Skip to main content
Log in

Mechanism of unipolar electromagnetic pulses emitted from the hypocenters of impending earthquakes

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Unipolar pulses (UPs) are short events characterized by outbursts of electromagnetic (EM) energy from deep within the Earth's crust. First recognized prior to the 2007 M = 5.4 Alum Rock earthquake in northern California, UPs can be as short as 150ms, followed by an overshoot in the opposite polarity direction or by undulations of the EM field lasting from to 2−20 sec. Near Lima, Peru, and Tacna, Peru, thousands of UPs in the 1−3 nT intensity range have been recorded, emitted from the 25−65km depth range, thought to arise in patches at the top of the Benioff Zone of the subducting Nazca Plate. To understand how these EM pulses can be generated deep in the rock column, we consider that rocks contain peroxy defects, typically O3Si−OO−SiO3, which, when subjected to increasing deviatoric stresses, break up in two steps. Step I: electrons in the tight non-bonding πnb molecular orbital decouple by transitioning into the antibonding σ*-level, where they occupy a significantly larger volume. This volume expansion is possible only, when the internal pressure in the stressed subvolume overcomes its confining pressure. This in turn requires that the number density of peroxy defects in the rock is high enough so that, during the πnbσ* transition of the O−O bonds, the wave function of their decoupled O states overlap, causing a solid plasma state with an internal electron degeneration pressure that can force the volume expansion against the load of the overlying rock column. Step II: once the σ*-level is reached, the decoupled O−O bonds can dissociate, generating highly mobile charge carriers, electrons e' and holes h•, which can burst out the stressed subvolume causing it to instantly contract again. Thus, UPs appear to be linked to an explosive expansion of stressed subvolumes of rocks against their lithostatic overload, followed by an outburst of electronic charge carriers and concomitant volume contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Torabi, M. Fattahi, Iran. J. Geophys. 2019, 50 (2019).

    Google Scholar 

  2. N.E. Whitehead, Ü. Ulusoy, Earth Sci. Res. J. 19, 113 (2015).

    Article  Google Scholar 

  3. C. Fidani, Nat. Hazards Earth Syst. Sci. 10, 967 (2010).

    Article  ADS  Google Scholar 

  4. T.V. Losseva, I.V. Nemchinov, Nat. Hazards Earth Syst. Sci. 5, 649 (2005).

    Article  ADS  Google Scholar 

  5. M. Kamogawa, H. Ofuruton, Y.-H. Ohtsuki, Atmos. Res. 76, 438 (2005).

    Article  Google Scholar 

  6. J.S. Derr, Bull. Seismol. Soc. Amer. 63, 2177 (1973).

    Google Scholar 

  7. P. Hedervari, Z. Noszticzius, Ann. Geophys. 3, 705 (1985).

    Google Scholar 

  8. F.T. Freund, Pure Appl. Geophys. 176, 3439 (2019).

    Article  ADS  Google Scholar 

  9. C.-Y. King, Nature 301, 377 (1983).

    Article  ADS  Google Scholar 

  10. T. Bleier, et al., Nat. Hazards Earth Syst. Sci. 9, 585 (2009).

    Article  ADS  Google Scholar 

  11. P. Nenovski, Acta Geod. Geophys. 53, 555 (2018).

    Article  Google Scholar 

  12. L.J. Lanzarotti, Telluric currents: The natural environment and interactionw with man-made systems, in The Earth’s Electrical Environment, edited by N.R.C.G.S Committee (National Academies Press, 1986), pp. 232–258.

  13. R. Shida, Trans. Seismol. Soc. Japan 9, 32 (1886).

    Google Scholar 

  14. M. Becken, P.A.B. Oliver Ritter, U. Weckmann, Nature 480, 87 (2011).

    Article  ADS  Google Scholar 

  15. K.N. Kappler, et al., Comput. Geosci. 133, 104317 (2019).

    Article  Google Scholar 

  16. D. Helman, Ann. Geophys. 56, G0564 (2013).

    Google Scholar 

  17. F. Zencher, M. Bonafede, R. Stefansson, Geophys. J. Int. 166, 1318 (2006).

    Article  ADS  Google Scholar 

  18. P.W.J. Glover, Treat. Geophysics 11, 89 (2015).

    Article  Google Scholar 

  19. A. Revil, J. Colloid Interface Sci. 307, 254 (2007).

    Article  ADS  Google Scholar 

  20. L. Valoroso, L. Chiaraluce, C. Collettini, Geology 42, 343 (2014).

    Article  ADS  Google Scholar 

  21. D. Zhao, O.P. Mishra, R. Sanda, Phys. Earth Planet. Inter. 132, 249 (2002).

    Article  ADS  Google Scholar 

  22. D. Alekseev, A. Kuvshinov, N. Palshin, Earth Planet. Space 67, 108 (2015).

    Article  ADS  Google Scholar 

  23. E.I. Parkhomenko, A.T. Bondarenko, Electrical conductivity of rocks at high pressures and temperatures (NASA, Moscow, 1972), p. 212.

