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Abstract. We investigate the existence of inhomogeneous chiral phases
in the quark-meson model with explicit chiral-symmetry breaking. We
find that the inhomogeneous region shrinks with increasing pion masses
but survives for the physical value of mπ. The instability towards inho-
mogeneous matter occurs in the scalar channel, while pseudoscalar
modes are disfavored.

1 Introduction

Mapping the phase diagram of QCD at nonvanishing temperature T and quark chem-
ical potential µ is one of the major challenges in strong-interaction physics [1,2].
Lattice QCD calculations at µ = 0 revealed that chiral symmetry, which is spon-
taneously broken in vacuum, gets approximately restored in a smooth crossover at
T ∼ 150 MeV [3], while in the regime of low T and nonzero µ, where standard
lattice methods are not applicable, model studies as well as continuum approaches
to QCD indicate the possibility of a first-order phase transition, terminating at a
second-order critical endpoint (CEP) [4–7]. Most of these calculations rely however
on the assumption that these phases are homogeneous, i.e., that the chiral order
parameter does not vary in space. Allowing for spatially non-uniform order parame-
ters, such inhomogeneous phases often turn out to be favored in some region of the
phase diagram, typically covering parts of or even the entire first-order boundary
between the homogeneous phases. Specifically this was found within the Nambu–
Jona-Lasinio (NJL) [8,9] and the Quark-Meson (QM) model [9,10], but also in QCD
using Dyson-Schwinger equations [11]. (For a review about inhomogeneous chiral
phases, see Ref. [12].)

However, most of these studies have been performed in the chiral limit, while the
situation for the more realistic case with a small explicit breaking of chiral symmetry
is less clear. For the NJL model it was found that the inhomogeneous phase shrinks
when a nonvanishing bare quark mass is introduced but is still present for realistic
masses [9]. More generally it was shown in reference [13] that the inhomogeneous
phase always reaches up to the CEP in that model and thus survives as long as there
is a first-order phase transition in the homogeneous case. For the QM model, on the
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other hand, it was found in reference [14] that the inhomogeneous phase becomes
disfavored already for a rather small amount of explicit symmetry breaking, corre-
sponding to a pion mass of about one quarter of the physical value. The calculation
was however done only for one specific spatial modulation of the order parameter, a
so-called chiral density wave (CDW). This modulation is relatively simple to handle
but is known not to be the most favored shape in most cases, and away from the
chiral limit it is not even a self-consistent solution.

In the present work we therefore study the effect of explicit chiral-symmetry break-
ing on inhomogeneous phases in the QM model, starting with a stability analysis of
the homogeneous phase. This method, which has already been employed in refer-
ence [13] to the analogous problem in the NJL model, has the advantage that one
does not need to know the explicit shape of the spatial modulation. It only relies on
the assumption that at the phase boundary the homogeneous phase becomes unstable
against small inhomogeneous fluctuations, i.e., that the phase transition is of second
order. This analysis will therefore yield a sufficient criterion for the inhomogeneous
regime in the model, while the true inhomogeneous phase can be larger. We will then
support the results of the stability analysis with a calculation of the full model phase
diagram employing a specific self-consistent ansatz away from the chiral limit, as well
as by a Ginzburg-Landau expansion close to the CEP.

The remainder of this article is organized as follows: We introduce our theoreti-
cal framework in Section 2, then in Section 3 we discuss the QM parameter fitting
procedure away from the chiral limit. We show our numerical results for the phase
diagram in Section 4 and discuss our conclusions in Section 5.

2 Theoretical framework

We consider the QM model defined by the Lagrangian

LQM = ψ̄ (iγµ∂µ − g(σ + iγ5τ · π))ψ + Lkin
M − U(σ,π) , (1)

where ψ is a quark spinor field with Nf = 2 flavor and Nc = 3 color degrees of
freedom, coupled via a Yukawa interaction with coupling constant g to the scalar
sigma meson σ and the pseudoscalar pion triplet π. Here τ= (τ1, τ2, τ3) denotes the
Pauli matrices in isospin space. The meson kinetic contributions read

Lkin
M =

1

2
(∂µσ∂

µσ + ∂µπ · ∂µπ) , (2)

and

U(σ,π) =
λ

4

(
σ2 + π2 − v2

)2 − cσ, (3)

is the meson potential. In the limit c = 0 it is symmetric unter O(4) transformations
of the meson vector φ = (σ,π), which can be identified with the chiral SU(2)L ×
SU(2)R symmetry. For c 6= 0 the O(4) symmetry is broken explicitly down to O(3),
corresponding to the SU(2) isospin symmetry. The model parameters, g, λ, v2, and
c, will be fitted to vacuum properties as discussed in Section 3.

