 1 (green nodes); armpit samples of individual 3 collected during T0, T1, T2, and T3 and in personal deodorant used by individual 3 (red
nodes); armpit samples of individual 3 collected during T0 and in personal deodorant used by individual 3 (blue nodes); and armpit samples of
individual 3 collected during T0 and T2 and in personal deodorant used by individual 3 (purple nodes). Gray nodes represent everything else.
Error bars represent standard error of the mean calculated at each timepoint from four armpit samples collected from the right and left side of
each individual separately. See also Additional file 1: Figure S1
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(Fig. 4b, Additional file 1: Figure S3C, WR test, T0 vs T1–
T3 p < 0.001) and resuming the use of common beauty
products (T4–T6) (Additional file 1: Figure S3C) were ob-
served in the arm, face, and foot (Fig. 4b), although the
armpit exhibited the most pronounced changes (Fig. 4b,
Additional file 1: Figure S3D, E, random forest highlight-
ing that 100% of samples from each phase were correctly
predicted). Therefore, we focused our analysis on this
region. Molecular changes were noticeable starting the
first week (T1) of discontinuing beauty product use. As
shown for armpits in Fig. 4c, these changes at the chem-
ical level are specific to each individual, possibly due to
the extremely personalized lifestyles before the study and
match their original use of deodorant. Based on the initial
use of underarm products (T0) (Additional file 2: Table
S1), two groups of participants can be distinguished: a
group of five volunteers who used stick deodorant as evi-
denced by the mass spectrometry data and another group

of volunteers where we found few or no traces suggesting
they never or infrequently used stick deodorants
(Additional file 2: Table S1). Based on this criterion, the
chemical trends shown in Fig. 4c highlight that individuals
who used stick deodorant before the beginning of the
study (volunteers 1, 2, 3, 9, and 12) displayed a more pro-
nounced shift in their armpits’ chemistries as soon as they
stopped using deodorant (T1–T3), compared to individ-
uals who had low detectable levels of stick deodorant use
(volunteers 4, 6, 7, and 10), or “rarely-to-never” (volun-
teers 5 and 11) use stick deodorants as confirmed by the
volunteers (Additional file 1: Figure S3F, WR test, T0 vs
T1–T3 all p values < 0.0001, with greater distance for the
group of volunteers 1, 2, 3, 9, and 12, compared to volun-
teers 4, 5, 6, 7, 10, and 11). The most drastic shift in chem-
ical profiles was observed during the transition period,
when all participants applied the common antiperspirant
on a daily basis (T4–T6) (Additional file 1: Figure S3D, E).
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Fig. 3 Molecular and bacterial diversity over a 9-week period, comparing samples based on their molecular (UPLC-Q-TOF-MS) or bacterial (16S
rRNA amplicon) profiles. Molecular and bacterial diversity using the Shannon index was calculated from samples collected from each body part at
each timepoint, separately for female (n = 5) and male (n = 6) individuals. Error bars represent standard error of the mean calculated at each
timepoint, from up to four samples collected from the right and left side of each body part, of females (n = 5) and males (n = 6) separately. a, b
Molecular alpha diversity measured using the Shannon index from five females (left panel) and six males (right panel), over 9 weeks, from four
distinct body parts (armpits, face, arms, feet). c, d Bacterial alpha diversity measured using the Shannon index, from skin samples collected from
five female (left panel) and six male individuals (right panel), over 9 weeks, from four distinct body parts (armpits, face, arms, feet). See also
Additional file 1: Figure S2
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Finally, the molecular profiles became gradually more
similar to those collected before the experiment (T0) as
soon as the participants resumed using their personal
beauty products (T7–T9) (Additional file 1: Figure S3C),
although traces of skin care products did last through the
entire T7–T9 period in people who do not routinely apply
these products (Fig. 4c).
Comparing chemistries detected in armpits at the end

timepoints—when no products were used (T3) and
during product use (T6)—revealed distinct molecular
signatures characteristic of each phase (random forest
highlighting that 100% of samples from each group were
correctly predicted, see Additional file 1: Figure S3D, E).
Because volunteers used the same antiperspirant during
T4–T6, molecular profiles converged during that time des-
pite individual patterns at T3 (Fig. 4b, c, Additional file 1:
Figure S3D). These distinct chemical patterns reflect the

significant impact of beauty products on skin molecular
composition. Although these differences may in part be
driven by beauty product ingredients detected on the skin
(Additional file 1: Figure S1), we anticipated that additional
host- and microbe-derived molecules may also be involved
in these molecular changes.
To characterize the chemistries that vary over time,

we used molecular networking, a MS visualization ap-
proach that evaluates the relationship between MS/
MS spectra and compares them to reference MS/MS
spectral libraries of known compounds [29, 30]. We
recently showed that molecular networking can suc-
cessfully organize large-scale mass spectrometry data
collected from the human skin surface [18, 19].
Briefly, molecular networking uses the MScluster al-
gorithm [31] to merge all identical spectra and then
compares and aligns all unique pairs of MS/MS

b

c

a

Fig. 4 Individualized influence of beauty product application on skin metabolomics profiles over time. a Multivariate statistical analysis (principal
coordinate analysis (PCoA)) comparing mass spectrometry data collected over 9 weeks from the skin of 11 individuals, all body parts, combined
(first plot from the left) and then displayed separately (arm, armpits, face, feet). Color scale represents volunteer ID. The PCoA was calculated on
all samples together, and subsets of the data are shown in this shared space and the other panels. b The molecular profiles collected over 9
weeks from all body parts, combined then separately (arm, armpits, face, feet). c Representative molecular profiles collected over 9 weeks from
armpits of 11 individuals (volunteers 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12). Color gradient in b and c represents timepoints (time 0 to time 9), ranging
from the lightest orange color to the darkest one that represent the earliest (time 0) to the latest (time 9) timepoint, respectively. 0.5 timepoints
represent additional timepoints where three selected volunteers were samples (volunteers 4, 9, and 10). PCoA plots were generated using the
Bray–Curtis dissimilarity matrix and visualized in Emperor [28]. See also Additional file 1: Figure S3
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spectra based on their similarities where 1.0 indicates
a perfect match. Similarities between MS/MS spectra
are calculated using a similarity score, and are inter-
preted as molecular families [19, 24, 32–34]. Here, we
used this method to compare and characterize chem-
istries found in armpits, arms, face, and foot of 11
participants. Based on MS/MS spectral similarities,
chemistries highlighted through molecular networking
(Additional file 1: Figure S4A) were associated with
each body region with 8% of spectra found exclusively
in the arms, 12% in the face, 14% in the armpits, and
2% in the foot, while 18% of the nodes were shared
between all four body parts and the rest of spectra
were shared between two body sites or more
(Additional file 1: Figure S4B). Greater spectral
similarities were highlighted between armpits, face,
and arm (12%) followed by the arm and face (9%)
(Additional file 1: Figure S4B).