  24. J. Scoville, J. Sornette, F.T. Freund, J. Asian Earth Sci. 114, Part 2 (2015) 338.

    Article  ADS  Google Scholar 

  25. C.H. Scholz, in The mechanism of earthquakes and faulting, 2nd ed. (Cambridge Univ. Press, Cambridge, UK, 2002), p. 470.

  26. G. Hayes, T. Crone, At what depth do earthquakes occur? What is the significance of the depth? (2018).

  27. J. Kious, R.I. Tilling, This dynamic earth: the story of plate tectonics, USGS Unnumbered Series (1996).

  28. T.E. Battalino, B. Vonnegut, J. Appl. Meteorol. 17, 1225 (1978).

    Article  ADS  Google Scholar 

  29. A.V. Guglielmi, Izvestiya Phys. Solid Earth 42, 179 (2006).

    Article  ADS  Google Scholar 

  30. J. Bortnik, et al., Ann. Geophys. 28, 1615 (2010).

    Article  ADS  Google Scholar 

  31. K.-J. Kim, et al., arXiv:physics/0003064v2 (2000).

  32. J.C. Dunson, S.R.T.E. Bleier, J. Heraud, C.H. Alvarez, A. Lira, Nat. Hazards Earth Syst. Sci. 11, 1 (2011).

    Article  Google Scholar 

  33. J.A. Heraud, et al., Determining Future Epicenters by Triangulations of Magnetometer Pulses in Peru, in AGU Fall Meeting (AGU, San Francisco, CA, 2013).

  34. J.A. Heraud, V.A. Centa, Triangulation of Pulses of Electromagnetic Activity to Determine When and Where Earthquakes will occur in Central Peru, in 4th Bi-Annual International Geo-Hazards Research Symposium (IGRS, NASA Ames Research Park, 2014).

  35. P. Nenovski, C.R. Acad. Sci. 69, 775 (2016).

    Google Scholar 

  36. E.I. Parkhomenko, Rev. Geophys. Space Phys. 20, 193 (1982).

    Article  ADS  Google Scholar 

  37. F.T. Freund, M.M. Freund, J. Asian Earth Sci. 2015, 373 (2015).

    Article  ADS  Google Scholar 

  38. F. Freund, M.M. Freund, F. Batllo, J. Geophys. Res. 98, 22209 (1993).

    Article  ADS  Google Scholar 

  39. R. Martens, H. Gentsch, F. Freund, J. Catal. 44, 366 (1976).

    Article  Google Scholar 

  40. F. Freund, H. Wengeler, J. Phys. Chem. Solids 43, 129 (1982).

    Article  ADS  Google Scholar 

  41. F. Freund, H. Wengeler, R. Martens, Geochim. Cosmochim. Acta 46, 1821 (1982).

    Article  ADS  Google Scholar 

  42. G.R. Rossman, Phys. Chem. Miner. 23, 299 (1996).

    Article  ADS  Google Scholar 

  43. M.M. Abraham, C.T. Butler, Y. Chen, J. Chem. Phys. 55, 3752 (1971).

    Article  ADS  Google Scholar 

  44. A.H. Edwards, W.B. Fowler, Phys. Rev. B 26, 6649 (1982).

    Article  ADS  Google Scholar 

  45. E.J. Friebele, et al., Phys. Rev. Lett. 42, 1346 (1979).

    Article  ADS  Google Scholar 

  46. D. Ricci, et al., Phys. Rev. B 64, 224104 1 (2001).

    Article  ADS  Google Scholar 

  47. P.E. Kazin, et al., ChemInform 43, 32 (2012).

    Article  Google Scholar 

  48. F. Freund, M.M. Masuda, J. Mater. Res. 6, 1619 (1991).

    Article  ADS  Google Scholar 

  49. F.A. Kröger, The chemistry of imperfect crystals, North-Holland Publisher, Amsterdam, 1964.

  50. O.E. Taurian, M. Springborg, N.E. Christensen, Solid State Commun. 55, 351 (1985).

    Article  ADS  Google Scholar 

  51. H. Kathrein, F. Freund, J. Phys. Chem. Solids 44, 177 (1983).

    Article  ADS  Google Scholar 

  52. H. Wengeler, F. Freund, Mater. Res. Bull. 15, 1241 (1980).

    Article  Google Scholar 

  53. F. Batllo, et al., J. Appl. Phys. 67, 5844 (1990).

    Article  ADS  Google Scholar 

  54. F. Batllo, et al., J. Appl. Phys. 69, 6031 (1991).

    Article  ADS  Google Scholar 

  55. F. Freund, E.J. Whang, J. Lee, Highly mobile hole charge carriers, in: F. Fujimori, M. Hayakawa (Eds.), minerals: Key to the enigmatic electrical earthquake phenomena?, in Electromagnetic Phenomena Related to Earthquake Prediction, Terra Sci. Publ. Co., Tokyo, 1994, pp. 271–292.

