EURASIP Journal on Wireless Communications and Networking 2005:3, 390—-400

(© 2005 Lars Berlemann et al.

Multimode Communication Protocols Enabling

Reconfigurable Radios

Lars Berlemann

Chair of Communication Networks, RWTH Aachen University, Kopernikusstrafie 16, D-52074 Aachen, Germany

Email: ber@comnets.rwth-aachen.de

Ralf Pabst

Chair of Communication Networks, RWTH Aachen University, Kopernikusstrafle 16, D-52074 Aachen, Germany

Email: pab@comnets.rwth-aachen.de

Bernhard Walke

Chair of Communication Networks, RWTH Aachen University, Kopernikusstrafle 16, D-52074 Aachen, Germany

Email: walke@comnets.rwth-aachen.de

Received 24 September 2004; Revised 21 February 2005

This paper focuses on the realization and application of a generic protocol stack for reconfigurable wireless communication sys-
tems. This focus extends the field of software-defined radios which usually concentrates on the physical layer. The generic protocol
stack comprises common protocol functionality and behavior which are extended through specific parts of the targeted radio
access technology. This paper considers parameterizable modules of basic protocol functions residing in the data link layer of the
ISO/OSI model. System-specific functionality of the protocol software is realized through adequate parameterization and com-
position of the generic modules. The generic protocol stack allows an efficient realization of reconfigurable protocol software and
enables a completely reconfigurable wireless communication system. It is a first step from side-by-side realized, preinstalled modes
in a terminal towards a dynamic reconfigurable anymode terminal. The presented modules of the generic protocol stack can also
be regarded as a toolbox for the accelerated and cost-efficient development of future communication protocols.
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1. INTRODUCTION

The radio access of future ubiquitous communication net-
works will be released from the constrains of cellular wireless
networks, as for instance universal mobile telecommunication
system (UMTS), or wireless local area networks (WLAN).
Wireless mobile broadband systems, providing a patchy cov-
erage in densely populated urban areas, will play an im-
portant role. For details on such a fixed and planned relay-
based radio network, see [1, 2]. The addressed future wireless
network will have to combine several radio access technolo-
gies (RATs). Consequently, multimode capable terminals and
base stations are required to enable the seamless interwork-
ing between these RATs. Multimode architectures can already
be found in existing systems, like IEEE 802.16 [3] with differ-
ent modes of the physical layer (PHY).

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Software-defined radios (SDRs) [4, 5] are a promising ap-
proach towards these multimode devices. The recent tech-
nological progress allows an extension of the key issues in
research of SDRs from the signal processing of the physical
layer on the complete communication chain used for wire-
less communication. The current research efforts are target-
ing at the realization of cognitive radios [4, 6, 7]: self-aware,
frequency-agile radio systems that are able to identify un-
used radio spectrum. These cognitive radios require proto-
col reconfigurability to unfold their advantage of dynamic
spectrum usage. Therefore, this paper extends the focus of
SDRs on the protocol software used for reliable commu-
nication over the air. Especially, the data link layer (DLL)
and network layer corresponding to the ISO/OSI reference
model [8] are considered. This work supplements the re-
search of the integrated project E2R [9] dealing with end-to-
end reconfigurability. The approach taken in this work aims
at maximizing flexibility by providing a framework that is
both general enough to accommodate a wide range of proto-
cols, yet efficient enough to ensure competitive performance.
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Figure 1: UML diagram of the generic protocol stack in the context of protocol reconfigurability.

Similar goals have been formulated and followed in the soft-
ware engineering domain. The x-Kernel [10] architecture
composes a protocol graph of protocol components together
into a system, but the approach does not permit dynamic re-
configuration of the protocol graph and does not specifically
target wireless communications. The DARPA active network-
ing program [11] tries to answer the key question of loca-
tion (and nature) of programmability with the perspective
to build a flexible distributed computing system, again with
a focus on fixed networks.