Molecules were annotated with Global Natural Prod-
ucts Social Molecular Networking (GNPS) libraries [29],
using accurate parent mass and MS/MS fragmentation
patterns, according to level 2 or 3 of annotation defined
by the 2007 metabolomics standards initiative [35].
Through annotations, molecular networking revealed
that many compounds derived from steroids (Fig. 5a–d),
bile acids (Additional file 1: Figure S5A-D), and
acylcarnitines (Additional file 1: Figure S5E-F) were ex-
clusively detected in the armpits. Using authentic stan-
dards, the identity of some pheromones and bile acids
were validated to a level 1 identification with matched
retention times (Additional file 1: Figure S6B, S7A, C,
D). Other steroids and bile acids were either annotated
using standards with identical MS/MS spectra but
slightly different retention times (Additional file 1:
Figure S6A) or annotated with MS/MS spectra match
with reference MS/MS library spectra (Additional file 1:

a c

b d

Fig. 5 Underarm steroids and their longitudinal abundance. a–d Steroid molecular families in the armpits and their relative abundance over a 9-
week period. Molecular networking was applied to characterize chemistries from the skin of 11 healthy individuals. The full network is shown in
Additional file 1: Figure S4A, and networking parameters can be found here http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
284fc383e4c44c4db48912f01905f9c5 for MS/MS datasets MSV000081582. Each node represents a consensus of a minimum of 3 identical MS/MS
spectra. Yellow nodes represent MS/MS spectra detected in armpits samples. Hexagonal shape represents MS/MS spectra match between skin
samples and chemical standards. Plots are representative of the relative abundance of each compound over time, calculated separately from LC-
MS1 data collected from the armpits of each individual. Steroids detected in armpits are a, dehydroisoandrosterone sulfate (m/z 369.190, rt 247 s),
b androsterone sulfate (m/z 371.189, rt 261 s), c 1-dehydroandrostenedione (m/z 285.185, rt 273 s), and d dehydroandrosterone (m/z 289.216, rt
303 s). Relative abundance over time of each steroid compound is represented. Error bars represent the standard error of the mean calculated at
each timepoint from four armpit samples from the right and left side of each individual separately. See also Additional file 1: Figures S4-S8
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Figure S6C, D, S7B, S6E-G). These compounds were
therefore classified as level 3 [35]. Acylcarnitines were
annotated to a family of possible acylcarnitines (we
therefore classify as level 3), as the positions of double
bonds or cis vs trans configurations are unknown
(Additional file 1: Figure S8A, B).
Among the steroid compounds, several molecular fam-

ilies were characterized: androsterone (Fig. 5a, b, d),
androstadienedione (Fig. 5c), androstanedione (Add-
itional file 1: Figure S6E), androstanolone (Additional file 1:
Figure S6F), and androstenedione (Additional file 1: Figure
S6G). While some steroids were detected in the armpits of
several individuals, such as dehydroisoandrosterone sul-
fate (m/z 369.19, rt 247 s) (9 individuals) (Fig. 5a,
Additional file 1: Figure S6A), androsterone sulfate (m/z
371.189, rt 261 s) (9 individuals) (Fig. 5b, Additional file 1:
Figure S6C), and 5-alpha-androstane-3,17-dione (m/z
271.205, rt 249 s) (9 individuals) (Additional file 1: Figure
S6E), other steroids including 1-dehydroandrostenedione
(m/z 285.185, rt 273 s) (Fig. 5c, Additional file 1: Figure
S6B), dehydroandrosterone (m/z 289.216, rt 303 s) (Fig. 5d,
Additional file 1: Figure S6D), and 5-alpha-
androstan-17.beta-ol-3-one (m/z 291.231, rt 318 s)
(Additional file 1: Figure S6F) were only found in the arm-
pits of volunteer 11 and 4-androstene-3,17-dione (m/z
287.200, rt 293 s) in the armpits of volunteer 11 and vol-
unteer 5, both are male that never applied stick deodor-
ants (Additional file 1: Figure S6G). Each molecular
species exhibited a unique pattern over the 9-week period.
The abundance of dehydroisoandrosterone sulfate (Fig. 5a,
WR test, p < 0.01 for 7 individuals) and dehydroandroster-
one (Fig. 5a, WR test, p = 0.00025) significantly increased
during the use of antiperspirant (T4–T6), while androster-
one sulfate (Fig. 5b) and 5-alpha-androstane-3,17-dione
(Additional file 1: Figure S6E) display little variation over
time. Unlike dehydroisoandrosterone sulfate (Fig. 5a) and
dehydroandrosterone (Fig. 5d), steroids including
1-dehydroandrostenedione (Fig. 5c, WR test, p =
0.00024) and 4-androstene-3,17-dione (Additional file 1:
Figure S6G, WR test, p = 0.00012) decreased in abun-
dance during the 3 weeks of antiperspirant application
(T4–T6) in armpits of male 11, and their abundance
increased again when resuming the use of his normal
skin care routines (T7–T9). Interestingly, even within
the same individual 11, steroids were differently
impacted by antiperspirant use as seen for
1-dehydroandrostenedione that decreased in abun-
dance during T4–T6 (Fig. 5c, WR test, p = 0.00024),
while dehydroandrosterone increased in abundance
(Fig. 5d, WR test, p = 0.00025), and this increase was
maintained during the last 3 weeks of the study
(T7–T9).
In addition to steroids, many bile acids (Additional file 1:

Figure S5A-D) and acylcarnitines (Additional file 1: Figure

S5E-F) were detected on the skin of several individuals
through the 9-week period. Unlike taurocholic acid found
only on the face (Additional file 1: Figures S5A, S7A) and
tauroursodeoxycholic acid detected in both armpits and
arm samples (Additional file 1: Figures S5B, S7B), other
primary bile acids such as glycocholic (Additional file 1:
Figures S5C, S7C) and chenodeoxyglycocholic acid
(Additional file 1: Figures S5D, S7D) were exclusively de-
tected in the armpits. Similarly, acylcarnitines were also
found either exclusively in the armpits (hexadecanoyl car-
nitines) (Additional file 1: Figures S5E, S8A) or in the
armpits and face (tetradecenoyl carnitine) (Additional file 1:
Figures S5F, S8B) and, just like the bile acids, they were
also stably detected during the whole 9-week period.