The thermodynamic properties of the model are encoded in the grand potential
per volume V , Ω(T, µ) = − T

V logZ(T, µ), where Z(T, µ) denotes the grand canonical
partition function, which depends on the temperature T and the quark chemical
potential µ. In the following we perform the mean-field approximation, replacing the
quantum fields σ and π by their expectation values, i.e., by classical fields. We assume
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that these fields are time independent but we retain their dependence on the spatial
coordinate x in order to allow for inhomogeneous phases. Moreover, we assume that
only the third isospin component of the pion field develops a nonvanishing expectation
value, which we call π(x), while, for simplicity, we keep the name σ(x) for the classical
sigma field. The mean-field grand potential per volume (“thermodynamic potential”)
is then given by

ΩMFA(T, µ;σ, π) = Ωq(T, µ;σ, π) + Ωmes(σ, π) , (4)

with a purely mesonic part

Ωmes =
1

V

∫
V

d3x

{
1

2

(
(∇σ(x))2 + (∇π(x))2

)
+ U(σ(x), π(x))

}
, (5)

and a quark part

Ωq = −T
V
Tr log

S−1

T
, (6)

where

S−1(x) = iγµ∂µ + µγ0 − g(σ(x) + iγ5τ3π(x)), (7)

corresponds to the inverse dressed quark propagator at chemical potential µ in the
presence of the sigma and pion mean fields, and Tr denotes a functional trace running
over the Euclidean four volume V4 = [0, 1

T ] × V as well as color, flavor and spinor
degrees of freedom. These expressions are basically identical to those in reference [10],
where the same model in the chiral limit was considered. The only exception is that
we now have to take into account the explicitly symmetry-breaking term −cσ in the
mesonic potential.

2.1 Stability analysis

In order to determine the ground state of the system at given T and µ, we must
minimize the thermodynamic potential with respect to the mesonic fields σ and π.
While this is standard for spatially constant mean fields, the functional minimiza-
tion of ΩMFA with respect to arbitrary non-uniform fields is obviously a much harder
problem, which has not yet been solved in full glory for 3 + 1 space-time dimensions.
Instead of tackling the full problem, one possibility is to perform a stability analysis,
applying the same methods, which have been used in reference [13] to analyze inhomo-
geneous phases in the NJL model. To this end we split the meson fields into spatially
constant parts, corresponding to the lowest homogeneous state of the system, and
small fluctuations with arbitrary spatial shapes. Since in homogeneous systems the
pion field is disfavored against the sigma field due to the symmetry-breaking term in
the potential, the constant part appears only in the sigma sector, i.e., we have

σ(x) = σ̄ + δσ(x), π(x) = δπ(x), (8)

where σ̄ corresponds to the (in general T and µ dependent) value of the sigma field
in the homogenous ground state, and δσ and δπ are the fluctuations.
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Plugging this into equations (4)–(7), the thermodynamic potential can be
decomposed as

ΩMFA(T, µ;σ, π) =
∞∑
n=0

Ω(n), (9)

with Ω(n) being of the nth order in the fluctuations. Specifically one finds for the
contributions up to quadratic order

Ω(0) = −T
V
Tr log

S−1
0

T
+ U(σ̄, 0), (10)

Ω(1) =
T

V
Tr
(
S0Σ̂

)
+
[
λ(σ̄2 − v2)σ̄ − c

] 1

V

∫
V

d3x δσ(x), (11)

Ω(2) =
1

2

T

V
Tr
(
S0Σ̂

)2

+
1

2

1

V

∫
V

d3x
[
(∇δσ(x))2 + (∇δπ(x))2

]
+
λ

2
(3σ̄2 − v2)

1

V

∫
V

d3x (δσ(x))
2

+
λ

2
(σ̄2 − v2)

1

V

∫
V

d3x (δπ(x))
2
, (12)

where

S−1
0 = iγµ∂µ + µγ0 − gσ̄, (13)

is the inverse quark propagator equation (7) without fluctuations, S0 is its inverse,
and

Σ̂ = g(δσ(x) + iγ5τ3δπ(x)), (14)

is the quark selfenergy correction due to the fluctuating fields.
Noting that S0 corresponds to the propagator of a free fermion with mass

M̄ = gσ̄, (15)

these expressions are evaluated most easily in momentum space. Assuming spatially
periodic fields we perform the Fourier expansions

δσ(x) =
∑
qk

δσqk
eiqk·x, δπ(x) =

∑
qk

δπqk
eiqk·x, (16)

where qk are the elements of the corresponding reciprocal lattice. Since the meson
fields and, thus, their fluctuations are real fields in coordinate space, the Fourier
coefficients obey the relations δσ−qk

= δσ∗qk
and δπ−qk

= δπ∗qk
.