This paper consolidates previous publications [12, 13]
and deduces summarizing conclusions. After introducing the
idea of a generic protocol stack in Section 2, its application
for protocol reconfigurability in the context of a multimode
capable protocol architecture is outlined thereafter. The re-
alization of a generic protocol stack, based on fundamental
protocol functions that can be parameterized, is summarized
in Section 3. The composition of specific protocol layers of
adequately parameterized modules is shown in Section 4.
Section 5 introduces the composition of system-specific lay-
ers at the example of the UMTS radio link control (RLC) layer,
the transmission control protocol (TCP), and the IEEE 802.11
medium access control (MAC) layer, which differ in their
development history as well as in their layer classification
corresponding to the ISO/OSI reference model. A segmen-
tation/reassembly module and an automatic repeat request
(ARQ) protocol module are validated and evaluated analyt-
ically and through simulations in Section 4. These modules
are used with different parameterization for composing the
above-mentioned three specific protocol layers.

2. THE GENERIC PROTOCOL STACK

The rationale for approaching a generic protocol stack is that
all communication protocols have common functions. These
commonalities can be exploited to build an efficient mul-
timode capable wireless system. The aim is to gather these
common parts in a single generic stack and specialize this
generic part. Thereby, the particular requirements of the tar-
geted RAT are considered, as depicted in Figure 1. The tar-
geted advantages of this concept are runtime reconfigurabil-

ity and maintainability, code/resource sharing, protocol de-
velopment acceleration through reusability, and continuous
performance evaluation in the context of quality-of-service
(QoS) dimensioning.

The initial step towards a generic stack is a detailed,
layer-by-layer analysis of communication protocols to iden-
tify their similarities. The realization of generic parts is cru-
cial for the success of the proposed concept in the face of a
tradeoff between genericity, that is, general usability, and im-
plementation effort. As depicted in Figure 1, the generic pro-
tocol stack comprises

(i) fundamental protocol functions;
(ii) a protocol architecture;
(iii) data structures;
(iv) a protocol framework;

(v) protocol management.

They form, together with RAT specific parts, a system-
specific protocol stack. An efficient multimode capa-
ble reconfigurable stack is realized in adding cross-stack
management-related functions. The cross-stack manage-
ment of the generic protocol stack for enabling protocol re-
configurability is introduced in detail in Section 3.

2.1.

There are in general two possibilities from the software en-
gineering perspective for approaching the generic protocol
stack: (1) parameterizable functional modules and/or (2) in-
heritance, depending on the abstraction level of the identified
protocol commonalities. As introduced above, this paper fo-
cuses more on the modular approach while the inheritance-
based approach is considered in [14, 15]. Additionally, [16]
takes up the idea of a generic protocol stack in focusing on a
generic link layer for the cooperation of different access net-
works at the level of the DLL. However, the link layer proto-
cols are not the only protocols that have to be considered in a
multimode capable network but the complete protocol stack.
This implies, for instance, higher layer functions as the con-
trol and management of the radio resources as well as mobil-

1ty.

Two complementing approaches for realization
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FIGURE 2: A reconfigurable protocol stack based on generic func-
tional modules in the context of a completely reconfigurable termi-
nal.

2.2. Identifying commonalities

The evolution of the digital cellular mobile radio networks
originated in the global system for mobile communication
(GSM) toward systems of the third generation, as for exam-
ple UMTS, has shown that in their standardization, devel-
opers have fallen back on well-proven functions and mecha-
nisms which are adopted to the specific requirements of their
application. The approach towards an efficient multimode
protocol stack, introduced in this paper, is based on these
protocol commonalities.