Bacterial communities and their variation over time
Having demonstrated the impact of beauty products on
the chemical makeup of the skin, we next tested the ex-
tent to which skin microbes are affected by personal care
products. We assessed temporal variation of bacterial
communities detected on the skin of healthy individuals
by evaluating dissimilarities of bacterial collections over
time using unweighted UniFrac distance [36] and com-
munity variation at each body site in association to
beauty product use [3, 15, 37]. Unweighted metrics are
used for beta diversity calculations because we are pri-
marily concerned with changes in community member-
ship rather than relative abundance. The reason for this
is that skin microbiomes can fluctuate dramatically in
relative abundance on shorter timescales than that
assessed here. Longitudinal variations were revealed for
the armpits (Fig. 6a) and feet microbiome by their over-
all trend in the PCoA plots (Fig. 6b), while the arm
(Fig. 6c) and face (Fig. 6d) displayed relatively stable bac-
terial profiles over time. As shown in Fig. 6a–d, although
the microbiome was site-specific, it varied more between
individuals and this inter-individual variability was main-
tained over time despite same changes in personal care
routine (WR test, all p values at all timepoints < 0.05, T5
p = 0.07), in agreement with previous findings that indi-
vidual differences in the microbiome are large and stable
over time [3, 4, 10, 37]. However, we show that shifts in
the microbiome can be induced by changing hygiene
routine and therefore skin chemistry. Changes associated
with using beauty products (T4–T6) were more
pronounced for the armpits (Fig. 6a, WR test, p = 1.61e
−52) and feet (Fig. 6b, WR test, p = 6.15e−09), while lit-
tle variations were observed for the face (Fig. 6d, WR
test, p = 1.402.e−83) and none for the arms (Fig. 6c, WR
test, p = 0.296).
A significant increase in abundance of Gram-negative bac-

teria including the phyla Proteobacteria and Bacteroidetes
was noticeable for the armpits and feet of both females
(Fig. 6e; Mann–Whitney U, p = 8.458e−07) and males
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(Fig. 6f; Mann–Whitney U, p = 0.0004) during the use of
antiperspirant (T4–T6), while their abundance remained
stable for the arms and face during that time (Fig. 6e, f;
female arm p = 0.231; female face p value = 0.475; male arm
p= 0.523;male face p = 6.848751e−07). These Gram-negative
bacteria include Acinetobacter and Paracoccus genera that
increased in abundance in both armpits and feet of females
(Additional file 1: Figure S9A), while a decrease in abun-
dance of Enhydrobacter was observed in the armpits of
males (Additional file 1: Figure S9B). Cyanobacteria, poten-
tially originating from plant material (Additional file 1:
Figure S9C) also increased during beauty product use (T4–
T6) especially in males, in the armpits and face of females
(Fig. 6e) and males (Fig. 6f). Interestingly, although chloro-
plast sequences (which group phylogenetically within the
cyanobacteria [38]) were only found in the facial cream
(Additional file 1: Figure S9D), they were detected in other
locations as well (Fig. 6e, f. S9E, F), highlighting that the
application of a product in one region will likely affect other
regions of the body. For example, when showering, a face lo-
tion will drip down along the body and may be detected on
the feet. Indeed, not only did the plant material from the

cream reveal this but also the shampoo used for the study
for which molecular signatures were readily detected on the
feet as well (Additional file 1: Figure S10A). Minimal average
changes were observed for Gram-positive organisms
(Additional file 1: Figure S10B, C), although in some
individuals the variation was greater than others
(Additional file 1: Figure S10D, E) as discussed for spe-
cific Gram-positive taxa below.
At T0, the armpit’s microflora was dominated by

Staphylococcus (26.24%, 25.11% of sequencing reads for
females and 27.36% for males) and Corynebacterium
genera (26.06%, 17.89% for females and 34.22% for
males) (Fig. 7a—first plot from left and Additional file 1:
Figure S10D, E). They are generally known as the dom-
inant armpit microbiota and make up to 80% of the
armpit microbiome [39, 40]. When no deodorants were
used (T1–T3), an overall increase in relative abundance
of Staphylococcus (37.71%, 46.78% for females and
30.47% for males) and Corynebacterium (31.88%, 16.50%
for females and 44.15% for males) genera was noticeable
(WR test, p < 3.071e−05) (Fig. 7a—first plot from left),
while the genera Anaerococcus and Peptoniphilus

e f

a b c d

Fig. 6 Longitudinal variation of skin bacterial communities in association with beauty product use. a-d Bacterial profiles collected from skin samples of
11 individuals, over 9 weeks, from four distinct body parts a) armpits, b) feet, c) arms and d) face, using multivariate statistical analysis (Principal
Coordinates Analysis PCoA) and unweighted Unifrac metric. Each color represents bacterial samples collected from an individual. PCoA were
calculated separately for each body part. e, f Representative Gram-negative (Gram -) bacteria collected from arms, armpits, face and feet of e) female
and f) male participants. See also Additional file 1: Figure S9A, B showing Gram-negative bacterial communities represented at the genus level
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decreased in relative abundance (WR test, p < 0.03644)
(Fig. 7a—first plot from left and Additional file 1: Figure
S10D, E). When volunteers started using antiperspirants
(T4–T6), the relative abundance of Staphylococcus
(37.71%, 46.78% females and 30.47% males, to 21.71%,
25.02% females and 19.25% males) and Corynebacterium
(31.88%, 16.50% females and 44.15% males, to 15.83%,
10.76% females and 19.60% males) decreased (WR test,
p < 3.071e−05) (Fig. 7a, Additional file 1: Figure S10D,
E) and at the same time, the overall alpha diversity in-
creased significantly (WR test, p = 3.47e−11) (Fig. 3c, d).
The microbiota Anaerococcus (WR test, p = 0.0006018),
Peptoniphilus (WR test, p = 0.008639), and Micrococcus
(WR test, p = 0.0377) increased significantly in relative
abundance, together with a lot of additional low-abun-
dant species that lead to an increase in Shannon alpha
diversity (Fig. 3c, d). When participants went back to
normal personal care products (T7–T9), the underarm
microbiome resembled the original underarm
community of T0 (WR test, p = 0.7274) (Fig. 7a). Be-
cause armpit bacterial communities are person-specific
(inter-individual variability: WR test, all p values at all
timepoints < 0.05, besides T5 p n.s), variation in bacterial
abundance upon antiperspirant use (T4–T6) differ
between individuals and during the whole 9-week period

