MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE *p*-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS

RAVI P. AGARWAL, KANISHKA PERERA, AND DONAL O'REGAN

Received 31 March 2005

We obtain multiple positive solutions of singular discrete p-Laplacian problems using variational methods.

1. Introduction

We consider the boundary value problem

$$-\Delta(\varphi_p(\Delta u(k-1))) = f(k, u(k)), \quad k \in [1, n],$$
$$u(k) > 0, \quad k \in [1, n],$$
$$u(0) = 0 = u(n+1),$$
(1.1)

where *n* is an integer greater than or equal to 1, [1,n] is the discrete interval $\{1,...,n\}$, $\Delta u(k) = u(k+1) - u(k)$ is the forward difference operator, $\varphi_p(s) = |s|^{p-2}s$, $1 , and we only assume that <math>f \in C([1,n] \times (0,\infty))$ satisfies

$$a_0(k) \le f(k,t) \le a_1(k)t^{-\gamma}, \quad (k,t) \in [1,n] \times (0,t_0)$$
(1.2)

for some nontrivial functions $a_0, a_1 \ge 0$ and $\gamma, t_0 > 0$, so that it may be singular at t = 0 and may change sign.

Let $\lambda_1, \varphi_1 > 0$ be the first eigenvalue and eigenfunction of

$$-\Delta(\varphi_p(\Delta u(k-1))) = \lambda \varphi_p(u(k)), \quad k \in [1,n],$$

$$u(0) = 0 = u(n+1).$$
 (1.3)

THEOREM 1.1. If (1.2) holds and

$$\limsup_{t \to \infty} \frac{f(k,t)}{t^{p-1}} < \lambda_1, \quad k \in [1,n],$$
(1.4)

then (1.1) has a solution.

Copyright © 2005 Hindawi Publishing Corporation Advances in Difference Equations 2005:2 (2005) 93–99 DOI: 10.1155/ADE.2005.93

94 Discrete *p*-Laplacian problems

THEOREM 1.2. If (1.2) holds and

$$f(k,t_1) \le 0, \quad k \in [1,n],$$
 (1.5)

for some $t_1 > t_0$, then (1.1) has a solution $u_1 < t_1$. If, in addition,

$$\liminf_{t \to \infty} \frac{f(k,t)}{t^{p-1}} > \lambda_1, \quad k \in [1,n],$$
(1.6)

then there is a second solution $u_2 > u_1$.

Example 1.3. Problem (1.1) with $f(k,t) = t^{-\gamma} + \lambda t^{\beta}$ has a solution for all $\gamma > 0$ and λ (resp., $\lambda < \lambda_1, \lambda \le 0$) if $\beta (resp., <math>\beta = p - 1, \beta > p - 1$) by Theorem 1.1.

Example 1.4. Problem (1.1) with $f(k,t) = t^{-\gamma} + e^t - \lambda$ has two solutions for all $\gamma > 0$ and sufficiently large $\lambda > 0$ by Theorem 1.2.

Our results seem new even for p = 2. Other results on discrete *p*-Laplacian problems can be found in [1, 2] in the nonsingular case and in [3, 4, 5, 6] in the singular case.

2. Preliminaries

First we recall the *weak comparison principle* (see, e.g., Jiang et al. [2]).

Lемма 2.1. *If*

$$-\Delta(\varphi_p(\Delta u(k-1))) \ge -\Delta(\varphi_p(\Delta v(k-1))), \quad k \in [1,n],$$

$$u(0) \ge v(0), \qquad u(n+1) \ge v(n+1),$$

(2.1)

then $u \ge v$.

Next we prove a local comparison result.

LEMMA 2.2. If

$$-\Delta(\varphi_p(\Delta u(k-1))) \ge -\Delta(\varphi_p(\Delta v(k-1))),$$

$$u(k) = v(k), \qquad u(k\pm 1) \ge v(k\pm 1),$$

(2.2)

then $u(k \pm 1) = v(k \pm 1)$ *.*

Proof. We have

$$-\varphi_p(\Delta u(k)) + \varphi_p(\Delta u(k-1)) \ge -\varphi_p(\Delta v(k)) + \varphi_p(\Delta v(k-1)),$$
(2.3)

$$\Delta u(k) \ge \Delta v(k), \qquad \Delta u(k-1) \le \Delta v(k-1). \tag{2.4}$$

Combining with the strict monotonicity of φ_p shows that

$$0 \le \varphi_p(\Delta u(k)) - \varphi_p(\Delta v(k)) \le \varphi_p(\Delta u(k-1)) - \varphi_p(\Delta v(k-1)) \le 0,$$
(2.5)

and hence, the equalities hold in (2.4).