Taking the infinite-volume limit V →∞ one then obtains

Ω(1) = δσ0
{
λ(σ̄2 − v2)σ̄ − c+ g2σ̄F1

}
, (17)

for the linear contribution of the fluctuations to the thermodynamic potential. Here
we have introduced the loop integral F1, where

Fn = 8Nc

∫
d3p

(2π)3
T
∑
m

1

[(iνm + µ)2 − p2 − M̄2]n
, (18)
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with M̄ as defined in equation (15) and fermionic Matsubara frequencies νm = (2m+
1)πT .

Note that only the spatially constant qk = 0 mode of the fluctuations in the sigma
channel contributes to Ω(1). However, since we have assumed that Ω(0) corresponds
to the lowest homogeneous state, this contribution must vanish, leading to the gap
equation

λ(σ̄2 − v2)σ̄ − c+ g2σ̄F1 = 0 . (19)

Indeed, the same equation can be obtained from the stationary condition dΩ(0)

dσ̄ = 0.
Unlike the linear term, the quadratic corrections of the fluctuations to the

thermodynamic potential get contributions from all Fourier modes. One finds

Ω(2) = −1

2

∑
qk

{
|δσqk

|2D−1
σ (qk) + |δπqk

|2D−1
π (qk)

}
, (20)

where qk = (0, qk) is the four-momentum vector with vanishing energy and three-
momentum qk, and

D−1
M (q) = q2 −m2

M,t + g2ΠM(q), M∈ {σ, π}, (21)

are the (unrenormalized) inverse dressed meson propagators at four-momentum q,
temperature T and chemical potential µ. Here

m2
σ,t =

∂2U

∂σ2

∣∣∣∣
σ=σ̄,π=0

= λ(3σ̄2 − v2) and m2
π,t =

∂2U

∂σ2

∣∣∣∣
σ=σ̄,π=0

= λ(σ̄2 − v2),

(22)
are the sigma and pion tree-level masses, and ΠM(q) denote the corresponding quark-
antiquark polarization loops (cf. Ref. [10] for further details). The explicit evaluation
yields

D−1
σ (q) = q2 − 2

λ

g2
M̄2 − cg

M̄
− 1

2
g2(q2 − 4M̄2)L2(q), (23)

D−1
π (q) = q2 − cg

M̄
− 1

2
g2q2L2(q), (24)

where we have used the gap equation (19) to eliminate terms proportional to the loop
function F1. Taking again the infinite-volume limit, the loop function L2 is given by

L2((iωm, q)) = −8Nc

∫
d3p

(2π)3
T
∑
n

1

[(iνn + iωm + µ)2 − (p+ q)2 − M̄2]

× 1

[(iνn + µ)2 − p2 − M̄2]
, (25)

where νn are again fermionic Matsubara frequencies and ωm is a bosonic Matsubara
frequency. As pointed out above, we only need L2 at zero energy at this point, i.e.,
ωm = 0.

In the infinite-volume limit the crystal can take any geometry and size, and there-
fore the momenta qk of the reciprocal lattice are not a priori restricted to certain
values. As can be seen from equation (20), the free energy of the homogeneous ground
state can thus be lowered by the formation of inhomogeneous modes if D−1

σ (q) > 0
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or D−1
π (q) > 0 in some region of q = (0, q). Note that q2 = −q2 in this case, so that

the inverse propagator of a free meson, D−1
M,free = q2 −m2

M is always negative. The
instability is therefore a pure interaction effect, as also known, e.g., from P-wave pion
condensation in nuclear matter [15,16] (see [17] for a review). In the present model one
can distinguish between meson-meson interactions (encoded in the tree-level masses
mM,t) and quark-meson interactions (encoded in the polarization functions ΠM).
The latter are identical to the polarization functions in the NJL model, and it was
shown in reference [13] that they favor an instability in the sigma channel over an
instability in the pion channel.1 In the QM model, however, the situation is more com-
plicated because of the tree-level masses. At least, if we naively assume the ordering
m2
σ,t > m2

π,t > 0, as for the physical masses in vacuum, we would expect that both
masses stabilize the homogeneous phase but less in the pion channel than in the sigma
channel. In order to find out the overall effect we therefore have to evaluate equa-
tions (23) and (24) explicitly. The resulting stability boundaries of the homogeneous
phase will be presented in Section 4.1.

