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Abstract. We describe the aims and content of this issue.

1 Introduction

Within the broad range of flow phenomena, problems involving fluid interfaces, and
their interaction with solid boundaries, are one of the most interesting and challenging
areas. Topics related to wetting phenomena and their applications attract continuing
interest in the scientific community, in view of their relevance to micro- and nanoflu-
idic applications, ink-jet printing, nanotechnology, prevention of ice accretion, heat
transfer enhancement, etc. Further progress in development of these technologies is
impossible without detailed understanding of nanoscale mechanisms governing wet-
ting phenomena, both in conventional wetting and in wetting of complex liquids on
complex solids. The increasing activity of scientific community is reflected in a num-
ber of emerging focused collaborative research initiatives on the national, European,
and international level. These collaborative projects are devoted both to elucidat-
ing fundamental wetting mechanisms and their interaction with transport of mass,
momentum and energy, and to controlling wetting phenomena in applications-relevant
systems involving complex fluids (surfactant solutions, suspensions, emulsions) and
complex surfaces.

This special issue nucleated at the workshop “Challenges in nanoscale physics of
wetting phenomena” (NaWet) that took place at the Max Planck Institute for the
Physics of Complex Systems in Dresden in August 2019, but is in no way identical to
the workshop program. It aims at addressing recent developments and open questions
related to computational, analytical, and experimental aspects of physics of wetting
phenomena. A continuing attention to this theme had already inspired a Discussion
and Debate issue of EPJ ST [1].

In many natural phenomena and practical applications, the wetted substrate is
not smooth; this is a case for wetting of rough substrates, of structured substrates or
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structures coated with porous coatings, as well as spontaneous or forced wetting of
porous materials; nanoscale interactions influence even wetting of smooth surfaces.
This special issue contains theoretical and experimental works covering a wide range
of topics, and highlights the challenge of bridging widely separated scales, from macro-
scopic to molecular, that bears upon these phenomena. We hope that this will pave
the way toward future developments in this scientifically challenging and practically
important problem.

In the following, we briefly annotate the contributions to the issue, separating
those emphasizing macroscopic or multiscale approach, and ending with the dis-
cussion contributions. The papers are listed in the order of submission within each
section.

2 Macroscopic experiments and modeling

Ludwicki and Steen [2] present a study of sweeping of wetted area by the sessile
drop coalescence on a solid substrate. The observations illustrate the influence of the
solid’s wettability on the sweeping efficiency, and are complemented by volume-of-
fluid simulations.

The experiments by Seiler et al. [3] illustrate the interaction between an air-
driven, wall-bound drop, and a groove in the wall of a channel, leading to three
alternative outcomes: the drop passing over the groove, or being fully captured, or
being captured after first wetting the rear side of the groove. Threshold conditions
for different outcomes are predicted by a model based on scaling arguments.

Kim et al. [4] investigate with the help of tomographic particle image velocimetry
the internal flow pattern induced by an evaporating droplet with a stick-and-slip
motion of the contact line. They detect the formation of an azimuthal vortex pair
and explain this phenomenon by a theoretical model taking into account the relation
between the contact line motion and the evaporating flux.

O’Brien et al. [5] apply the volume-of-fluid method to a detailed pore-scale numer-
ical simulation of a two-phase flow in a porous medium. An ordered porous medium is
modeled using the immersed boundary method. The displacement patterns are shown
to be affected by both the capillary number and wetting characteristics that govern
the transition between stable front propagation and the viscous fingering regimes.

Ghillani et al. [6] model the mechanisms of imbibition in porous coatings by the
simultaneous liquid capillary rise and evaporation within a corner between a substrate
and a fiber. Their computations based on a finite elements method and compared to
experimental data, demonstrate that imbibition is enhanced by the capillary rise in
the corner between the substrate and the first layer of nanofibers, and is depressed
when evaporation becomes significant.