As the architecture of modern communication protocols
cannot be forced into the classical layered architecture of the
ISO/OSI reference model, it is rather difficult to identify sim-
ilarities and attribute these to specific layers. Therefore, this
paper deepens the level of examination and considers fun-
damental protocol functions as introduced above as one ba-
sis for a generic protocol stack, contrary to [14, 15] where
complete protocols are analyzed for genericity. The identified
protocol functions correspond mainly to the DLL as speci-
fied in the ISO/OSI reference model. Nevertheless, they can
be found in multiple layers of today’s protocol stacks. The
functions of segmentation/reassembly or an ARQ protocol
used for error correction are an example for this. They are
located in the RLC as well as in the transport layer, namely in
the TCP.

3. ENABLING RECONFIGURABILITY

The generic protocol stack, with its pool of generic functions
as introduced above, enables an efficient as well as flexible
realization of reconfigurable protocol stack. Full, end-to-end
reconfigurability from the modem part up to the applications
requires a layer overlapping management and additional re-
configuration functions. Therefore, as this paper considers
communication protocols implemented in software, a proto-
col reconfiguration manager is introduced in Figure 2, which
accomplishes all reconfigurability-related tasks of the PHY,
MAC, RLC/DLL, and transport layer. These system-specific
layers are based on the pool of generic protocol functions and
mechanisms.

gle protocol or complete protocol stack;

(iii) administration of the user data flow during the recon-
figuration process, as for instance the redirection of
the user data from the old to the reconfigured protocol
stack;

(iv) cross-layer optimization through protocol conver-
gence, as introduced in the next section. This implies
for example the transfer of protocol or user data from
the old stack to the new one;

(v) support and enabling of reconfiguration functions of
the network, as for instance the support of a network-
initiated reconfiguration or an update of the network
information about the status of the terminal.

The reconfiguration of the protocol stack, administrated
through the protocol reconfiguration manager, has two char-
acteristics: (1) the creation of a new stack/layer consisting of
adequate parameterized modules of the generic stack and de-
struction of the existing one and (2) the reconfiguration of
the existing protocol stack in exchanging the parameteriza-
tion of the corresponding modules.

3.2. Protocol convergence in future wireless networks

The generic protocol stack enables the protocol convergence
in future wireless networks. The convergence of such multi-
mode protocol stacks has two dimensions: on the one hand
the convergence between two adjacent layers, in the following
referred to as vertical convergence, and on the other hand, the
convergence between layers located in the different modes of
the protocol stack which have the same functions, in the fol-
lowing referred to as horizontal convergence. The generic pro-
tocol stack, as introduced above, enables both the horizontal
as well as the vertical protocol convergence.

Figure 3 depicts the transition between two protocol
stacks of different-air interface modes of a wireless network.
The different PHY options of IEEE 802.16 could serve as an
example, see [3]. Presently, these PHY options are not en-
visaged to coexist in terminal or access equipment, although
they share a common MAC protocol with very little option-
specific extensions. The protocol stack is separated into the
user and control plane (u- and c-plane) on the one hand
and the management plane (m-plane) on the other hand.
The split between common and specific parts of the pro-
tocol is here exemplary depicted for the MAC layer, as ex-
plained above. This split may be also necessary in the PHY,
RLC, or higher layers, depending on the targeted protocol
architecture and functional flexibility of the common part.
A cross-stack management logically connects the protocol
stacks of the different modes on the m-plane.

A seamless interworking and optimized transition be-
tween mode 1 and mode 2 have certain requirements to the
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cross-stack management. The protocol data, as for instance
the protocol status information of the existing connections,
has to be transferred between the two modes. This horizon-
tal convergence is performed by a mode convergence proto-
col. Therefore, protocol functions of the c-plane, common
to the different modes, are necessary to access u-plane status
information. These common functions rely on a well-defined
interface towards the mode-specific part of the layer. For fur-
ther details on the proposed protocol architecture and corre-
sponding infrastructure, see [17].