2.2 The real-kink crystal ansatz

The stability analysis described above has the clear advantage to provide general
results independent of the specific shape of the spatial modulation of the order param-
eter. However, since it relies on a small-amplitude expansion, it can only provide a
sufficient condition for an inhomogeneous phase, while the true inhomogeneous region
can be larger. Thus, in order to complement its results and obtain an estimate of the
size of the inhomogeneous window, we will also compute the full thermodynamic
potential of the QM model for a specific ansatz for the order parameter, the so-
called “real-kink crystal” (RKC). Aside from the advantage of being a self-consistent
ansatz away from the chiral limit [9,18], this RKC is also the energetically most
favored modulation considered so far in the literature [12,19,20].

The order parameter is expressed in terms of the Jacobi elliptic functions
sn, cn,dn,

gσ(z) ≡M(z) = ∆
[
ν sn(∆z, ν)sn(∆z + b, ν)sn(b, ν) +

cn(b, ν)dn(b, ν)

sn(b, ν)

]
, (26)

and is characterized by the three variational parameters ∆, ν and b, which are deter-
mined by minimizing the free energy of the system [9]. For this type of modulation,
an analytical expression for the density of states ρ(E) has been computed, so that the
free energy can be obtained without having to resort to numerical diagonalization of
the inverse quark propagator [9,12]. One finds

ρ(E) =
E2

π2

1

ε

[
θ(
√
ν̃ − ε)

(
E(λ̃, ν̃) + C(ν)F(λ̃, ν̃)

)
+ θ(ε−

√
ν̃)θ(1− ε)

(
E(ν̃) + C(ν)K(ν̃)

)
+ θ(ε− 1)

(
E(λ, ν̃) + C(ν)F(λ, ν̃) +

√
(ε2 − 1)(ε2 − ν̃)/ε

)]
, (27)

1The argument, which can be taken over to the present case to some extent is that −q2L2(q) =
q2L2(q) must be positive to have a chance to create an instability in the pion channel. But then the
corresponding term in the sigma channel, (q2 + 4M2)L2(q), is even more positive.



Strong Correlations in Dense Matter Physics 3377

where ε = E/∆, ν̃ = 1− ν, λ̃ = arcsin(ε/
√
ν̃), λ = arcsin(1/ε), C(ν) = E(ν)/K(ν)−

1, F and K are incomplete and complete elliptic integrals of first kind, respectively,
and E are the complete and incomplete elliptic integrals of second kind.

The thermodynamic potential is then given by

Ω = −NfNc
∫ ∞

0

dE ρ(E)f(
√
E2 + δ∆2) +

1

2g2
〈(∇M)2〉

+
λ

4g4

[
〈M4〉 − 2v2g2〈M2〉+ v4g4

]
− c〈M〉 , (28)

with δ = 1/sn2(b, ν)− 1 and

f(x) = x+ T log
(

1 + e−(x−µ)/T
)

+ T log
(

1 + e−(x+µ)/T
)
, (29)

where the first term corresponds to the vacuum quark contribution.
The meson potential depends on the following spatial averages of the order

parameter over a period:

〈M〉 = ∆
[
Z(b, ν) +

√
δ(1 + δ − ν)

1 + δ

]
, (30)

〈M2〉 = ∆2
[
δ − ν − 2C(ν)

]
, (31)

〈M4〉 = ∆4
[
(δ − ν)2 − 8

3

[
ν + C(ν)(2 + 3δ − ν)

]
− 4
√
δ(1 + δ)(1 + δ − ν)Z(b, ν)

]
, (32)

〈(∇M)2〉 = ∆4 4

3

[
ν + (2− ν + 3δ)C(ν) + 3

√
δ(1 + δ)(1 + δ − ν)Z(b, ν)

]
, (33)

where Z is the Jacobi Zeta function.
Before getting to our results for the model phase structure, let us now discuss

how the model parameters are fixed.

3 Parameter fixing

As standard, we determine the model parameters by fitting masses and the pion
decay constant in vacuum. Thereby, in order to systematically investigate the effect
of the explicit chiral-symmetry breaking, we first set the coupling c equal to zero and
fix the remaining parameters g, λ and v2 in the chiral limit. After that, we consider
c 6= 0 but keep the other parameters at their chiral-limit values.