  56. N. Munjal, et al., J. Phys.: Conf. Ser. 377, 012067 (2012).

    Google Scholar 

  57. A.K. Jonscher, in Dielectric relaxation in solids , Chelsea Dielectrics Press, London, 1983, p. 380.

  58. C. Kittel, Introduction to solid state physics. 7th ed. (Wiley, New York, 1996).

  59. D. Balzar, J. Res. Nat. Inst. Stand. Technol. 98, 321 (1993).

    Article  Google Scholar 

  60. P.K. Abraitis, R.A.D. Pattrick, D.J. Vaughan, Int. J. Mineral Proc. 74, 41 (2004).

    Article  Google Scholar 

  61. G. Pacchioni, et al., Phys. Rev. B. 48, 11573 (1993).

    Article  ADS  Google Scholar 

  62. C.Y. Ho, R.E. Taylor, Thermal Expansion of Solids, ASM International, Materials Park, OH, 1998.

  63. B. Henderson, J.E. Wertz, Defects in the Alkaline Earth Oxides (Taylor & Francis, London, 1977).

  64. D.L. Griscom, Glass Sci. Technol. 4B, 151 (1990).

    Article  Google Scholar 

  65. E.-H. Chen, T.-C. Chang, J. Molec. Struct. Theochem. 431, 127 (1998).

    Article  ADS  Google Scholar 

  66. D. Ricci, et al., Phys. Rev. B 64, 224104–1 (2001).

    Article  ADS  Google Scholar 

  67. F.T. Freund, Nat. Hazards Earth Syst. Sci. 7, 1 (2007).

    Article  Google Scholar 

  68. A.P. Boresi, R.J. Schmidt, O.R. Sidebottom, Advanced Mechanics of Materials (Wiley, 1993).

  69. H. Kimizuka, et al., Phys. Rev. B 75, 054 (2007).

    Article  Google Scholar 

  70. J. Scoville, J. Heraud, F. Freund, Nat. Hazards Earth Syst. Sci. Discuss. 2, 7367 (2014).

    ADS  Google Scholar 

  71. J.A. Heraud, V. Centa, T. Bleier, Electromagnetic Precursors Leading to Triangulation of Future Earthquakes and Imaging of the Subduction Zone, in AGU Fall Meeting (AGU, San Franciso, CA, 2015).

  72. F. Freund, J. Geodyn. 33, 545 (2002).

    Article  Google Scholar 

  73. D.L. Griscom, Glass Sci. Technol. 48, 151 (1990).

    Article  Google Scholar 

  74. G.K. Schenter, R.L. Liboff, J. Appl. Phys. 62, 177 (1987).

    Article  ADS  Google Scholar 

  75. F.J. Dyson, A. Lenard, J. Math. Phys. 8, 423 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  76. T. Toulkeridis, et al., J. Geodyn. 126 (2019).

  77. C.A. Balanis, in Advanced engineering electromagnetics (Wiley, 2012), p. 1040.

  78. J. Scoville, J. Heraud, F. Freund, arXiv:1405.4482 (2014).

  79. C.G. Dodd, G.L. Glen, J. Appl. Phys. 39, 5377 (1968).

    Article  ADS  Google Scholar 

  80. G. Frenking, S. Shaik, in The Chemical Bond. Fundamental Aspects of Chemical Bonding (John Wiley, 2014), p. 438.

  81. T.V. McEvilly, W.A. Peppin, Geophys. J. Int. 31, 67 (1972).

    Article  ADS  Google Scholar 

  82. USGS, Earthquake Booms, Seneca Guns, and Other Sounds (2018), Available from: https://www.usgs.gov/natural-hazards/earthquake-hazards/science/earthquake-booms-seneca-guns-and-other-sounds?qt-science_center_objects=0#qt-science_center_objects.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann T. Freund.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freund, F.T., Heraud, J.A., Centa, V.A. et al. Mechanism of unipolar electromagnetic pulses emitted from the hypocenters of impending earthquakes. Eur. Phys. J. Spec. Top. 230, 47–65 (2021). https://doi.org/10.1140/epjst/e2020-000244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000244-4

Navigation