4. MODULAR APPROACH—THE GENERIC PROTOCOL
STACK AS TOOLBOX OF PROTOCOL FUNCTIONS

Again, the generic protocol stack is the realization of the
common parts, as illustrated in Figure 1, and implements
its common functions on the basis of modules. These com-
mon protocol functions get their system-specific behavior
based on parameterization. Once specified, these modules

1 SAP

Toolbox of functional

modules ultiplexer PDU factory

Multiplexer

Segmentation
unit

:

SAP

Manager

F1Gure 5: Toolbox of functional modules as part of the generic pro-
tocol stack.

can be repeatedly used with a different set of parameters cor-
responding to the specific communication system. The mod-
ules of generic protocol functions form together with system-
specific modules a complete protocol layer, as depicted in
Figure 4. The communication inside the layer is performed
with the help of generic data structures, that is, generic ser-
vice primitives and generic protocol data units (PDUs), which
are also considered as being a part of the generic stack, see
again Figure 1. The functional modules form a toolbox of
protocol functions as illustrated in Figure 5.

A unique manager as well as interfaces for the service ac-
cess points (SAPs) to the adjacent layers complete the fully
functional protocol layer as depicted in Figure 4. In detail,
the mentioned components have the following tasks.

(i) Functional module (generic or RAT specific): realizes a
certain fundamental functionality as black box. In case
of a generic module, a list of parameters for charac-
terizing the functionality is given and the underlying
functionality is hidden. The comprehensiveness of the
fulfilled function is limited to fit straightforward into
a single module.

(ii) Manager: composes and administrates the layer dur-
ing runtime. This implies the composition, rearrange-
ment, parameterization, and data questioning of the
functional modules. Additionally, the manager admin-
istrates the layer’s internal communication, as for in-
stance the connection of the layer’s modules through
generic service primitives. It is the layer’s counterpart
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of the protocol reconfiguration manager as introduced (iv) discarding of several-times received segments™;
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(iv) Service access point (SAP): here, services of the layer are The asterisk * marked functions are considered in

performed for the adjacent layers. The layer may com-
municate via generic primitives without a translation
interface to an adjacent layer if the said layer has the
same modular composition. The interface is needed if
it is demanded that the layer appears as a classic layer
fitting into an ordinary protocol stack.

(v) PDU factory (as functional module, later depicted in
Figures 6, 7, and 8): composes layer-specific protocol
frames and places them as payload in generic PDUs.

This approach enables the simulation and performance
evaluation on several levels. A single (sub-) layer as well as a
complete protocol stack can be composed out of the intro-
duced modules. To facilitate understanding, the parameteri-
zation itself is introduced later.

4.1.

Taking Section 2.2 into account, the following functions of
the DLL are considered as being part of the generic protocol
stack:

Generic protocol functions of the data link layer

(i) error handling with the help of forward error correc-
tion (FEC) or ARQ protocols as for instance Send-
and-Wait ARQ, Go-back-N ARQ™, or Selective-Reject
ARQ;

(ii) flow control™®;

(iii) segmentation, concatenation, and padding of protocol
data units (PDUs)™*;

this paper while the other functions are target of the au-
thors’ongoing work.

4.2. Parameterization of functional modules

Parameterization implies not only specific values, as for in-
stance the datagram size of a segmentation module, but also
a configuration of behavior and characteristics of a module,
as for example the concretion of an ARQ module as a Go-
back-N ARQ protocol with specified window sizes for trans-
mission and reception. This implies as well a configuration of
the modules’ interface to the outside. Thus, the parameteri-
zation of functional modules may mean (1) a specification of
certain variables, (2) the switching on/off of certain function-
ality/behavior, and (3) an extension of the module’s interface
to the outside.