3 Bridging the scales

Thiele and Hartmann [7] have developed a gradient dynamics model of the droplet
spreading on polymer brushes based on a thin film approximation. The wetting
dynamics is coupled with the dynamics of swelling, absorption, and diffusion. They
highlight a remarkable difference between the macroscopic contact angle defined by
extrapolating the drop’s shape, and the mesoscopic contact angle defined at the
inflection point of the drop profile.

Limat [8] reconsiders the problem of a sliding drop that develops a conical tail at
the rear, taking into account friction of a microscopic origin at the contact line. In
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addition, he proposes a simple model to describe the evaporation of liquid. He also
emphasizes the key role of evaporation in the microscale dynamics.

Fricke and Bothe [9] address the issue of relieving the moving contact line singu-
larity from the point of view of compatibility analysis. They analyze two continuum
mechanic models: the standard Navier slip model and the model in which the
interfacial layer is considered separately from the fluid bulk.

Herbaut et al. [10] develop a model predicting the pinning condition of the contact
line on a substrate at temperatures below the freezing temperature of the wetting
liquid. The most important model predictions include the dependence of the apparent
contact angle on the degree of undercooling and the critical velocity for the transition
to stick—slip motion. A limitation of the model is treating the microscopic scale as an
adjustable parameter.

Alizadeh-Birjandi et al. [11] study experimentally freezing on feathers taken from
both cold-weather and warm-weather penguins, supporting the hypothesis that the
origin of anti-icing properties of cold-weather penguin’s feathers comes from a unique
combination of their macroscopic structure, the nanoscale topography of its barbules,
and the hydrophobicity of its preen oil.

Lacis et al. [12] develop a molecular dynamics framework for an atomistic water
model to simulate a nanoscopic drop between two moving plates, taking into account
hydrogen bonding between the water molecules and the solid substrate that leads
to a sub-molecular slip length at the contact line. Comparison of their results with
standard continuum computations demonstrate the importance of the molecular-scale
mobility and local slip for accurate modeling of the moving contact line.

Fullana et al. [13] model dynamic wetting in the curtain coating configuration,
using a volume-of-fluid method with the Navier slip boundary condition to regularize
the solution at the contact line. Their results predict the onset of wetting failure but a
comparison with the available literature suggests Navier slip coupled with a constant
contact angle might be insufficient to regularize the solution at the contact line.

Zigelman et al. [14] study the influence of the ionic strength on particles depo-
sition patterns from suspensions, and explain its strength by the growth of local
concentration of both particles and ions due to microscale convection and enhanced
evaporation near the contact line. The process is sensitive to the ion strength that
reduces the energy barrier to deposition by screening of electrostatic forces.

4 Discussion

In the only Discussion contribution to the present issue, Shikhmurzaev [15] presents
a detailed review of mathematical models of dynamic wetting. He challenges the
common view shared by a number of models that the dynamic contact angle is a
unique function of a contact line speed. His “litmus tests” for mathematical models
are criticized by Bothe [16], and the vivid discussion is continued with the rebuttal
by Shikhmurzaev [17]. Shikhmurzaev’s views, which bear upon the crucial question
of relation between macroscopic and molecular-scale factors in wetting phenomena
have been already a subject of debate in the EPJ ST issue edited by Velarde [1].
We share his opinion that the contact angle, either static or dynamic, is ill-defined:
it depends on where and how it is measured. It is more controversial that, in the
spirit of classical fluid dynamics, he insists that molecular-scale interactions cannot
enter macroscopic equations but should be introduced via boundary conditions. It is
well known that classical hydrodynamic equations with classical boundary conditions
fail to resolve the motion of a contact line. Standard equations work perfectly in
the bulk, but boundary conditions have to take into account molecular interactions.
Analytical techniques (e.g., [18]) derive boundary conditions for macroscopic flow
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through multiscale analysis matching molecular and macroscopic scales, but their
applications are limited. Such matching can be, in principle, implemented with the
help of diffuse interface models and/or molecular dynamics simulations, but we are
still waiting for the emergence of such a kind of multiscale numerical modeling.
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