
Treacy and Hurst BMC Ophthalmology 2012, 12:46
http://www.biomedcentral.com/1471-2415/12/46
DEBATE Open Access
The case for intraocular delivery of PPAR agonists
in the treatment of diabetic retinopathy
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Abstract

Background: Systemic therapeutics targeting the peroxisome proliferator-activated receptors have been found to
be beneficial in the treatment of diabetic retinopathy. In this paper, we provide a rationale for the use of these
therapeutics as intraocular agents. In addition, we introduce the peroxisome proliferator-activated receptors and
describe their functions in response to the drugs.

Discussion: Based on the evidence of large-scale clinical studies investigating the systemic administration of
fenofibrate, this ligand for peroxisome proliferator-activated receptor-α is potentially a good candidate for
intraocular delivery. Here, we describe the mechanisms by which it might be acting to improve diabetic
retinopathy, its relative safety and we speculate on how it could be developed for intraocular delivery.

Summary: In this paper, we provide a rationale for the further investigation of peroxisome proliferator-activated
receptor-α agonists as intraocular agents for the treatment of diabetic retinopathy.
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Background
Diabetic retinopathy (DR) is a leading cause of blindness
in adults, with some degree of DR occurring in nearly all
type 1 diabetics and in the majority of type 2 diabetics
[1]. Hitherto, it was thought that the only way to prevent
the development and progression of DR was by tight
control of blood sugar, plasma lipids and blood pressure
[1]. However, it has since been shown that treatment of
type 2 diabetics with lipid-lowering fenofibrates results
in a significant reduction in the progression of DR which
may be unrelated to any effect on plasma lipid levels
[2,3]. A related class of compounds, the thiazolidine-
diones (TZDs), have been found to reduce progression
to DR in at least one clinical trial [4]. Thus far, the bene-
ficial effect of PPAR agonists on the retina has been
observed following systemic delivery for the treatment of
diabetic patients. It is our contention that the intraocular
delivery of these agonists could specifically ameliorate
DR.
Fibrates and TZDs are agonists for two isoforms of

nuclear receptor superfamily members, the peroxisome
proliferator-activated receptors (PPARs) α and γ,
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respectively. PPARs are localised to the nucleus, where
they interact with other proteins involved in gene ex-
pression, including various co-activator and co-repressor
proteins [5]. In order for PPARs to induce gene expres-
sion, they must also interact with their co-activator, the
retinoic X receptor (RXR), and then bind to a PPAR re-
sponse element (PPRE) in a given gene Figure 1 [6-9].
PPARs modulate the expression of numerous genes, in-
cluding those involved in lipid metabolism, adipogenesis,
inflammatory signalling and oxidative stress [9-11], in a
tissue-dependent manner [12]. Importantly, PPARs also
regulate the expression of themselves via a positive feed-
back mechanism [13,14] or through a co-operative sys-
tem with other transcription factors [15,16].
PPARs are generally considered to be inactive until

bound by a ligand [17]. Both endogenous ligands and
synthetic agonists have been described for PPARα and γ.
Endogenous ligands include fatty acids and lipid metabo-
lites, such as prostaglandins and leukotrienes [18-21].
Interestingly, prostaglandins and leukotrienes are also
known to be mediators of inflammation and oxidative
stress [22,23]. Synthetic agonists for the different PPAR
isoforms are similar in terms of chemical structure and
molecular mass; in fact, there are several known dual
agonists that activate both PPARα and PPARγ [24,25].
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Figure 1 Agonist-bound PPARs induce gene expression. Activated PPARs must first associate with their co-receptor, retinoid X receptor (RXR),
in order to modulate transcription of specific genes. RXR binds to its ligand, retinoic acid, and interacts with PPAR bound to an agonist (e.g.
fibrates). Together, RXR and PPAR can then bind to a consensus sequence of nucleotides, known as the PPAR response element (PPRE). PPAR and
RXR binding triggers expression of a responsive gene . Abbreviations: RA, retinoic acid, FF, fenofibrate.
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The aforementioned synthetic PPAR agonists, fibrates
and TZDs, are structurally very similar. However, re-
search shows that fenofibrate specifically acts via PPARα
[26], whilst TZDs are known to specifically activate
PPARγ [27-30]. Further, PPARα and PPARγ are also
known to have distinct physiological roles [9,31]. While
PPARα increases the uptake and beta-oxidation of fatty
acids, as well as reduces the synthesis and secretion of
triglycerides, PPARγ specifically induces adipogenesis
and stimulates triglyceride storage [12]. PPARγ is
thought to improve insulin sensitivity via its stimulatory
effects on GLUT4 and adiponectin [31]. Although both
PPARα and PPARγ have been found to inhibit inflam-
mation, they do so within different cell types via distinct
targets [10,12]. Compared to PPARα, PPARγ has broader
anti-inflammatory activity due to targeting numerous
transcription factors within more cell types than PPARα
[12]. In particular, PPARγ has been found to function as
an inhibitor of monocyte/macrophage function by block-
ing pro-inflammatory signals [32-34]. To date, PPAR
agonists have been clinically utilised for the treatment of
diabetes and dyslipidaemia due to their beneficial effects
on insulin sensitivity and lipid metabolism.
The PPARγ agonists, TZDs, are prescribed for lower-