For fixing g, λ and v2 in the chiral limit we follow reference [10], where this was
done by fitting the vacuum values of the pion decay constant fπ, of the sigma-meson
mass mσ, and of the constituent quark mass. For homogeneous matter we can identify
the latter with M̄ as defined in equation (15) with σ̄ being the homogeneous sigma
field which minimizes Ω(0). In vacuum, i.e., at T = µ = 0, we expect that it also
minimizes ΩMFA, since phenomenologically the vacuum is homogeneous. This turns
out to be true in our model as well, at least up to quadratic-order fluctuations. For
mσ and fπ it was shown in reference [21] that it is crucial to fit the pole mass and
to take into account the renormalization of the pion wave function, corresponding to
the pole of Dσ and the residue of Dπ, respectively. The resulting expressions are (see
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Refs. [10,21] for details)

g2 =
M̄2

0

f2
π,0 + 1

2M̄
2
0L

(vac,0)
2 (0)

, (34)

λ = 2g2
m2
σ,0

4M̄2
0

[
1− 1

2
g2

(
1− 4M̄2

0

m2
σ,0

)
L

(vac,0)
2 (mσ,0)

]
, (35)

v2 =
M̄2

0

g2
+
g2F

(vac,0)
1

λ
, (36)

where the subscript 0 in M̄0, mσ,0 and fπ,0 indicates that these quantities correspond

to the vacuum values in the chiral limit. Likewise F
(vac,0)
1 and L

(vac,0)
2 are the loop

integrals F1 and L2 evaluated in vacuum and with M̄ = M̄0. Moreover, L
(vac,0)
2 (mσ,0)

means that the function L2((iωm, q)) is analytically continued to the real time-like
momentum q = (mσ,0,0). The explicit expressions can be found in reference [21].

Having fixed g, λ and v2 in this way, we turn on the chiral-symmetry breaking
term by varying the parameter c. The most important consequence is that the pion,
which is massless in the chiral limit in agreement with the Goldstone theorem, gets a
non-vanishing mass. We can therefore relate the parameter c to the pion pole mass,
implicitly given by D−1

π (q = (mπ,0)) = 0. We then get from equation (24)

cg = m2
πM̄

[
1− 1

2
g2L

(vac)
2 (mπ)

]
, (37)

where L
(vac)
2 (mπ) is the function L2((iωm, q)) evaluated in vacuum and analytically

continued to the real time-like momentum q = (mπ,0). Note, however, that the quark

mass M̄ , which also enters the function L
(vac)
2 , is not the chiral-limit value M̄0, as in

equations (34)–(36), but related to the solution of the gap equation (19), including
the constant c. For a fixed value of mπ, equation (37) must therefore be solved
self-consistently together with equation (19).

Finally, we note that the vacuum parts of loop integrals F1 and L2, as well as
their chiral-limit versions, are ultraviolet divergent and must be regularized in order
to get meaningful results.2 Again following references [10,21], we use Pauli-Villars
regularization with three regulators, controlled by the cutoff parameter Λ. As a con-
sequence, the model parameters for fixed values of M̄0, mσ,0, fπ,0, and mπ depend
on Λ.

In the following, we will always fix our model in the chiral limit by choosing
M̄0 = 300 MeV, mσ,0 = 600 MeV, and fπ,0 = 88 MeV. In particular we have mσ,0 =
2M̄0, in which case equation (35) simplifies to λ = 2g2. The corresponding values
of λ and v2 as functions of Λ are displayed in the first two panels of Figure 1. The
results agree with those in references [10,21], where the same vacuum observables
have been fitted. In addition, we show in Figure 1 the parameter c, multiplied with
g, for mπ = 140 MeV.

Since the QM model is renormalizable, all observables should remain finite in
the limit Λ → ∞. As demonstrated in reference [10], this is also true for the phase
diagram. It was found that the results remain practically unchanged when Λ exceeds

2In earlier QM-model studies the divergent vacuum parts have often been dropped completely,
arguing that their effects can be absorbed in the model parameters [5,9]. As shown however in refer-
ence [22], this so-called ‘standard mean-field approximation’ causes artifacts in the phase diagram.
Therefore we take into account the vacuum contributions of the quark loops explicitly.
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Fig. 1. Model parameters as functions of the Pauli-Villars cutoff parameter Λ. The
parameter c has been fitted to a vacuum pion mass mπ = 140 MeV.