(Fig. 7a—taxonomic plots per individual). For example,
the underarm microbiome of male 5 exhibited a unique
pattern, where Corynebacterium abundance decreased
drastically during the use of antiperspirant (82.74 to
11.71%, WR test, p = 3.518e−05) while in the armpits of fe-
male 9 a huge decrease in Staphylococcus abundance was
observed (Fig. 7a) (65.19 to 14.85%, WR test, p = 0.000113).
Unlike other participants, during T0–T3, the armpits of in-
dividual 11 were uniquely characterized by the dominance
of a sequence that matched most closely to the Enhydro-
bacter genera. The transition to antiperspirant use (T4–T6)
induces the absence of Enhydrobacter (30.77 to 0.48%, WR
test, p = 0.01528) along with an increase of Corynebacter-
ium abundance (26.87 to 49.74%, WR test, p = 0.1123)
(Fig. 7a—male 11).
In addition to the armpits, a decline in abundance of

Staphylococcus and Corynebacterium was perceived dur-
ing the use of the foot powder (46.93% and 17.36%, re-
spectively) compared to when no beauty product was used
(58.35% and 22.99%, respectively) (WR test, p = 9.653e−06
and p = 0.02032, respectively), while the abundance of
low-abundant foot bacteria significantly increased such as
Micrococcus (WR test, p = 1.552e−08), Anaerococcus (WR
test, p = 3.522e−13), Streptococcus (WR test, p = 1.463e
−06), Brevibacterium (WR test, p = 6.561e−05),

a

b

Fig. 7 Person-to-person bacterial variabilities over time in the armpits and feet. a Armpit microbiome changes when stopping personal care
product use, then resuming. Armpit bacterial composition of the 11 volunteers combined, then separately, (female 1, female 2, female 3, male 4,
male 5, male 6, male 7, female 9, male 10, male 11, female 12) according to the four periods within the experiment. b Feet bacterial variation
over time of the 12 volunteers combined, then separately (female 1, female 2, female 3, male 4, male 5, male 6, male 7, female 9, male 10, male
11, female 12) according to the four periods within the experiment. See also Additional file 1: Figure S9-S13
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Moraxellaceae (WR test, p = 0.0006719), and Acinetobac-
ter (WR test, p = 0.001487), leading to a greater bacterial
diversity compared to other phases of the study (Fig. 7b
first plot from left, Additional file 1: Figure S10D, E,
Fig. 3c, d).
We further evaluated the relationship between the two

omics datasets by superimposing the principal coordinates
calculated from metabolome and microbiome data (Pro-
crustes analysis) (Additional file 1: Figure S11) [34, 41, 42].
Metabolomics data were more correlated with patterns ob-
served in microbiome data in individual 3 (Additional file 1:
Figure S11C, Mantel test, r = 0.23, p < 0.001), individual 5
(Additional file 1: Figure S11E, r = 0.42, p < 0.001), individ-
ual 9 (Additional file 1: Figure S11H, r = 0.24, p < 0.001),
individual 10 (Additional file 1: Figure S11I, r = 0.38,
p < 0.001), and individual 11 (Additional file 1: Figure
S11J, r = 0.35, p < 0.001) when compared to other individ-
uals 1, 2, 4, 6, 7, and 12 (Additional file 1: Figure S11A, B,
D, F, G, K, respectively) (Mantel test, all r < 0.2, all p values
< 0.002, for volunteer 2 p n.s). Furthermore, these correla-
tions were individually affected by ceasing (T1–T3) or re-
suming the use of beauty products (T4–T6 and T7–T9)
(Additional file 1: Figure S11A-K).
Overall, metabolomics–microbiome correlations were

consistent over time for the arms, face, and feet although
alterations were observed in the arms of volunteers 7
(Additional file 1: Figure S11G) and 10 (Additional file 1:
Figure S11I) and the face of volunteer 7 (Additional file 1:
Figure S11G) during product use (T4–T6). Molecular–
bacterial correlations were mostly affected in the armpits
during antiperspirant use (T4–T6), as seen for
volunteers male 7 (Additional file 1: Figure S11G) and
11 (Additional file 1: Figure S11J) and females 2
(Additional file 1: Figure S11B), 9 (Additional file 1:
Figure S11H), and 12 (Additional file 1: Figure S11K).
This perturbation either persisted during the last 3
weeks (Additional file 1: Figure S11D, E, H, I, K) when
individuals went back to their normal routine (T7–T9)
or resembled the initial molecular–microbial correlation
observed in T0 (Additional file 1: Figure S11C, G, J).
These alterations in molecular–bacterial correlation are
driven by metabolomics changes during antiperspirant
use as revealed by metabolomics shifts on the PCoA
space (Additional file 1: Figure S11), partially due to the
deodorant’s chemicals (Additional file 1: Figure S1J, K)
but also to changes observed in steroid levels in the
armpits (Fig. 5A, C, D, Additional file 1: Figure S6G),
suggesting metabolome-dependant changes of the skin
microbiome. In agreement with previous findings that
showed efficient biotransformation of steroids by
Corynebacterium [43, 44], our correlation analysis asso-
ciates specific steroids that were affected by antiperspir-
ant use in the armpits of volunteer 11 (Fig. 5c, d,
Additional file 1: Figure S6G) with microbes that may

produce or process them: 1-dehydroandrostenedione,
androstenedione, and dehydrosterone with Corynebacter-
ium (r = − 0.674, p = 6e−05; r = 0.671, p = 7e−05; r = 0.834,
p < 1e−05, respectively) (Additional file 1: Figure S12A, B,
C, respectively) and Enhydrobacter (r = 0.683, p = 4e−05;
r = 0.581, p = 0.00095; r = 0.755, p < 1e−05 respectively)
(Additional file 1: Figure S12D, E, F, respectively).

Discussion
Despite the widespread use of skin care and hygiene
products, their impact on the molecular and microbial
composition of the skin is poorly studied. We estab-
lished a workflow that examines individuals to systemat-
ically study the impact of such lifestyle characteristics on
the skin by taking a broad look at temporal molecular
and bacterial inventories and linking them to personal
skin care product use. Our study reveals that when the
hygiene routine is modified, the skin metabolome and
microbiome can be altered, but that this alteration de-
pends on product use and location on the body. We also
show that like gut microbiome responses to dietary
changes [20, 21], the responses are individual-specific.
We recently reported that traces of our lifestyle mole-