ing blood glucose levels [35] but it is uncertain whether
they could also reduce DR progression since there are
no randomised clinical trials. However, there has been
one retrospective review of diabetic patients receiving
rosiglitazone which revealed a reduction in development
of proliferative DR [4], although this paper was criticised
because of unmatched controls [36]. TZDs have also
been trialled in animal models and were found to reduce
choroidal neovascularisation [37]. Interestingly, the
TZDs in this study were given by intraocular injection,
suggesting that this delivery route of PPAR agonists
might also be efficacious in humans [37]. Against the
use of TZDs in the treatment of DR are the findings that
systemic administration of troglitazone in humans was
associated with increased vascular endothelial growth
factor (VEGF) expression [38] and with an increased risk
of diabetic macular oedema (DMO) [39]. Although the
latter has been challenged by subsequent studies [40],
questions remain about the overall safety and efficacy of
TZDs [9,41,42]. In addition to TZDs, newer PPARγ
modulators are being developed which could have
enhanced safety profiles [9,43]. Further scientific and
clinical studies are needed to clarify the role of PPARγ
in DR and to determine whether treatment with TZDs
or novel PPARγ agonists would be beneficial. Currently,
no PPARγ agonists are known to reduce DR progression
to the same extent observed with fibrates.

Discussion
In the UK, under the NICE guidelines, fibrates are pre-
scribed as a first-line therapy for diabetics with high
serum triglycerides and are often given in combination
with statins [35]. Recently, two large, randomised clinical
trials showed an important secondary benefit of
systemically-delivered fenofibrate on DR in type 2 dia-
betics. In the FIELD study, fenofibrate (200 mg/day)
taken over five years reduced the need for laser photo-
coagulation to treat diabetic maculopathy by 36% and
proliferative retinopathy by 32% [2]. Similar results were
observed in the ACCORD Eye Study, wherein the use of
fenofibrate along with simvastatin reduced progression
of DR by 40% compared to simvastatin alone [3], with
DR progression defined as a deterioration by three steps
on the ETDRS severity scale. Importantly, in the FIELD
study in particular, this benefit was independent of
plasma lipid levels [2]. In addition, in both the FIELD
and ACCORD studies, the benefit of fenofibrate was in-
dependent of glycaemic control. These findings could
suggest that fenofibrate is having local effects within the
eye not necessarily related to systemic metabolism.
Diabetic retinopathy is characterised by microangiopa-