Fig. 2. Vacuum properties as functions of the pion mass in the renormalized limit (Λ =
5 GeV): constituent quark mass (left), sigma-meson mass (center), and pion decay constant
in the Goldberger-Treiman approximation, equation (38) (right).

2 GeV, so that in practice Λ = 5 GeV can be considered as the “renormalized limit”.3

In Figure 2 we show how the vacuum values of M , mσ and fπ vary as functions of
mπ in the renormalized limit. By construction, they take of course their fit values in
the chiral limit, i.e., at mπ = 0. With increasing mπ they increase as well but stay
finite, even for arbitrarily large values of Λ. We note that the value of fπ for the
physical pion mass mπ ∼ 140 MeV is too small compared with the empirical value of
92.2 MeV [24]. This could be cured by slightly changing the fit values in the chiral
limit (which are admittedly somewhat ad-hoc) but it is not our intention here to
perform a precision fit. Moreover, in Figure 2, fπ has been calculated as [10]

f2
π =

M̄2

Zπg2
=
M̄2

g2

(
1− 1

2
g2L

(vac)
2 (mπ)

)
, (38)

which corresponds to the quark-level Goldberger-Treiman relation and is strictly
speaking only valid in the chiral limit (cf. Eq. (34)).

A more severe problem is that g2 and λ diverge at the point when L
(vac,0)
2 =

−2f2
π,0/M̄

2
0 . Within our regularization scheme and for our parameters this happens

at Λ = Λ∗ ≈ 757 MeV. Beyond this point, g2 and λ even turn negative, see Figure 1,
and, related to this, ΩMFA is no longer bounded from below in this regime [10,22].
Moreover, a negative g2 obviously means that the Yukawa coupling g is imaginary.

3A formal one-loop renormalization of the model within dimensional regularization, including an
application to inhomogeneous phases, has been performed in reference [23].
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Fig. 3. Stability boundaries of the homogeneous regions with respect to scalar (solid lines) or
pseudoscalar (dashed lines) inhomogeneous fluctuations for Λ = Λ∗ = 757 MeV (left panel)
and for the “renormalized case” (Λ = 5 GeV, right panel). The different lines correspond to
different values of the pion mass, in MeV as indicated by the labels. The unstable regions
lie to the left of these lines, i.e., the solid lines thus correspond to the right (upper µ)
boundaries of the inhomogeneous phase. Note that the left (lower µ) boundaries, which
cannot be determined by the stability analysis, are not shown.

Hence, forcing the constituent quark mass, equation (15), to stay real, the field expec-
tation value σ̄ becomes imaginary as well, in contradiction to our original assumption
of σ and π being real fields. Although it has been argued in reference [22] that the
unbounded potential is a known one-loop artifact and should be cured at higher
orders, this is clearly worrisome. On the other hand, the phase diagram changes
smoothly when passing through Λ = Λ∗, i.e., focusing only on the phase diagram,
one would not even notice that the problem exists. In Section 4 we will therefore
discuss results for the renormalized limit, ignoring the inconsistencies, as well as for
Λ = Λ∗, being the largest possible cutoff outside the problematic regime.4

4 Phase structure

We are now ready to discuss our results for the model phase structure, starting from
the stability analysis to determine the boundary where inhomogeneous phases become
favored.

4.1 Stability analysis

In Figure 3 we show the stability boundaries of the homogeneous phase with respect
to inhomogeneous fluctuations. More precisely, we show the lines where D−1

M (q) just
touches the zero-line at some value of q = (0, q 6= 0), both for M = σ or M = π,
for different values of the PV regulator and the vacuum pion mass. We recall that
this type of analysis relies on the assumption that the spatially modulated order
parameters are small, and thus can only give reliable results for second-order phase

4Incidentally, we note that, if we restrict ourselves to the chiral limit and the case mσ = 2M̄0,
in the limit Λ = Λ∗ the meson potential reduces to U(M2 = σ2 + π2) = −M2v2 (up to an infinite
constant), and thus the model becomes equivalent to the NJL model fitted to the same vacuum
quantities upon the identification v2(Λ∗) = −1/(4GNJL), GNJL being the coupling constant of the
four-fermi interaction in the NJL model.
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Fig. 4. Instability regions in the µ−mπ plane for Λ = 757 MeV (left) and the renormalized
limit (right).

boundaries. According to explicit calculations with certain modulations, this is typi-
cally the case at the right phase boundary of the inhomogeneous region, while the left
boundary cannot reliably be determined by the stability analysis. We will confirm
this below in Section 4.2.

