Skip to main content
Log in

Area-law-like systems with entangled states can preserve ergodicity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the ground entangled state of the one-dimensional spin-1/2 Ising ferromagnet at its transverse-field critical point. When this problem is expressed in terms of independent fermions, we show that the usual thermostatistical sums emerging within Fermi-Dirac statistics can, for an L-sized subsystem, be indistinctively taken up to L terms or up to lnL terms, providing a neat understanding of the origin of the logarithmic scaling of the entanglement entropy in the system. This is interpreted as a compact occupancy of the phase-space of the L-subsystem, hence standard Boltzmann-Gibbs thermodynamics quantities with an effective system size V ∝ lnL are appropriate and are explicitly calculated. The calculations are then to be done in a Hilbert space whose effective dimension is 2ln L instead of 2L. In this we can assume ergodicity. Our analysis suggests a scenario where the physical systems are essentially grouped into three classes, in terms of their phase-space occupancy, ergodicity and Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.E. Reichl,A Modern Course in Statistical Physics, 3rd edn. (John Wiley & Sons, New York, 2009)

  2. R.G. Palmer, Adv. Phys. 31, 669 (1982)

    Article  ADS  Google Scholar 

  3. H. Kestelman,Modern Theories of Integration, 2nd edn. (Dover, New York, 1960)

  4. U. Tirnakli, E.P. Borges, Sci. Rep. 6, 23644 (2016)

    Article  ADS  Google Scholar 

  5. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  6. M. Pouranvari, K. Yang, Phys. Rev. B 89, 115104 (2014)

    Article  ADS  Google Scholar 

  7. Z.-C. Yang, C. Chamon, A. Hamma, E.R. Mucciolo, Phys. Rev. Lett. 115, 267206 (2015)

    Article  ADS  Google Scholar 

  8. C.R. Laumann, A. Pal, A. Scardicchio, Phys. Rev. Lett. 113, 200405 (2014)

    Article  ADS  Google Scholar 

  9. C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994)

    Article  ADS  Google Scholar 

  10. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  11. A.R. Its, B.-Q. Jin, V.E. Korepin, J. Phys. A 38, 2975 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.I. Latorre, E. Rico, G. Vidal, Quantum Inf. Comput. 4, 48 (2004)

    MathSciNet  Google Scholar 

  13. P. Calabrese, J. Cardy, J. Stat. Mech. Theory Exp. 2004, P06002 (2004)

    Google Scholar 

  14. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  15. R. Islam, R. Ma, P.M. Preiss, M.E. Tai, A. Lukin, M. Rispoli, M. Greiner, Nature 528, 77 (2015)

    Article  ADS  Google Scholar 

  16. P. Pfeuty, Ann. Phys. 57, 79 (1970)

    Article  ADS  Google Scholar 

  17. S. Sachdev,Quantum Phase Transitions (Cambridge Universuty Press, Cambridge, 1999)

  18. F. Franchini, A.R. Its, V.E. Korepin, J. Phys. A 41, 025302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.B. Hastings, I. Gonzales, A.B. Kallin, R.G. Melko, Phys. Rev. Lett. 104, 157201 (2010)

    Article  ADS  Google Scholar 

  20. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  21. F. Caruso, C. Tsallis, Phys. Rev. E 78, 021102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. B.-Q. Jin, V.E. Korepin, J. Stat. Phys. 116, 79 (2004)

    Article  ADS  Google Scholar 

  23. I. Peschel, J. Stat. Mech. Theory Exp. 2004, P06004 (2004)

    Google Scholar 

  24. H. Fukuyama, R.A. Bari, H.C. Fogedby, Phys. Rev. B 8, 5579 (1973)

    Article  ADS  Google Scholar 

  25. M. Saitoh, J. Phys. C Solid State Phys. 6, 3255 (1973)

    Article  ADS  Google Scholar 

  26. E.E. Mendez, F. Agullo-Rueda, J.M. Hong, Phys. Rev. Lett. 60, 2426 (1988)

    Article  ADS  Google Scholar 

  27. L. Gutierrez, A. Diaz-de-Anda, J. Flores, R.A. Mendez-Sanchez, G. Monsivais, A. Morales, Phys. Rev. Lett. 97, 114301 (2006)

    Article  ADS  Google Scholar 

  28. E.O. Kane, J. Phys. Chem. Solids 12, 181 (1959)

    Article  ADS  Google Scholar 

  29. G.H. Wannier, Phys. Rev. 117, 432 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  30. C.M. Herdman, P.-N. Roy, R.G. Melko, A. Del Maestro, Nat. Phys. 13, 556 (2017)

    Article  Google Scholar 

  31. P. Calabrese, M. Mintchev, E. Vicari, Europhys. Lett. 97, 20009 (2012)

    Article  ADS  Google Scholar 

  32. C. Tsallis, Eur. Phys. J. Special Topics 226, 1433 (2017)

    Article  ADS  Google Scholar 

  33. C. Tsallis, Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  34. C. Tsallis,Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre M. C. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, A.M.C., Rapčan, P. & Tsallis, C. Area-law-like systems with entangled states can preserve ergodicity. Eur. Phys. J. Spec. Top. 229, 759–772 (2020). https://doi.org/10.1140/epjst/e2020-900003-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900003-3

Navigation