Taking the example of the segmentation/reassembly
module, the parameterization may imply among other
things:

(i) use of concatenation;
(ii) use of padding, that is, filling up of the PDU to reach a
certain size;
(iii) transmitter or/and receiver role;
(iv) buffer size for SDUs concatenated in a single PDU;
(v) size of PDU after handling;
(vi) behavior in case of error, that is, interworking with
ARQ module.
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At the example of the ARQ module, the parameterization
means the specification of

(i) ARQ protocol characteristic, for instance Go-Back-N
ARQ or Selective-Reject ARQ;

(ii) transmitter or/and receiver role;

(iii) receive and transmission window sizes;

(iv) fixed, variable (TCP) window length or open/shut
mechanism (LLC);

(v) timer value, after a packet is assumed to be lost;

(vi) connection service: inexistent (UMTS RLC), sepa-
rated for each direction (802.11—CSMA/CA with
RTS/CTS), 2-way handshake (GSM LLC), or 3-way
handshake (TCP);

(vii) use of negative acknowledgments (NACKs).

5. COMPOSITION OF SYSTEM-SPECIFIC LAYERS

As introduced above, the link layer functions are not limited
in their appearance to the DLL. To illustrate the applicability
of the modular approach based on the toolbox of protocol
functions of Figure 5, a composition of three exemplary pro-
tocol layers, all differently localized in a protocol stack cor-
responding to the ISO/OSI reference model, is introduced in
the following: (1) a UMTS RLC layer in Figure 6, (2) a TCP,
IP, and UDP layers in Figure 7, and (3) an IEEE 802.11 MAC
layer in Figure 8. The consideration of Figure 7 is limited
in the following to the TCP layer, marked through the gray
dash-dotted rectangle. The medium access of the distributed
coordination function (DCF) of 802.11 may be regarded as
a Send-and-Wait ARQ, simply realized in the ARQ module

by a Go-Back-N ARQ with a window length of 1. The per-
formance of these three layers is evaluated in the subsequent
section.

6. SIMULATIVE EVALUATION AND VALIDATION OF
THE FUNCTIONAL MODULES

The parameterizable modules are implemented in the specifi-
cation and description language (SDL), and evaluated with the
help of a modular object-oriented software and environment
for protocol simulation (MOSEPS) that provides basic traf-
fic generators, a model of an erroneous transmission chan-
nel and statistical evaluation methods. This section intro-
duces the modular approach to protocol functions in focus-
ing on the segmentation in UMTS and the error correction
through ARQ protocols in TCP and 802.11. The adequate-
ness of the modules for being used in a multimode capable
protocol stack is shown. The modules are parameterized cor-
responding to a specific protocol layer and their simulative
behavior is compared to analytical models known from the
literature.

6.1. UMTS radio link control layer

In general, segmentation is needed in all cases where higher
layer PDUs, referred to as service data units (SDUs), need to
be separated into multiple PDUs to be further handled by
lower layers. This restriction concerning the size of a PDU
may result for instance from reasonable limitations of a PDU
transmitted with error correction in an ARQ protocol. It may
also be motivated through the capacity of a transport channel
offered by the physical layer, using the notation of UMTS.



396 EURASIP Journal on Wireless Communications and Networking

To LLC

SAP

e >

Interface

! Mobility unit !

SAP :
(i |
o

To STA : :
MGMT 4 ~
layer
Manager

Multiplexer
Mobility/data

| Segmentation unit |

| ARQ unit |
T

| PDU factory |

SAP ¥ 1 pHY

FIGURE 8: 802.11 MAC layer based on the functional modules of the generic protocol stack.

In case of multiple users sharing a common channel, the
segmentation can increase the channels efficiency in hav-
ing a multiplexing gain. Concatenation increases thereby the
channel utilization as it is outlined in Figure 9. The channel
utilization as quotient of user payload and available channel
capacity is given through

payload _ lpayload

channel capacity  [lpayloaa/packet size| - packet size

in the case of no concatenation. The packet size of the
physical channel is assumed to be fixed and the packet
length of the user data /ay10ad determines if the segmented
higher layer SDU(s) fit(s) into a single PDU. We assume
that an additional physical channel is established if the user
data requires it. Thus, additional channel capacity is pro-
vided and the available capacity is increased. In case of no
concatenation, the fixed-sized packet is transmitted partly
empty over the physical channel. Consequently, the chan-
nels’ overall utilization, that is, the effectively used capac-
ity compared to the amount of provided capacity, is de-
creased and follows a “zigzag” behavior when an additional
physical channel is used as illustrated by the solid line in
Figure 9.