cules can be detected on the skin days and months after
the original application [18, 19]. Here, we show that
many of the molecules associated with our personal skin
and hygiene products had a half-life of 0.5 to 1.9 weeks
even though the volunteers regularly showered, swam,
or spent time in the ocean. Thus, a single application of
some of these products has the potential to alter the
microbiome and skin chemistry for extensive periods of
time. Our data suggests that although host genetics and
diet may play a role, a significant part of the resilience of
the microbiome that has been reported [10, 45] is due to
the resilience of the skin chemistry associated with per-
sonal skin and hygiene routines, or perhaps even con-
tinuous re-exposure to chemicals from our personal care
routines that are found on mattresses, furniture, and
other personal objects [19, 27, 46] that are in constant
contact. Consistent with this observation is that individ-
uals in tribal regions and remote villages that are infre-
quently exposed to the types of products used in this
study have very different skin microbial communities
[47, 48] and that the individuals in this study who rarely
apply personal care products had a different starting me-
tabolome. We observed that both the microbiome and
skin chemistry of these individuals were most signifi-
cantly affected by these products. This effect by the use
of products at T4–T6 on the volunteers that infre-
quently used them lasted to the end phase of the study
even though they went back to infrequent use of per-
sonal care products. What was notable and opposite to
what the authors originally hypothesized is that the use
of the foot powder and antiperspirant increased the
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diversity of microbes and that some of this diversity con-
tinued in the T7–T9 phase when people went back to
their normal skin and hygiene routines. It is likely that
this is due to the alteration in the nutrient availability
such as fatty acids and moisture requirements, or alter-
ation of microbes that control the colonization via
secreted small molecules, including antibiotics made by
microbes commonly found on the skin [49, 50].
We detected specific molecules on the skin that origi-

nated from personal care products or from the host.
One ingredient that lasts on the skin is propylene glycol,
which is commonly used in deodorants and antiperspi-
rants and added in relatively large amounts as a humec-
tant to create a soft and sleek consistency [51]. As
shown, daily use of personal care products is leading to
high levels of exposure to these polymers. Such polymers
cause contact dermatitis in a subset of the population
[51, 52]. Our data reveal a lasting accumulation of these
compounds on the skin, suggesting that it may be pos-
sible to reduce their dose in deodorants or frequency of
application and consequently decrease the degree of
exposure to such compounds. Formulation design of
personal care products may be influenced by performing
detailed outcome studies. In addition, longer term impact
studies are needed, perhaps in multiple year follow-up
studies, to assess if the changes we observed are perman-
ent or if they will recover to the original state.
Some of the host- and microbiome-modified mole-

cules were also detected consistently, such as acylcarni-
tines, bile acids, and certain steroids. This means that a
portion of the molecular composition of a person’s skin
is not influenced by the beauty products applied to the
skin, perhaps reflecting the level of exercise for acylcar-
nitines [53, 54] or the liver (dominant location where
they are made) or gallbladder (where they are stored)
function for bile acids. The bile acid levels are not re-
lated to sex and do not change in amount during the
course of this study. While bile acids are typically associ-
ated with the human gut microbiome [34, 55–58], it is
unclear what their role is on the skin and how they get
there. One hypothesis is that they are present in the
sweat that is excreted through the skin, as this is the
case for several food-derived molecules such as caffeine
or drugs and medications that have been previously re-
ported on the human skin [19] or that microbes
synthesize them de novo [55]. The only reports we could
find on bile acids being associated with the skin describe
cholestasis and pruritus diseases. Cholestasis and prur-
itus in hepatobiliary disease have symptoms of skin bile
acid accumulation that are thought to be responsible for
severe skin itching [59, 60]. However, since bile acids
were found in over 50% of the healthy volunteers, their
detection on the skin is likely a common phenotype
among the general population and not only reflective of

disease, consistent with recent reports challenging these
molecules as biomarkers of disease [59]. Other mole-
cules that were detected consistently came from per-
sonal care products.
Aside from molecules that are person-specific and

those that do not vary, there are others that can be
modified via personal care routines. Most striking is how
the personal care routines influenced changes in hor-
mones and pheromones in a personalized manner. This
suggests that there may be personalized recipes that
make it possible to make someone more or less attract-
ive to others via adjustments of hormonal and phero-
monal levels through alterations in skin care.

Conclusion
Here, we describe the utilization of an approach that
combines metabolomics and microbiome analysis to as-
sess the effect of modifying personal care regime on skin
chemistry and microbes. The key findings are as follows:
(1) Compounds from beauty products last on the skin
for weeks after their first use despite daily showering. (2)
Beauty products alter molecular and bacterial diversity
as well as the dynamic and structure of molecules and
bacteria on the skin. (3) Molecular and bacterial tem-
poral variability is product-, site-, and person-specific,
and changes are observed starting the first week of
beauty product use. This study provides a framework for
future investigations to understand how lifestyle charac-
teristics such as diet, outdoor activities, exercise, and
medications shape the molecular and microbial compos-
ition of the skin. These factors have been studied far
more in their impact on the gut microbiome and chem-
istry than in the skin. Revealing how such factors can
affect skin microbes and their associated metabolites
may be essential to define long-term skin health by
restoring the appropriate microbes particularly in the
context of skin aging [61] and skin diseases [49] as has
shown to be necessary for amphibian health [62, 63], or
perhaps even create a precision skin care approach that
utilizes the proper care ingredients based on the micro-
bial and chemical signatures that could act as key players
in host defense [49, 64, 65].

Methods
Subject recruitment and sample collection
Twelve individuals between 25 and 40 years old were re-
cruited to participate in this study, six females and six
males. Female volunteer 8 dropped out of the study as
she developed a skin irritation during the T1–T3 phase.
All volunteers signed a written informed consent in
accordance with the sampling procedure approved by
the UCSD Institutional Review Board (Approval Number
161730). Volunteers were required to follow specific in-
structions during 9 weeks. They were asked to bring in
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samples of their personal care products they used prior
to T0 so they could be sampled as well. Following the
initial timepoint time 0 and during the first 3 weeks
(week 1–week 3), volunteers were asked not to use any
beauty products (Fig. 1b). During the next 3 weeks (week
4–week 6), four selected commercial beauty products
provided to all volunteers were applied once a day at
specific body part (deodorant for the armpits, soothing
foot powder between the toes, sunscreen for the face, and
moisturizer for front forearms) (Fig. 1b, Additional file 3:
Table S2 Ingredient list of beauty products). During the
first 6 weeks, volunteers were asked to shower with a head
to toe shampoo. During the last 3 weeks (week 7–week 9),
all volunteers went back to their normal routine and used
the personal care products used before the beginning of
the study (Fig. 1b). Volunteers were asked not to shower
the day before sampling. Samples were collected by the
same three researchers to ensure consistency in sampling
and the area sampled. Researchers examined every subject
together and collected metabolomics and microbiome
samples from each location together. Samples were col-
lected once a week (from day 0 to day 68—10 timepoints
total) for volunteers 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, and 12, and
on day 0 and day 6 for volunteer 8. For individuals 4, 9,
and 10, samples were collected twice a week. Samples col-
lected for 11 volunteers during 10 timepoints: 11 volun-
teers × 10 timepoints × 4 samples × 4 body sites = 1760.
Samples collected from 3 selected volunteers during 9
additional timepoints: 3 volunteers × 9 timepoints × 4
samples × 4 body sites = 432. All samples were collected
following the same protocol described in [18]. Briefly,
samples were collected over an area of 2 × 2 cm, using
pre-moistened swabs in 50:50 ethanol/water solution for
metabolomics analysis or in Tris-EDTA buffer for 16S
rRNA sequencing. Four samples were collected from each
body part right and left side. The locations sampled were
the face—upper cheek bone and lower jaw, armpit—upper
and lower area, arm—front of the elbow (antecubitis) and
forearm (antebrachium), and feet—in between the first
and second toe and third and fourth toe. Including per-
sonal care product references, a total of 2275 samples
were collected over 9 weeks and were submitted to
both metabolomics and microbial inventories.

