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1. Introduction

In this paper, we consider the following second-order linear equations:

(pr(0x* ()" + 102 (1) = 0, )

(r20y* )" + @y ) =0, 12)

where t € [a,f]NT, plA(t), pzA(t), q1(t), and g»(t) are real and rd-continuous functions in
[a,f] N T. Let T be a time scale, o(t) be the forward jump operator in T, y2 be the delta
derivative, and y°(t) := y(o(t)).

First we briefly recall some existing results about differential and difference equations.
As we well know, in 1909, Picone [1] established the following identity.

Picone Identity

If x(t) and y(t) are the nontrivial solutions of

(P ()X (1) +qu(H)x(t) =0,

(1.3)
(p2(y' (1) + (DY (t) =0,
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where t € [a,f], pi(t), p5(t), g1(t), and g2(t) are real and continuous functions in [a, f]. If
y(t) #0fort € [a, p], then

<% (pl (t)x’(t)y(t) — p2(t)y'(t)x(t))>
Oy (t) 2 (1.4)
= (p1(D) = p2(0)x(1) + (@2(8) = qu (1) (D) + p2(t) <% L (t)> |

By (1.4), one can easily obtain the Sturm comparison theorem of second-order linear
differential equations (1.3).

Sturm-Picone Comparison Theorem

Assume that x(t) and y(t) are the nontrivial solutions of (1.3) and a, b are two consecutive
zeros of x(t), if

pi(t) 2p2(t) >0, qot) 2 qu(t), te€([ab], (1.5)

then y(t) has at least one zero on [a, b].

Later, many mathematicians, such as Kamke, Leighton, and Reid [2-5] developed thier
work. The investigation of Sturm comparison theorem has involved much interest in the new
century [6, 7]. The Sturm comparison theorem of second-order difference equations

Alpi(t-1)Ax(t-1)] + q1 () x(t) =0,

(1.6)
Alpa(t-1)Ay(t-1)] + g2(Hy(F) =0,

has been investigated in [8, Chapter 8], where pi(f) > p2(t) > 0 on [a, B + 1], g2(f) > q1(f) on
[a+1,B+1], a, p are integers, and A is the forward difference operator: Ax(t) = x(t+1) —x(t).
In 1995, Zhang [9] extended this result. But we will remark that in [8, Chapter 8] the authors
employed the Riccati equation and a positive definite quadratic functional in their proof.
Recently, the Sturm comparison theorem on time scales has received a lot of attentions. In
[10, Chapter 4], the mathematicians studied

(b 0> ®) "+ qu()x(0) = 0,
(1.7)

(pay*®) " + @y =0,

where p1(t) > pa(t) > 0and ga(t) > g1 (t) for t € [p(a),c(B)] NT, yV is the nabla derivative,
and they get the Sturm comparison theorem. We will make use of Picone identity on time
scales to prove the Sturm-Picone comparison theorem of (1.1) and (1.2).

This paper is organized as follows. Section 2 introduces some basic concepts and
fundamental results about time scales, which will be used in Section 3. In Section 3 we first
give the Picone identity on time scales, then we will employ this to prove our main result:
Sturm-Picone comparison theorem of (1.1) and (1.2) on time scales.
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2. Preliminaries

In this section, some basic concepts and some fundamental results on time scales are
introduced.

Let T C R be a nonempty closed subset. Define the forward and backward jump
operators o,p : T — T by

o(t) =inf{s € T:s>t}, p(t) =sup{seT:s<t}, (2.1)

where inf@) = sup T, sup® = infT. A point f € T is called right-scattered, right-dense, left-
scattered, and left-dense if o (t) > t, o(t) = t, p(t) < t,and p(t) = t, respectively. We put TX = T
if T is unbounded above and T* = T \ (p(max T), max T] otherwise. The graininess functions
v,u:T — [0, 00) are defined by

uty=o)—t,  v(t)=t-p(b). (2.2)

Let f be a function defined on T. f is said to be (delta) differentiable at t € TX provided there
exists a constant a such that for any € > 0, there is a neighborhood U of t (i.e., U = (t-6,t+6)NT
for some 6 > 0) with

|f(o() - f(s)—a(o(t) —s)| <elo(t)-s|, Vsel. (2.3)

In this case, denote f2(t) := a. If f is (delta) differentiable for every t € T¥, then f is said to
be (delta) differentiable on T. If f is differentiable at t € T, then

lim w if u(t) =0,
A = *Tt t (2.4)
—f("(/izt;f( ), if u(t) > 0.

If FA(t) = f(t) for all t € T¥, then F(t) is called an antiderivative of f on T. In this case, define
the delta integral by

th(T)AT =F(t)-F(s) Vs, teT. (2.5)

Moreover, a function f defined on T is said to be rd-continuous if it is continuous at every
right-dense point in T and its left-sided limit exists at every left-dense point in T.