The introduced example of Figure 9 focuses on the seg-
mentation aspects of the UMTS RLC in the unacknowledged
mode (UM). The UM of the RLC has the responsibility to
concatenate SDUs to a PDU of a predefined length, here
128 bytes. The simulative results with and without concate-
nation are given by the markers. The payload packet size, that
is, the user data, is increased up to 500 bytes and the channel
utilization as introduced above is evaluated.

In applying the segmentation in a communication proto-
col, the protocol overhead comes into play. Due to this over-
head, more capacity than transmitted user data is required as
observable in Figure 9 for [,y10ad = 384 bytes in the case of no

09r
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O Sim.: with concatenation
+ Sim.: without concatenation

Analyt.: with concatenation
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FiGure 9: Utilization of channels with a fixed packet segmentation
size of 128 bytes.

concatenation. The same stands for the usage of concatena-
tion, as the observed channel utilization does not match the
ideal one. The number of SDUs prepared for transmission in
a single PDU is here limited so that for small lay10a4 Values, a
PDU is not completely filled. In summary, the parameteriz-
able segmentation/reassembly module adequately reflects the
expected behavior and can be validly used in a multimode
capable protocol stack.

6.2. Transmission control protocol layer

As introduced above in Figure 7, a TCP layer can be com-
posed out of the functional modules of the DLL as being
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(a) Varied BER = 1073 or 10° and window length w = 8. (b) Varied window length w = 8 or 64 and BER = 107.

part of the generic protocol stack. To validate the Go-Back-N
mechanisms of the TCP layer’s ARQ module, we measure the
protocol overhead in dependency on the payload packet size
in the case of erroneous transmissions. The focus is thereby
on the influence of two effects: the bit error ratio (BER) of
the radio channel, that is, the wireless medium, and the size
of the send and receive window w.

With a packet length of Lpacket = Iheader + lpayload> Where
TCP has fixed header length of lheader = 40 bytes, the packet
error ratio (PER) can be calculated to

PER = 1 — (1 — BER)%'8, (2)

Based hereon the overhead to payload quotient for the
Go-Back-N ARQ can be derived and approximated [12] to

overhead
payload
_ lheader
lpayload
. SME((w/2) —i+1) - (1 —PER)™ - PER  lpacket
w/2 lpayload)
3)

where w is the length of the transmission window leading
to the analytical results as depicted in Figure 10. This figure
illustrates the overhead to payload ratio in dependency on

the frame length of the payload data for (a) a BER of 107>
and 107° on the one hand and (b) window length of 8 and
64 on the other hand. Figure 10a shows the expected per-
formance corresponding to the Go-Back-N ARQ. The over-
head to payload ratio increases with increasing bit error ra-
tio and an optimal frame length for the payload data to
minimize the said ratio can be determined. From the cross-
protocol optimization perspective, this frame length may be
used as a dimensioning rule for segmentation. The same
stands for Figure 10b: there the overhead-to-payload ratio
increases with increasing window length, as the amount of
data which has to be retransmitted, in the case of an error
corresponding to the Go-Back-N ARQ, increases. The differ-
ence between analysis and simulation for large payload data
frames in Figures 10a and 10b is reasoned by the send/receive
buffers of the implemented TCP layers. Data packets in these
buffers have to be discarded when an error is detected and are
neglected in the approximation (3). In summary, the ARQ
module of the generic protocol stack fulfils adequately its in-
tended purpose.