Metabolite extraction and UPLC-Q-TOF mass
spectrometry analysis
Skin swabs were extracted and analyzed using a previ-
ously validated workflow described in [18, 19]. All
samples were extracted in 200 μl of 50:50 ethanol/water
solution for 2 h on ice then overnight at − 20 °C. Swab
sample extractions were dried down in a centrifugal
evaporator then resuspended by vortexing and sonication
in a 100 μl 50:50 ethanol/water solution containing two in-
ternal standards (fluconazole 1 μM and amitriptyline 1 μM).

The ethanol/water extracts were then analyzed using a pre-
viously validated UPLC-MS/MS method [18, 19]. We used
a ThermoScientific UltiMate 3000 UPLC system for liquid
chromatography and a Maxis Q-TOF (Quadrupole-Ti-
me-of-Flight) mass spectrometer (Bruker Daltonics), con-
trolled by the Otof Control and Hystar software packages
(Bruker Daltonics) and equipped with ESI source. UPLC
conditions of analysis are 1.7 μm C18 (50 × 2.1mm)
UHPLC Column (Phenomenex), column temperature
40 °C, flow rate 0.5ml/min, mobile phase A 98% water/2%
acetonitrile/0.1% formic acid (v/v), mobile phase B 98%
acetonitrile/2% water/0.1% formic acid (v/v). A linear gradi-
ent was used for the chromatographic separation: 0–2min
0–20% B, 2–8min 20–99% B, 8–9min 99–99% B, 9–10
min 0% B. Full-scan MS spectra (m/z 80–2000) were ac-
quired in a data-dependant positive ion mode. Instrument
parameters were set as follows: nebulizer gas (nitrogen)
pressure 2 Bar, capillary voltage 4500V, ion source
temperature 180 °C, dry gas flow 9 l/min, and spectra rate
acquisition 10 spectra/s. MS/MS fragmentation of 10 most
intense selected ions per spectrum was performed using
ramped collision induced dissociation energy, ranged
from 10 to 50 eV to get diverse fragmentation patterns.
MS/MS active exclusion was set after 4 spectra and
released after 30 s.
Mass spectrometry data collected from the skin of 12

individuals can be found here MSV000081582.

LC-MS data processing
LC-MS raw data files were converted to mzXML format
using Compass Data analysis software (Bruker Daltonics).
MS1 features were selected for all LC-MS datasets col-
lected from the skin of 12 individuals and blank samples
(total 2275) using the open-source software MZmine
[66]—see Additional file 4: Table S3 for parameters. Sub-
sequent blank filtering, total ion current, and internal
standard normalization were performed (Additional file 5:
Table S4) for representation of relative abundance of mo-
lecular features (Fig. 2, Additional file 1: Figure S1), princi-
pal coordinate analysis (PCoA) (Fig. 4). For steroid
compounds in Fig. 5a–d, bile acids (Additional file 1: Fig-
ure S5A-D), and acylcarnitines (Additional file 1: Figure
S5E, F) compounds, crop filtering feature available in
MZmine [66] was used to identify each feature separately
in all LC-MS data collected from the skin of 12 individuals
(see Additional file 4: Table S3 for crop filtering parame-
ters and feature finding in Additional file 6: Table S5).
Heatmap in Fig. 2 was constructed from the bucket

table generated from LC-MS1 features (Additional file 7:
Table S6) and associated metadata (Additional file 8:
Table S7) using the Calour command line available here:
https://github.com/biocore/calour. Calour parameters
were as follows: normalized read per sample 5000 and
cluster feature minimum reads 50. Procrustes and
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Pearson correlation analyses in Additional file 1: Figures
S10 and S11 were performed using the feature table in
Additional file 9: Table S8, normalized using the prob-
abilistic quotient normalization method [67].

16S rRNA amplicon sequencing
16S rRNA sequencing was performed following the
Earth Microbiome Project protocols [68, 69], as
described before [18]. Briefly, DNA was extracted using
MoBio PowerMag Soil DNA Isolation Kit and the V4
region of the 16S rRNA gene was amplified using bar-
coded primers [70]. PCR was performed in triplicate for
each sample, and V4 paired-end sequencing [70] was
performed using Illumina HiSeq (La Jolla, CA). Raw
sequence reads were demultiplexed and quality
controlled using the defaults, as provided by QIIME
1.9.1 [71]. The primary OTU table was generated using
Qiita (https://qiita.ucsd.edu/), using UCLUST (https://
academic.oup.com/bioinformatics/article/26/19/2460/23
0188) closed-reference OTU picking method against
GreenGenes 13.5 database [72]. Sequences can be found
in EBI under accession number EBI: ERP104625 or in
Qiita (qiita.ucsd.edu) under Study ID 10370. Resulting
OTU tables were then rarefied to 10,000 sequences/sam-
ple for downstream analyses (Additional file 10 Table
S9). See Additional file 11: Table S10 for read count per
sample and Additional file 1: Figure S13 representing
the samples that fall out with rarefaction at 10,000
threshold. The dataset includes 35 blank swab controls
and 699 empty controls. The blank samples can be
accessed through Qiita (qiita.ucsd.edu) as study ID
10370 and in EBI with accession number EBI:
ERP104625. Blank samples can be found under the
metadata category “sample_type” with the name “empty
control” and “Swabblank.” These samples fell below the
rarefaction threshold at 10,000 (Additional file 11:
Table S10).
To rule out the possibility that personal care products

themselves contained the microbes that induced the
changes in the armpit and foot microbiomes that were
observed in this study (Fig. 7), we subjected the common
personal care products that were used in this study
during T4–T6 also to 16S rRNA sequencing. The data
revealed that within the limit of detectability of the
current experiment, few 16S signatures were detected.
One notable exception was the most dominant plant-
originated bacteria chloroplast detected in the sunscreen
lotion applied on the face (Additional file 1: Figure S9D),
that was also detected on the face of individuals and at a
lower level on their arms, sites where stable microbial
communities were observed over time (Additional file 1:
Figure S9E, F). This finding is in agreement with our
previous data from the 3D cartographical skin maps that
revealed the presence of co-localized chloroplast and