For convenience, we introduce the following results ([11, Chapter 1], [12, Chapter 1],
and [13, Lemma 1]), which are useful in the paper.
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Lemma 2.1. Let f,¢g: T — Randt e Tk,

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f and g are differentiable at t, then f g is differentiable at t and

(f9)" (1) = fO (g™ (1) + fA(Dg(t) = fA(Dg7 () + F(HE™ (D). (2.6)
(iii) If f and g are differentiable at t, and f(t) f°(t) #0, then f~'g is differentiable at t and

(gf ’1)A (t) = (gA B f()-gbf* (t)> (Fef) (2.7)

(iv) If f is rd-continuous on T, then it has an antiderivative on T.
Definition 2.2. A function f : T — Ris said to be right-increasing at t) € T'\ {max T} provided

(i) f(o(tg)) > f(to) in the case that t; is right-scattered;

(ii) there is a neighborhood U of t, such that f(t) > f(ty) for all t € U with t > t; in the
case that t is right-dense.

If the inequalities for f are reversed in (i) and (ii), f is said to be right-decreasing at t.
The following result can be directly derived from (2.4).

Lemma 2.3. Assume that f : T — R is differentiable at ty € T \ {maxT}. If f2(to) > 0, then f is
right-increasing at to; and if f*(ty) <O, then f is right-decreasing at t,.

Definition 2.4. One says that a solution x(t) of (1.1) has a generalized zero at t if x(t) = 0 or,
if t is right-scattered and x(t)x(o(t)) < 0. Especially, if x(t)x(c(t)) < 0, then we say x(t)has a
node at (t + o(t)) /2.

A functionp : T — R is called regressive if

1+u(t)p(t)#0, VteT. (2.8)

Hilger [14] showed that for 5 € T and rd-continuous and regressive p, the solution of the
initial value problem

vA() =pty(H),  ylt) =1 (2.9)
is given by ep(-, tp), where
Log(1 + hz) if h#0

t o\~ T
ey(t,s) = exp{f ¢u(r) (p(T))AT} with ¢&,(z) = h ! (2.10)
; 2, if h=0.

The development of the theory uses similar arguments and the definition of the nabla
derivative (see [10, Chapter 3]).
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3. Main Results

In this section, we give and prove the main results of this paper.
First, we will show that the following second-order linear equation:

X8 () + a (D)X (1) + ar(H)x° (1) = 0 (3.1)

can be rewritten as (1.1).

Theorem 3.1. If 1 + p(t)ai(t) #0 and ax(t) is continuous, then (3.1) can be written in the form of
(1.1), with

pi(t) = e (b t0),  qu(t) = eq (¢t to)ax(t). (3.2)
Proof. Multiplying both sides of (3.1) by e, (£, ), we get
0 = eq, (£, t0) X2 (t) + eq, (t,to) a1 (£) X" (t) + eq, (t, o) az () x° (t)
= €4, (£, t0) X (1) + [ea, (¢, 0)]* X (£) + ea, (¢, to) az ()x (£) (3.3)

- [em (t, to)xA(t)]A + e (t t)ar (DX (1),

where we used Lemma 2.1. This equation is in the form of (1.1) with p;(t) and g1 (t) as desired.
O

Lemma 3.2 (Picone Identity). Let x(t) and y(t) be the nontrivial solutions of (1.1) and (1.2) with
p1(t) = pa(t) > 0and q2(t) > qu(t) for t € [a, ] NT. If y(t) has no generalized zeros on [a, Bl N'T,
then the following identity holds:

x(t) R
(W <P1(t)xA(t)y(t) - PZ(t)yA(t)x(t)>>

= (1) - p2() (x*0) "+ (@) - ()% (0(1) (3.4)

2
A
+< Pz(t)yy(zc)y(t))m(;)(yt) (t)x(a(t))_ %ﬁ(tv'

Proof. We first divide the left part of (3.4) into two parts

x(t) s o (05 (1) A
<W<P1(t)xA(t)y(t) —Pz(t)yA(t)x(t)>> - <P1(t)xA(t)x(t) B sz(t)>

A A
_ <p1(t)xA(t)x(t)>A _ <%xz(”> '

(3.5)
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From (1.1) and the product rule (Lemma 2.1(ii)), we have

(1 (Ox* 0x)" = (nOx*®) (o (1) + pr B> O 1)
(3.6)

P (x*®) - @@ )) VieafnT

It follows from (1.2), (2.4), product and quotient rules (Lemma 2.1(ii), (iii)) and the
assumption that y(f) has no generalized zeros on [a, f] N T that