6.3. IEEE 802.11 medium access control layer

In this section, the modular composition of an IEEE 802.11
MAC layer as illustrated in Figure 8 is validated and evalu-
ated. Therefore, the average throughput of the carrier sensing
multiple access with collision avoidance (CSMA/CA) -based
decentralized medium access by the DCF with and without
request to send/clear to send (RTS/CTS) is analyzed and sim-
ulated.
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the simulative evaluation. Throughput evaluation-channel capacity=1Mbps; (a) packet size=128 bytes, (b) packet size=4096 bytes.

TaBLE 1: Time slot durations in microseconds and probabilities that
the medium is empty (e), successfully (s) allocated, or a collision (c)
occurs [18, 19]. The fixed values result from the time length of an
RTS/CTS sequence.

Duration with Duration without

Probability

RTS/CTS RTS/CTS
pe=(1-1)" T, =1 T, =1
ps = n‘r(l — T)"_l T, = 636 + SIpalead T, = 636+ 81payload
pe=1—pe—ps T, =170 T, = 234 + 8l ayl0ad

The channel capacity is mainly wasted by two effects:
MAC header sending and collisions. One way to an analytical
approach for determination of the throughput is to calculate
the collision probability p and the access probability T with
the help of a two-dimensional Markov chain for the mod-
eling of the backoff window of the DCF [18, 19] resulting
nto

—(2pE\ "
pzl—(l—‘[)n_l, T:2'<1+W()+pW011_(221;)) 5
(4)

where # is the number of stations and W, the minimum
backoff window size, here we chose Wy = 8. With the
help of the average time slot length Tyyerage On the basis of
Table 1, the average total system throughput #;turation can be

calculated to

PL
Lyload, Taverage = PeTe + PsTs + P T..  (5)

Lsaturation = T
average

We assume a channel rate of 1 Mbps. The slot length,
short interframe space (SIFS) and distributed coordination
function IFS (DIFS) are 1, 6, and 10 microseconds resulting
into the analytical as well as simulative results of Figure 11.
There, the overall system throughput, with and without
RTS/CTS, in dependency on the number of stations is de-
picted. For small packets, Lpayload = 128 bytes, Figure 11a,
the headers are the main cause for an inefficient use of the
medium. For larger frames, Lpayload = 4096 bytes, Figure 11b,
a collision wastes more time, as a transmitting station is only
able to notice an interfered frame after its ending. Therefore,
the RTS/CTS mechanism is introduced, to have just a small
RTS frame lost in case of a collision. The simulation agrees
mainly with the analytic determination of the throughput
of (5) and illustrates the superiority of the RTS/CTS-based
solution. As the ARQ module of the generic protocol stack
reflects the expected behavior of RTS/CTS mechanism [19],
this module can be legitimately used in an 802.11 MAC layer.

7. CONCLUSION

The introduced concept of a generic protocol stack enables
protocol software for future multimode capable systems
under the consideration of protocol reconfiguration. The
generic protocol stack, as a collection of modular protocol
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functions, takes up the usual advance of software engineering
in the field of protocol development and evaluation: it has
fallen back on well-proven and known protocol functions
and behavior from the portfolio of the engineers’ experience.
A generic realization of these functions in the form of inde-
pendent modules results in a toolbox of protocol functions as
a construction kit for protocol development. Dimensioning
rules for an adequate support of QoS in wireless communica-
tion from the perspective of the protocols can be derived. In
taking the tradeoff of genericity into account, these thought-
ful realized modules stimulate efficiency through reusabil-
ity and maintainability as well as accelerate the development
process itself. However, the consideration of common pro-
tocol functions and protocol convergence during the devel-
opment of future protocols will increase by itself the grade
of genericity and advantage of this approach. The efficiency
of protocol reconfigurability benefits from the introduced
generic approach and implies a clearly identified effort of
protocol management. Thus, the introduced approach is a
first step to an end-to-end reconfigurable wireless system.
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