The following strong comparison principle is now immediate.

Lемма 2.3. *If*

$$-\Delta(\varphi_p(\Delta u(k-1))) \ge -\Delta(\varphi_p(\Delta v(k-1))), \quad k \in [1,n],$$

$$u(0) \ge v(0), \qquad u(n+1) \ge v(n+1),$$

(2.6)

then either u > v in [1, n], or $u \equiv v$. In particular, if

$$-\Delta(\varphi_{p}(\Delta u(k-1))) \ge 0, \quad k \in [1,n],$$

$$u(0) \ge 0, \qquad u(n+1) \ge 0,$$

(2.7)

then either u > 0 in [1, n] or $u \equiv 0$.

Consider the problem

$$-\Delta(\varphi_p(\Delta u(k-1))) = g(k, u(k)), \quad k \in [1, n],$$

$$u(0) = 0 = u(n+1),$$

(2.8)

where $g \in C([1,n] \times \mathbb{R})$. The class *W* of functions $u : [0, n+1] \to \mathbb{R}$ such that u(0) = 0 = u(n+1) is an *n*-dimensional Banach space under the norm

$$\|u\| = \left(\sum_{k=1}^{n+1} |\Delta u(k-1)|^p\right)^{1/p}.$$
(2.9)

Define

$$\Phi_g(u) = \sum_{k=1}^{n+1} \left[\frac{1}{p} \left| \Delta u(k-1) \right|^p - G(k, u(k)) \right], \quad u \in W,$$
(2.10)

where $G(k,t) = \int_0^t g(k,s) ds$. Then the functional Φ_g is C^1 with

$$(\Phi'_{g}(u), v) = \sum_{k=1}^{n+1} \left[\varphi_{p} (\Delta u(k-1)) \Delta v(k-1) - g(k, u(k)) v(k) \right]$$

= $-\sum_{k=1}^{n} \left[\Delta (\varphi_{p} (\Delta u(k-1))) + g(k, u(k)) \right] v(k)$ (2.11)

(summing by parts), so solutions of (2.8) are precisely the critical points of Φ_g . Lemma 2.4. *If*

$$\limsup_{|t|\to\infty} \frac{g(k,t)}{|t|^{p-2}t} < \lambda_1, \quad k \in [1,n],$$
(2.12)

then Φ_g has a global minimizer.

96 Discrete *p*-Laplacian problems

Proof. By (2.12), there is a $\lambda \in [0, \lambda_1)$ such that

$$G(k,t) \le \frac{\lambda}{p} |t|^p + C, \qquad (2.13)$$

where C denotes a generic positive constant. Since

$$\lambda_{1} = \min_{u \in W \setminus \{0\}} \frac{\sum_{k=1}^{n+1} |\Delta u(k-1)|^{p}}{\sum_{k=1}^{n} |u(k)|^{p}},$$
(2.14)

then

$$\Phi_g(u) \ge \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1} \right) \|u\|^p - C \|u\|, \qquad (2.15)$$

so Φ_g is bounded from below and coercive.

Lемма 2.5. If

$$\liminf_{t \to +\infty} \frac{g(k,t)}{t^{p-1}} > \lambda_1, \quad \lim_{t \to -\infty} \frac{g(k,t)}{|t|^{p-1}} = 0, \quad k \in [1,n],$$
(2.16)

then Φ_g satisfies the Palais-Smale compactness condition (PS): every sequence (u_j) in W such that $\Phi_g(u_j)$ is bounded and $\Phi'_g(u_j) \to 0$ has a convergent subsequence.

Proof. It suffices to show that (u_j) is bounded since *W* is finite dimensional, so suppose that $\rho_j := ||u_j|| \to \infty$ for some subsequence. We have

$$o(1)||u_{j}^{-}|| = (\Phi_{g}'(u_{j}), u_{j}^{-}) \le -||u_{j}^{-}||^{p} - \sum_{k=1}^{n+1} g(k, -u_{j}^{-}(k))u_{j}^{-}(k),$$
(2.17)

where $u_j^- = \max\{-u_j, 0\}$ is the negative part of u_j , so it follows from (2.16) that (u_j^-) is bounded. So, for a further subsequence, $\tilde{u}_j := u_j/\rho_j$ converges to some $\tilde{u} \ge 0$ in W with $\|\tilde{u}\| = 1$.