lotion molecules [18]. Other low-abundant microbial
signatures found in the sunscreen lotion include
additional plant-associated bacteria: mitochondria [73],
Bacillaceae [74, 75], Planococcaceae [76], and Rumino-
coccaceae family [77], but all these bacteria are not re-
sponsible for microbial changes associated to beauty
product use, as they were poorly detected in the armpits
and feet (Fig. 7).
To assess the origin of Cyanobacteria detected in

skin samples, each Greengenes [72] 13_8 97% OTU
table (per lane; obtained from Qiita [78] study
10,370) was filtered to only features with a p__Cyano-
bacteria phylum. The OTU maps for these tables—
which relate each raw sequence to an OTU ID—were
then filtered to only those observed p__Cyanobacteria
OTU IDs. The filtered OTU map was used to extract
the raw sequences into a single file. Separately, the
unaligned Greengenes 13_8 99% representative se-
quences were filtered into two sets, first the set of
representatives associated with c__Chloroplast (our
interest database), and second the set of sequences
associated with p__Cyanobacteria without the
c__Chloroplast sequences (our background database).
Platypus Conquistador [79] was then used to deter-
mine what reads were observed exclusively in the
interest database and not in the background database.
Of the 4,926,465 raw sequences associated with a
p__Cyanobacteria classification (out of 318,686,615
total sequences), at the 95% sequence identity level
with 100% alignment, 4,860,258 sequences exclusively
recruit to full-length chloroplast 16S by BLAST [80]
with the bulk recruiting to streptophytes (with
Chlorophyta and Stramenopiles to a lesser extent).
These sequences do not recruit non-chloroplast
Cyanobacteria full length 16S.

Half-life calculation for metabolomics data
In order to estimate the biological half-life of molecules
detected in the skin, the first four timepoints of the
study (T0, T1, T2, T3) were considered for the calcula-
tion to allow the monitoring of personal beauty products
used at T0. The IUPAC’s definition of biological half-life
as the time required to a substance in a biological
system to be reduced to half of its value, assuming an
approximately exponential removal [81] was used. The
exponential removal can be described as C(t) = C0e

−tλ

where t represents the time in weeks, C0 represents the
initial concentration of the molecule, C(t) represents the
concentration of the molecule at time t, and λ is the rate
of removal [http://onlinelibrary.wiley.com/doi/10.1002/
9780470140451.ch2/summary]. The parameter λ was
estimated by a mixed linear effects model in order to
account for the paired sample structure. The regression
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model tests the null hypothesis that λ is equal to zero
and only the significant (p value < 0.05) parameters were
considered.

Principal coordinate analysis
We performed principal coordinate analysis (PCoA) on
both metabolomics and microbiome data. For metabolo-
mics, we used MS1 features (Additional file 5: Table S4)
and calculated Bray–Curtis dissimilarity metric using Clus-
terApp (https://github.com/mwang87/q2_metabolomics).
For microbiome data, we used rarefied OTU table

(Additional file 10: Table S9) and used unweighted Uni-
Frac metric [36] to calculate beta diversity distance
matrix using QIIME2 (https://qiime2.org). Results from
both data sources were visualized using Emperor
(https://biocore.github.io/emperor/) [28].

Molecular networking
Molecular networking was generated from LC-MS/MS data
collected from skin samples of 11 individuals MSV00
0081582, using the Global Natural Products Social Molecu-
lar Networking platform (GNPS) [29]. Molecular network
parameters for MS/MS data collected from all body parts
of 11 individuals during T0–T9 MSV000081582 are access-
ible here http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
284fc383e4c44c4db48912f01905f9c5. Molecular network
parameters for MS/MS data collected from armpits T0–T3
MSV000081582 and deodorant used by individual 1 and 3
MSV000081580 can be found here http://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=f5325c3b278a46b29e8860ec
57915ad and here http://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=aaa1af68099d4c1a87e9a09f398fe253, respectively.
Molecular networks were exported and visualized in Cytos-
cape 3.4.0. [82]. Molecular networking parameters were set
as follows: parent mass tolerance 1Da, MS/MS fragment
ion tolerance 0.5 Da, and cosine threshold 0.65 or greater,
and only MS/MS spectral pairs with at least 4 matched
fragment ions were included. Each MS/MS spectrum was
only allowed to connect to its top 10 scoring matches,
resulting in a maximum of 10 connections per node. The
maximum size of connected components allowed in the
network was 600, and the minimum number of spectra re-
quired in a cluster was 3. Venn diagrams were generated
from Cytoscape data http://gnps.ucsd.edu/ProteoSAFe/sta-
tus.jsp?task=284fc383e4c44c4db48912f01905f9c5 using
Cytoscape [82] Venn diagram app available here http://
apps.cytoscape.org/apps/all.

Shannon molecular and bacterial diversity
The diversity analysis was performed separately for 16S
rRNA data and LC-MS data. For each sample in each
feature table (LC-MS data and microbiome data), we
calculated the value of the Shannon diversity index. For
LC-MS data, we used the full MZmine feature table

(Additional file 5: Table S4). For microbiome data, we
used the closed-reference BIOM table rarefied to 10,000 se-
quences/sample. For diversity changes between timepoints,
we aggregated Shannon diversity values across groups of in-
dividuals (all, females, males) and calculated mean values
and standard errors. All successfully processed samples
(detected features in LC-MS or successful sequencing with
10,000 or more sequences/sample) were considered.

Beauty products and chemical standards
Samples (10 mg) from personal care products used dur-
ing T0 and T7–T9 MSV000081580 (Additional file 2:
Table S1) and common beauty products used during
T4–T6 MSV000081581 (Additional file 3: Table S2)
were extracted in 1 ml 50:50 ethanol/water. Sample ex-
tractions were subjected to the same UPLC-Q-TOF MS
method used to analyze skin samples and described
above in the section “Metabolite extraction and
UPLC-Q-TOF mass spectrometry analysis.” Authentic
chemical standards MSV000081583 including 1-dehy-
droandrostenedion (5 μM), chenodeoxyglycocholic acid
(5 μM), dehydroisoandrosterone sulfate (100 μM), glyco-
cholic acid (5 μM), and taurocholic acid (5 μM) were an-
alyzed using the same mass spectrometry workflow used
to run skin and beauty product samples.