A
(Pt

. POy ()" A POV o (YR ()
-x<o<t>>< 0 >+x<o<t>>x P et wx P

(v*(H)*
y(ty(o(t))

p2(t)y* ()
y(t)

p2(Hy~(t)
y(t)

=x*(a(h)) <—qz(t) - pa2(t) > +x(a(8)x* (1)

+x2() (x(0() - ()X (1)

CROERCO0)
y(BHy (o)

+2x(a(t)at (2L <P2(t) -y 2020 > ()’

= (20 - ()20 () - pat)

y(b) y(b)

(2 0) - o) - — YO (BOEOY
p2(t)y(o(t)) y(t)

p2(Oy2 (1) paDy(0(t) 1 a0\
o) = 0)

= pa(t) <xA(t)>2 ~ (D2 (o (b))

2
A
- <Vp2(t)yy(2;(t))p2(ty)(yt) (t)x(o'(t)) —\/p—z(t)yy(g(t))x%t)) Vte [a, ] NT.

(3.7)

+2x(o(t)x2(f)

Combining (p1 (£)x2 (£)x(t))* and —((p2 () y2 () /y(£))x2(t))*, we get (3.4). This completes the
proof. O

Now, we turn to proving the main result of this paper.
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Theorem 3.3 (Sturm-Picone Comparison Theorem). Suppose that x(t) and y(t) are the
nontrivial solutions of (1.1) and (1.2), and a, b are two consecutive generalized zeros of x(t), if

pi(t) > pa(t) >0, qo(t) >qi(t), te[ab]lnT, (3.8)

then y(t) has at least one generalized zero on [a,b] N'T.

Proof. Suppose to the contrary, y(t) has no generalized zeros on [a,b] N T and y(t) > 0 for all
teab]lnT.

Case 1. Suppose a, b are two consecutive zeros of x(t). Then by Lemma 3.2, (3.4) holds and
integrating it from a to b we get

J‘(xgt; (P Bx*ty) - pa(t)y® (ﬂx(t)))A

b
- f <(p1<t> ~pa®) (x2) + (@200 - 21 () (0 (H) 39)

2
y()  pOyr®) | [pBye®) 4
+< r2(y(o®)  y(t) YO (t)> >At

Noting that x(a) = x(b) = 0, we have

J 68 (PO Oy (1) = pa()y* <t>x<f>>)A

b 3.10
- (20 (o= 0y - (6 01x0) ) (310

a

=0.

Hence, by (3.9) and p1(t) > p2(t) >0, q2(t) > q1(t), for all t € [a,b] N T we have

b
-| <(pl<t> ~pa) (x4®) + (@26 - ()0 (®)

2
\/T p2(Hy(t) Pz(t)y(o(t))xA(t) Al (3.11)
p2(y(o(t))  y(t) v

>0,
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which is a contradiction. Therefore, in Case 1, y(t) has at least one generalized zero on [a, b] N
T.

Case 2. Suppose a is a zero of x(t), (b+ oc(b))/2is a node of x(t), x(b) <0, and x(c(b)) > 0. It
follows from the assumption that y(t) has no generalized zeros on [a, b] N T and that y(t) > 0
forall t € [a,b] N T that y(o(b)) > 0. Hence by (2.4) and p,(t) > pi(t) > Oon [a,b] N T, we
have

x(b)
W(Pl(b)xA(b)y(b) - pz(b)yA(b)x(b)>
x(b) 1
~ y(b) u(b)

<0.

(pl(b)x(o(b))y(b) P20y (0(0)x(b) + (p2(b) — p1(B))x(B)y (b)) 12

By integration, it follows from (3.12) and x(a) = 0 that

J <x2t§< 1(H)x2 (DY () - pa(t)y (t)x(t)>)A

b

- (C3 (r0x* 0yo -y 0x0) )

_x()
y(b)

<0.

a (3.13)

(P1(0)x* D)y (b) ~ p2(B)y* (b)x (b))

So, from (3.9) and above argument we obtain that

b
| <(p1(f) ~pa) (x4®) + (@) - @)@ (®)

2
\/sz(t ya) Pz(t)y(o(t))xA(t) Al (3.14)
p2()y(o(t))  y(t) y(b)

>0,

which is a contradiction, too. Hence, in Case 2, y(f) has at least one generalized zero on
[a,b] N'T.
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Case 3. Suppose (a + o(a))/2 is a node of x(t),x(a) > 0, x(c(a)) < 0, and b is a generalized
zero of x(t). Similar to the discussion of (3.12), we have

x(a)
S (PO @@~ p2(@y* (@)x(@)
_x(a) 1 (3.15)
J(a) #(@) ——(p1(a)x(c(a))y(a) - p2(a)y(o(a))x(a) + (p2(a) - p1(a))x(a)y(a))
<0,

which implies
(r(@x*(@y(a) - p2(@)y* (@)x(a)) < 0. (3.16)