We may assume that for each k, either $(u_j(k))$ is bounded or $u_j(k) \to \infty$. In the former case, $\tilde{u}(k) = 0$ and $g(k, u_j(k))/\rho_j^{p-1} \to 0$, and in the latter case, $g(k, u_j(k)) \ge 0$ for large j by (2.16). So it follows from

$$o(1) = \frac{\left(\Phi'_{g}(u_{j}), v\right)}{\rho_{j}^{p-1}} = \sum_{k=1}^{n+1} \left[\varphi_{p}\left(\Delta \widetilde{u}_{j}(k-1)\right) \Delta v(k-1) - \frac{g(k, u_{j}(k))}{\rho_{j}^{p-1}}v(k)\right]$$
(2.18)

that

$$\sum_{k=1}^{n+1} \varphi_p \left(\Delta \widetilde{u}(k-1) \right) \Delta \nu(k-1) \ge 0 \quad \forall \nu \ge 0,$$
(2.19)

and hence, $\tilde{u} > 0$ in [1, n] by Lemma 2.3. Then $u_j(k) \to \infty$ for each k, and hence, (2.18) can be written as

$$\sum_{k=1}^{n+1} \left[\varphi_p \left(\Delta \widetilde{u}_j(k-1) \right) \Delta \nu(k-1) - \alpha_j(k) \widetilde{u}_j(k)^{p-1} \nu(k) \right] = o(1),$$
(2.20)

where

$$\alpha_j(k) = \frac{g(k, u_j(k))}{u_j(k)^{p-1}} \ge \lambda, \quad j \text{ large},$$
(2.21)

for some $\lambda > \lambda_1$ by (2.16).

Choosing ν appropriately and passing to the limit shows that each $\alpha_j(k)$ converges to some $\alpha(k) \ge \lambda$ and

$$-\Delta(\varphi_p(\Delta \widetilde{u}(k-1))) = \alpha(k)\widetilde{u}(k)^{p-1}, \quad k \in [1,n],$$

$$\widetilde{u}(0) = 0 = \widetilde{u}(n+1).$$
(2.22)

This implies that the first eigenvalue of the corresponding weighted eigenvalue problem is given by

$$\min_{u \in W \setminus \{0\}} \frac{\sum_{k=1}^{n+1} |\Delta u(k-1)|^p}{\sum_{k=1}^n \alpha(k) |u(k)|^p} = 1.$$
(2.23)

Then

$$1 \le \frac{\sum_{k=1}^{n+1} |\Delta \varphi_1(k-1)|^p}{\sum_{k=1}^n \alpha(k) \varphi_1(k)^p} \le \frac{\lambda_1}{\lambda} < 1,$$
(2.24)

a contradiction.

3. Proofs

The problem

$$-\Delta(\varphi_p(\Delta u(k-1))) = a_0(k), \quad k \in [1,n],$$

$$u(0) = 0 = u(n+1),$$

(3.1)

has a unique solution $u_0 > 0$ by Lemmas 2.3 and 2.4. Fix $\varepsilon \in (0,1]$ so small that $\underline{u} := \varepsilon^{1/(p-1)}u_0 < t_0$. Then

$$-\Delta(\varphi_p(\Delta \underline{u}(k-1))) - f(k,\underline{u}(k)) \le -(1-\varepsilon)a_0(k) \le 0$$
(3.2)

by (1.2), so \underline{u} is a subsolution of (1.1). Let

$$f_{\underline{u}}(k,t) = \begin{cases} f(k,t), & t \ge \underline{u}(k), \\ f(k,\underline{u}(k)), & t < \underline{u}(k). \end{cases}$$
(3.3)

98 Discrete *p*-Laplacian problems

Proof of Theorem 1.1. By (1.4), there are $\lambda \in [0, \lambda_1)$ and $T > t_0$ such that

$$f(k,t) \le \lambda t^{p-1}, \quad (k,t) \in [1,n] \times (T,\infty).$$

$$(3.4)$$

Then

$$f_{\underline{u}}(k,t) \begin{cases} \leq a_1(k)\underline{u}(k)^{-\gamma} + \max f\left([1,n] \times [t_0,T]\right) + \lambda t^{p-1}, & t \geq 0, \\ \geq a_0(k), & t < 0, \end{cases}$$
(3.5)

by (1.2), so the modified problem

$$-\Delta(\varphi_p(\Delta u(k-1))) = f_{\underline{u}}(k, u(k)), \quad k \in [1, n],$$

$$u(0) = 0 = u(n+1),$$

(3.6)

has a solution *u* by Lemma 2.4. By Lemma 2.1, $u \ge \underline{u}$, and hence, also a solution of (1.1).