As demonstrated in reference [10] for the chiral limit, incorporating vacuum fluc-
tuations shrinks the size of the inhomogeneous phase, which nevertheless survives in
the renormalized limit. As we move away from the chiral limit, the stability lines
in the two channels split, with the sigma line becoming the only relevant one since
it is the first to appear when coming from the stable homogeneous region at higher
chemical potential. Moreover, the pion lines decrease rapidly with growing mπ and
eventually disappear from the phase diagram. On the other hand, albeit reduced,
the instability in the sigma channel is still present for a physical pion mass in the
renormalized limit, so that we still expect an inhomogeneous phase driven by the
scalar condensate.

In Figure 4 we show the extension of the whole instability region, i.e., the whole
chemical-potential interval where D−1

σ (q) is positive for some q = (0, q 6= 0), at van-
ishing temperature and varying pion mass. We find that even in the renormalized
limit a finite window of instability persists for all values of mπ considered. While
going from the chiral limit to a physical pion mass reduces the size of the instability
region, when mπ becomes very large its extension starts increasing again, a similar
behavior to the one observed in the NJL model away from the chiral limit [13].5

It is worth emphasizing that the outcome of our stability analysis is not in dis-
crepancy with the renormalized-limit results of reference [14], where it was found
for a CDW ansatz that the inhomogeneous phase becomes disfavored against homo-
geneous solutions already at mπ = 37 MeV: This is due to the fact that the CDW
ansatz enforces equal amplitudes for the scalar and pseudoscalar channels, the latter
being disfavored according to our stability analysis. A different ansatz which allows
for inhomogeneous condensation only in the σ channel on the other hand should be
thermodynamically favored over homogeneous matter in this region of the phase dia-
gram. In the following section we will demonstrate this with the specific example of
the RKC modulation.

5At even larger pion masses the instability region joins with the “inhomogeneous continent”,
which in the chiral limit appears at high chemical potentials (see Refs. [10,25]).



3382 The European Physical Journal Special Topics

Fig. 5. Full phase diagram for Λ = 757 MeV (left) and the renormalized limit (right) for a
physical vacuum pion mass mπ = 140 MeV. The tip of the inhomogeneous phase coincides
with the position of the CEP for homogeneous order parameters. Solid black lines denote
the boundaries of the inhomogeneous phase for the RKC ansatz, while the blue dashed lines
are the left edges of the instability region found with the stability analysis. For the right
boundary of the inhomogeneous phase both approaches yield coinciding results.

4.2 Full phase diagram for the RKC ansatz

Having determined the behavior of the instability lines for a generic inhomogeneous
order parameter away from the chiral limit, we now compute the full phase diagram
for a specific ansatz, the RKC modulation introduced in Section 2.2. To be consistent
with the stability analysis, we regularize the vacuum contribution of equation (29)
using three Pauli-Villars counterterms [9].

In Figure 5 we show the phase diagram for a physical pion mass mπ = 140 MeV,
both for Λ = 757 MeV and in the renormalized limit. As expected, we find an inho-
mogeneous phase whose right boundary coincides with the instability line for the
sigma channel found in the previous section. For comparison, we show in the figure
also the left edge of the instability region, which, as expected, falls inside the inho-
mogeneous phase. In fact, the left edge of the instability region coincides with the
first-order phase boundary one finds when the model is restricted to homogeneous
phases, and just reflects the discontinuous change of the expansion point. In other
words: While the chirally almost restored phase just to the right of the first-order
boundary is unstable against small inhomogeneous fluctuations, the larger homoge-
neous condensates to the left make it at least metastable. Our results with the RKC
ansatz show however, that it is still possible to lower the free energy of the system
by large inhomogeneous fluctuations in this region.

Furthermore, our numerical results suggest that the tip of the inhomogeneous
phase, the so-called pseudo-Lifshitz point (PLP),6 coincides with the location of the
CEP obtained when restricting the analysis to homogeneous matter. This is similar
to what happens in the NJL model, and it can be understood in a general way via a
Ginzburg-Landau analysis, as discussed in the following section.