(i) If (b + o(b))/2is a node of x(t), then x(b) < 0, x(c(b)) > 0. Hence, we have (3.12),
thatis,

b
be; (1 (b)x* (B)y (b) - p(b)y* (b)x(b) ) < 0. (3.17)

(ii) If b is a zero of x(t), then

x(b)

L) (P OX O ®) - p2 Oy B)x(0)) =0 (318)

It follows from (3.4) and Lemma 2.3 that

x(t)

-0 (PO By (1) - pa(t)y* () (1)) (3.19)

is right-increasing on [a,b] N T. Hence, from (i) and (ii) that

x(a)

M(pl(ﬁl)xA(a)y(a) - pz(a)yA(a)x(a)>

x(0(a))
< Y(o(a)

<0,

<P1 (o(a))x*(o(a))y(o(a)) - pz(o(a))ya(ﬁ(a))x(o(a))> (3.20)

which implies

pi(o(a))x(a(a)y(o(a) - p2(c(a))y* (o(a))x(a(a)) > 0. (3.21)
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From (3.16), (3.21), and (2.4), we have

(pix*y - pay*x) " (a) = ﬁ ((px*y - pay*x) (@) - (prx*y - pay“x) (@) > 0. (322)

Further, it follows from (1.1), (1.2), product rule (Lemma 2.1(ii)), and (3.22) that

( A, VA _ _ _ A A
pixty - pay®x) (@) = (42(a) - 41(a))x(0(@))y (0(a)) + (p1(a) - p2(a))x* (@)y* (a) > 0.
(3.23)

If p1(a) = p2(a) and from g»(a) > g1(a), x(o(a)) <0, and y(o(a)) > 0 we have
(92(a) = q1(a))x(o(a)y(o(a)) <O. (3.24)

This contradicts (3.22). Note that x*(a) = (1/p(a))(x(o(a)) — x(a)). It follows from p;(a) >
p2(a) >0, (3.23), and (3.24) that

y2(a) <0. (3.25)

On the other hand, it follows from x(t) and y(t) are solutions of (1.1) and (1.2) that

vo@)((p@+*@)" + a(@x(o(a) ) =0,
(3.26)

A A
x(o(@) ((pay* @) + @y @) ) <o
Combining the above two equations we obtain

(@ @) " yiota) - (pat@y’ @) “x(@(@) ) + (@01(a) () (o @) y(o(a) = 0.
(3.27)
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It follows from (3.27) and (2.4) that

1

[P e@x (@) - p1@x* @]y (@) - [po(@)y* (@) - p2(@y* @] x(0(a)) |

+(41(a) - 2(a))x(0(a) y (0(a))
- il @yt @xo@) - pa) @y (o))
- P e @)@ @) - pato@)y* (@) x(a(@)]

+ (q1(a) - q2(a))x(0(a)y(o(a))

=0.
(3.28)
Hence, from ga(a) > q1(a), x(c(a)) <0, y(c(a)) > 0, and (3.21), we get
p2(a)y* (a)x(o(a)) - p1(a)x*(a)y(o(a)) < 0. (329)
By referring to x2 (a) < 0 and p;(a) > pa(a) > 0, it follows that
y*(a) >0, (3.30)

which contradicts y* (a) < 0.

It follows from the above discussion that y(t) has at least one generalized zero on
[a,b] N T. This completes the proof. O

Remark 3.4. If p1(t) = p2(t) = 1, then Theorem 3.3 reduces to classical Sturm comparison
theorem.

Remark 3.5. In the continuous case: u(t) = 0. This result is the same as Sturm-Picone
comparison theorem of second-order differential equations (see Section 1).

Remark 3.6. In the discrete case: p(t) = 1. This result is the same as Sturm comparison theorem
of second-order difference equations (see [8, Chapter 8]).

Example 3.7. Consider the following three specific cases:
1 2
[0,1]NnT = [O’E] U [3,1],
1 3

[0,1]NT = [0,%] U{Z(Nl—l)’(N—1)’2(N—1)""’1}’ N>2, (3.31)

[0,1]011“:{qklkzo,keZ}u{O}, where 0 < g < 1.
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By Theorem 3.3, we have if x(t) and y(t) are the nontrivial solutions of (1.1) and (1.2), a, b are
two consecutive generalized zeros of x(t), and p1(t) > p2(t) >0, q2(t) > q1(t), t € [a,b]NT,
then y(f) has at least one generalized zero on [a,b] N T. Obviously, the above three cases
are not continuous and not discrete. So the existing results for the differential and difference
equations are not available now.

By Remarks 3.4-3.6 and Example 3.7, the Sturm comparison theorem on time scales
not only unifies the results in both the continuous and the discrete cases but also contains
more complicated time scales.
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