Proof of Theorem 1.2. Noting that t_1 is a supersolution of (3.6), let

$$\widetilde{f}_{\underline{\mu}}(k,t) = \begin{cases} f_{\underline{\mu}}(k,t_1), & t > t_1, \\ f_{\underline{\mu}}(k,t), & t \le t_1. \end{cases}$$

$$(3.7)$$

By (1.2),

$$\widetilde{f}_{\underline{u}}(k,t) \begin{cases} \leq a_1(k)\underline{u}(k)^{-\gamma} + \max f\left([1,n] \times [t_0,t_1]\right), & t \geq 0, \\ \geq a_0(k), & t < 0, \end{cases}$$
(3.8)

so $\Phi_{\tilde{f}_{\underline{u}}}$ has a global minimizer u_1 by Lemma 2.4. By Lemmas 2.1 and 2.2, $\underline{u} \le u_1 < t_1$, so $\Phi_{\tilde{f}_{\underline{u}}} = \Phi_{f_{\underline{u}}}$ near u_1 and hence, u_1 is a local minimizer of $\Phi_{f_{\underline{u}}}$. Let

$$f_{u_1}(k,t) = \begin{cases} f(k,t), & t \ge u_1(k), \\ f(k,u_1(k)), & t < u_1(k). \end{cases}$$
(3.9)

Since u_1 is also a subsolution of (1.1), repeating the above argument with u_1 in place of \underline{u} , we see that $\Phi_{f_{u_1}}$ also has a local minimizer, which we assume is u_1 itself, for otherwise we are done. By (1.6), there are $\lambda > \lambda_1$ and $T > t_1$ such that

$$f(k,t) \ge \lambda t^{p-1}, \quad (k,t) \in [1,n] \times (T,\infty),$$
 (3.10)

so

$$\Phi_{f_{u_1}}(t\varphi_1) \le -\frac{t^p}{p} \left(\frac{\lambda}{\lambda_1} - 1\right) + Ct < \Phi_{f_{u_1}}(u_1), \quad t > 0 \text{ large.}$$

$$(3.11)$$

Since $\Phi_{f_{u_1}}$ satisfies (PS) by Lemma 2.5, the mountain-pass lemma now gives a second critical point u_2 , which is greater than u_1 by Lemmas 2.1 and 2.2.

References

- R. Avery and J. Henderson, *Existence of three positive pseudo-symmetric solutions for a one di*mensional discrete p-Laplacian, J. Difference Equ. Appl. 10 (2004), no. 6, 529–539.
- [2] D. Jiang, J. Chu, D. O'Regan, and R. P. Agarwal, Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian, Math. Inequal. Appl. 7 (2004), no. 4, 523–534.
- [3] D. Jiang, D. O'Regan, and R. P. Agarwal, A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian, to appear in J. Appl. Anal.
- [4] _____, Existence theory for single and multiple solutions to singular boundary value problems for the one-dimension p-Laplacian, Adv. Math. Sci. Appl. 13 (2003), no. 1, 179–199.
- [5] D. Jiang, L. Zhang, D. O'Regan, and R. P. Agarwal, Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension p-Laplacian, Archivum Mathematicum (Brno) 40 (2004), no. 4, 367–381.
- [6] D. Q. Jiang, P. Y. H. Pang, and R. P. Agarwal, *Upper and lower solutions method and a superlinear singular discrete boundary value problem*, to appear in Dynam. Systems Appl.

Ravi P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

E-mail address: agarwal@fit.edu

Kanishka Perera: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

E-mail address: kperera@fit.edu

Donal O'Regan: Department of Mathematics, National University of Ireland, Galway, Ireland *E-mail address*: donal.oregan@nuigalway.ie