thy, which is thought to be caused by oxidative stress,
advanced glycation end-products (AGEs), inflammatory
mediators and endothelial cell death [44-46]. The benefi-
cial effects of fenofibrate observed in the FIELD and AC-
CORD Eye studies could be due to reduced oxidative
stress and inflammation, as well as effects on vascular
function. Several studies have analysed the pharmaco-
logical mechanisms of fenofibrate individually. For ex-
ample, fenofibrate has been shown to reduce circulating
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markers of oxidative stress in dyslipidaemic patients
[47]. It has also been found to prevent inflammation by
blocking AGE-induced NF-κB activation in animal mod-
els [48]. Fenofibrate has been found to ameliorate vascu-
lar function, improving blood flow in diabetics [49]. One
recent study investigated the combined effects of fenofi-
brate on oxidative stress, inflammation and vascular
tone in an animal model of diabetes [50]. This study
found that fenofibrate improved vascular relaxation and
increased expression of the antioxidant enzymes, super-
oxide dismutase and catalase [50]. Interestingly, they
also observed a decrease in the level of a proinflamma-
tory marker, myeloperoxidase (MPO) [50]. Importantly,
a comprehensive screen of donated human retinal pig-
ment epithelia (RPE) revealed that PPARα (the receptor
for fenofibrate) was highly expressed while PPARγ was
absent from the RPE [51]. Further, laboratory studies
using human RPE cells under hyperglycaemic conditions
found that fenofibrate reduced RPE monolayer perme-
ability [52] via blocking activation of AMP-activated pro-
tein kinase (AMPK) [53,54] and the reduction in
permeability was dose-dependent, indicating that intrao-
cular delivery of fenofibrate could be highly efficacious.
In summary, there is an expanding molecular basis for
the positive effects of fenofibrate observed in the FIELD
and ACCORD Eye studies.
Compared to other currently available PPAR agonists,

fenofibrate appears to have a better safety profile. Fenofi-
brate has been prescribed for many years and is generally
well-tolerated, with only 2% of patients discontinuing use
due to side-effects [55]. There have been concerns that
long-term use of fenofibrates might be associated with an
increased risk of cardiovascular disease, particularly in
those with renal impairment [56]. However, assessment
of data from the FIELD study did not support this, pro-
viding further evidence for the safety profile of fenofi-
brate [56]. Given the findings of the large-scale FIELD
and ACCORD Eye studies, fenofibrate has been found to
reduce progression of DR and has not been associated
with drug safety issues, making it a good candidate for
potential intraocular delivery.
To our knowledge, the intraocular delivery of fenofi-

brate has not yet been examined. Therefore, animal and
clinical trials are needed to determine if this delivery
method would be suitable for the prevention and treat-
ment of DR. The pharmacokinetics of these agonists in
the eye is unknown. To date, fenofibrate has been for-
mulated for oral delivery and is converted by esterases
into the active compound, fenofibric acid [57]. Fenofibric
acid has a half-life of 16 h and reaches a steady-state
level in the circulation within five days of the com-
mencement of treatment [55]. Given this need for ester-
ase conversion, the delivery of a pre-activated form of
fenofibrate into the eye could be more effective. One
example of such a fenofibrate derivative is ABT-335,
which is a choline salt of fenofibric acid and does not re-
quire esterase processing [55]. Such a readily bioactive
drug could be better suited to intraocular delivery than
the fenofibrate parent compound.
Should treatment with fenofibrate alone prove benefi-

cial in the management of DR, combination therapies
could then be examined. For example, it is now wide-
spread practice to treat DMO with intraocular injections
of anti-VEGF therapeutics [58-62]. While treatment with
anti-VEGF is effective, it requires frequent injections
[58,62-64]. This represents a burden on the patients and
the healthcare delivery services. It is conceivable that
intraocular anti-VEGF therapies could be combined with
fenofibrate in the same injection, which might reduce
the frequency of injections and therefore represent an
improved treatment strategy. Whether the combination
of fenofibrate and anti-VEGF agents will be viable for
co-administration would need to be examined.
The goal of this paper is to provide a rationale for the

intraocular injection of PPAR agonists, particularly feno-
fibrate or its derivatives, and to encourage further re-
search in this area.
Summary

� The ACCORD and FIELD Eye studies showed a
significant beneficial effect on DR in diabetics
treated with systemic fenofibrates.

� There is evidence from one study that intraocular
delivery of TZDs is effective in treating CNV in an
animal model, suggesting that PPAR agonists can be
biologically active in the eye.

� Relative expression levels in the RPE suggest that
PPARα agonists might be more beneficial than
PPARγ agonists for the treatment of DR.

� There is emerging molecular evidence for the
beneficial effects of PPARα agonists in the treatment
of DR that goes beyond an improvement in plasma
lipid levels.

� The commonplace treatment of DR with intraocular
anti-VEGF agents could be used to facilitate PPARα
agonist delivery. In other words, fibrates could be
delivered concurrently with anti-VEGF using the
same injection.
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