Monitoring beauty product ingredients in skin samples
In order to monitor beauty product ingredients used
during T4–T6, we selected only molecular features
present in each beauty product sample (antiperspirant,
facial lotion, body moisturizer, soothing powder) and
then filtered the aligned MZmine feature table
(Additional file 5: Table S4) for the specific feature in
specific body part samples. After feature filtering, we
selected all features that had a higher average intensity
on beauty product phase (T4–T6) compared to
non-beauty product phase (T1–T3). The selected fea-
tures were annotated using GNPS dereplication output
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=69319c
af219642a5a6748a3aba8914df, plotted using R package
ggplot2 (https://cran.r-project.org/web/packages/ggplot
2/index.html) and visually inspected for meaningful
patterns.

Random forest analysis
Random forest analysis was performed in MetaboAnalyst
3.0 online platform http://www.metaboanalyst.ca/faces/
home.xhtml. Using LC-MS1 features found in armpit
samples collected on T3 and T6. Random forest parame-
ters were set as follows: top 1000 most abundant
features, number of predictors to try for each node 7,
estimate of error rate (0.0%).
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BugBase analysis
To determine the functional potential of microbial com-
munities within our samples, we used BugBase [83]. Be-
cause we do not have direct access to all of the gene
information due to the use of 16S rRNA marker gene se-
quencing, we can only rely on phylogenetic information
inferred from OTUs. BugBase takes advantage of this in-
formation to predict microbial phenotypes by associating
OTUs with gene content using PICRUSt [84]. Thus,
using BugBase, we can predict such phenotypes as Gram
staining, or oxidative stress tolerance at each timepoint
or each phase. All statistical analyses in BugBase are per-
formed using non-parametric differentiation tests
(Mann–Whitney U).

Taxonomic plots
Rarefied OTU counts were collapsed according to the
OTU’s assigned family and genus name per sample, with
a single exception for the class of chloroplasts. Relative
abundances of each family-genus group are obtained by
dividing by overall reads per sample, i.e., 10,000. Samples
are grouped by volunteer, body site, and time/phase.
Abundances are aggregated by taking the mean overall
samples, and resulting abundances are again normalized
to add up to 1. Low-abundant taxa are not listed in the
legend and plotted in grayscale. Open-source code is
available at https://github.com/sjanssen2/ggmap/blob/
master/ggmap/snippets.py

Dissimilarity-based analysis
Pairwise dissimilarity matrices were generated for meta-
bolomics and 16S metagenomics quantification tables,
described above, using Bray–Curtis dissimilarity through
QIIME 1.9.1 [71]. Those distance matrices were used to
perform Procrustes analysis (QIIME 1.9.1), and Mantel
test (scikit-bio version 0.5.1) to measure the correlation
between the metabolome and microbiome over time.
The metabolomics dissimilarities were used to perform
the PERMANOVA test to assess the significance of body
part grouping. The PCoA and Procrustes plots were vi-
sualized in EMPeror. The dissimilarity matrices were
also used to perform distance tests, comparing the dis-
tances within and between individuals and distances
from time 0 to times 1, 2, and 3 using Wilcoxon
rank-sum tests (SciPy version 0.19.1) [19].

Statistical analysis for molecular and microbial data
Statistical analyses were performed in R and Python (R
Core Team 2018). Monotonic relationships between two
variables were tested using non-parametric Spearman
correlation tests. The p values for correlation significance
were subsequently corrected using Benjamini and Hoch-
berg false discovery rate control method. The relationship
between two groups was tested using non-parametric

Wilcoxon rank-sum tests. The relationship between mul-
tiple groups was tested using non-parametric Kruskal–
Wallis test. The significance level was set to 5%, unless
otherwise mentioned, and all tests were performed as
two-sided tests.
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(DOCX 1140 kb)

Additional file 2: Table S1. List of personal (T0 and T7–9) beauty
products and their frequency of use. (XLSX 30 kb)

Additional file 3: Table S2. List of ingredients of common beauty
products used during T4–T6. (PDF 207 kb)

Additional file 4: Table S3. Mzmine feature finding and crop filtering
parameters. (XLSX 4 kb)

Additional file 5: Table S4. Feature table for statistical analysis with
blank filtering and total ion current normalization. (CSV 150242 kb)

Additional file 6: Table S5. Feature table for individual feature
abundance in armpits. (XLSX 379 kb)

Additional file 7: Table S6. Feature table for Calour analysis. (CSV
91651 kb)

Additional file 8: Table S7. Metadata for Calour analysis. (TXT 129 kb)

Additional file 9: Table S8. feature table with Probabilistic quotient
normalization for molecular–microbial analysis. (ZIP 29557 kb)

Additional file 10: Table S9. OTU table rarefied to 10,000 sequences
per sample. (BIOM 9493 kb)

Additional file 11: Table S10. 16S rRNA sequencing read counts per
sample. (TSV 2949 kb)

Acknowledgements
We thank all volunteers who were recruited in this study for their
participation and Carla Porto for discussions regarding beauty products
selected in this study. We further acknowledge Bruker for the support of the
shared instrumentation infrastructure that enabled this work.

Funding
This work was partially supported by US National Institutes of Health (NIH)
Grant. P.C.D. acknowledges funding from the European Union’s Horizon 2020
Programme (Grant 634402). A.B was supported by the National Institute of
Justice Award 2015-DN-BX-K047. C.C. was supported by a fellowship of the
Belgian American Educational Foundation and the Research Foundation
Flanders. L.Z., J.K, and K.Z. acknowledge funding from the US National
Institutes of Health under Grant No. AR071731. TLK was supported by
Vaadia-BARD Postdoctoral Fellowship Award No. FI-494-13.

Bouslimani et al. BMC Biology           (2019) 17:47 Page 17 of 20

https://github.com/sjanssen2/ggmap/blob/master/ggmap/snippets.py
https://github.com/sjanssen2/ggmap/blob/master/ggmap/snippets.py
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6
https://doi.org/10.1186/s12915-019-0660-6


Availability of data and materials
The mass spectrometry data have been deposited in the MassIVE database
(MSV000081582, MSV000081580 and MSV000081581). Molecular network
parameters for MS/MS data collected from all body parts of 11 individuals
during T0-T9 MSV000081582 are accessible here http://gnps.ucsd.edu/Proteo-
SAFe/status.jsp?task=284fc383e4c44c4db48912f01905f9c5. Molecular network
parameters for MS/MS data collected from armpits T0–T3 MSV000081582
and deodorant used by individual 1 and 3 MSV000081580 can be found here
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f5325c3b278a46-
b29e8860ec5791d5ad and here http://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=aaa1af68099d4c1a87e9a09f398fe253, respectively. OTU tables can
be found in Qiita (qiita.ucsd.edu) as study ID 10370, and sequences can be
found in EBI under accession number EBI: ERP104625.
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