4.3 Ginzburg-Landau expansion

The Ginzburg-Landau (GL) expansion is a systematic expansion of the thermody-
namic potential in powers of the order parameter and its gradients. It is a powerful

6 A Lifshitz point can be defined as the point where three different phases (chirally broken,
restored and the spatially inhomogeneous one) meet, so in this case we should be referring to it as
a pseudo-Lifshitz point, since away from the chiral limit there is only a crossover above the CEP.
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tool which allows to determine precisely the locations of the CEP and the PLP where
both the amplitude and the gradients of the spatially modulated order parameter
approach zero. In the following we want to use this method, which has been applied
to the NJL model in reference [13], to study the behavior of the CEP and PLP in
the QM model away from the chiral limit.

For this, following the steps performed in reference [13] for the NJL model,
neglecting pseudoscalar fluctuations we write again gσ(x) = M̄ + δM(x) and get
to Ω[M ] = Ω[M̄ ] + 1

V

∫
d3x δω[M̄, δM(x)] with

δω = α1δM + α2δM
2 + α3δM

3 + α4,aδM
4 + α4,b(∇δM)2 + . . . , (39)

where the GL coefficients αi depend on T , µ and M̄ . As shown in reference [13], we
can localize the CEP as the point where the GL coefficients α1 = α2 = α3 = 0 (the
condition α1 = 0 simply enforces the gap equation for the background M̄), whereas
the PLP is identified as the point where both the quadratic and the first non-vanishing
gradient term become zero: α1 = α2 = α4,b = 0. For the relevant coefficients we find

α1 =
λ

g4
M̄(M̄2 − v2g2)− c

g
+ M̄F1 , (40)

α2 =
λ

2g4
(3M̄2 − g2v2) +

1

2
F1 + M̄2F2 , (41)

α3 = 4M̄

(
λ

4g4
+

1

4
F2 +

1

3
M̄2F3

)
, (42)

α4,b =
1

2g2
+

1

4
F2 +

1

3
M̄2F3 . (43)

Upon close inspection, we see that when mσ,0 = 2M̄0, and thus λ = 2g2, the
coefficients α3 and α4,b are proportional to each other, like in the NJL model, and
as a result, the CEP and the PLP coincide, supporting the numerical results of our
previous section. In Figure 3 we have indicated the positions of these points for various
values of mπ by black dots.

5 Conclusions

We have investigated inhomogeneous phases in the renormalized limit of the quark-
meson model away from the chiral limit. Both the effect of the vacuum quark
fluctuations in the QM model [10] as well as the inclusion of an explicit chiral-
symmetry breaking term [13] are known to shrink the size of the inhomogeneous
window in the phase diagram, so it is natural to ask whether an inhomogeneous
phase survives at all when both effects are taken into account. A first investigation in
this direction found that if one restricts the analysis to a CDW modulation the inho-
mogeneous phase quickly disappears and is not present for physical pion masses [14].
On the other hand, it is known that other types of spatial modulations of the order
parameter are usually thermodynamically more favored.

Thus, in order to obtain a modulation-agnostic answer, we first looked for the
appearance of instabilities of homogeneous matter towards inhomogeneous phases
for arbitrary shapes of the order parameter, and found that such an instability exists
even for pion masses above the physical one. This instability occurs with respect to
scalar fluctuations, whereas the instability in the pseudoscalar channel disappears
quickly as mπ increases. Explicit chiral-symmetry breaking thus strongly suppresses
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fluctuations in the pseudoscalar channel, explaining the rapid disappearance of the
CDW modulation from the phase diagram.

We supported these findings with an explicit calculation of the model phase dia-
gram considering a specific modulation of the order parameter involving only the
scalar channel, the so-called real-kink crystal, which provides a self-consistent ansatz
away from the chiral limit, and checked that indeed the inhomogeneous phase has a
non-vanishing extension for a physical mπ in the renormalized limit of the model.

The presence of inhomogeneous phases thus seems to be a robust model feature,
even though the size of the inhomogeneous window found in this work is relatively
small. In particular, our GL analysis revealed that for mσ,0 = 2M̄0 the PLP, i.e.,
the tip of the inhomogeneous phase, coincides with the CEP of the first-order phase
boundary in the homogeneous case and, hence, the inhomogeneous phase is as robust
a feature of the model as the existence of a first-order phase transition if the analysis
is restricted to homogeneous phases. We must keep in mind, however, that the present
analysis has been performed in mean-field approximation. It is thus an interesting
question, both in the chiral limit and away from it, whether these findings remain
valid if fluctuation effects are taken into account. Investigations of such questions
are presently subject of intese research [26,27], particularly within the functional
renormalization-group approach [7,28,29] or by performing lattice simulations for
lower-dimensional models [30,31].
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