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Abstract. The production of light nuclei in relativistic heavy-ion col-
lisions is well described by both the thermal model, where light nuclei
are in equilibrium with hadrons of all species present in a fireball, and
by the coalescence model, where light nuclei are formed due to final-
state interactions after the fireball decays. We present and critically
discuss the two models and further on we consider two proposals to fal-
sify one of the models. The first proposal is to measure a yield of exotic
nuclide *Li and compare it to that of “He. The ratio of yields of the
nuclides is quite different in the thermal and coalescence models. The
second proposal is to measure a hadron-deuteron correlation function
which carries information whether a deuteron is emitted from a fireball
together with all other hadrons, as assumed in the thermal model, or
a deuteron is formed only after nucleons are emitted, as in the coales-
cence model. The p—3He correlation function is of interest in context
of both proposals: it is needed to obtain the yield of Li which decays
into p and 3He, but the correlation function can also tell us about an
origin of *He.

1 Introduction

Production of light nuclei in nucleus-nucleus collisions has been studied for decades
but plethora of experimental results from Relativistic Heavy Ion Collider (RHIC)
[1,2] and Large Hadron Collider (LHC) [3-5] have revived an interest in the problem
and attracted a lot of attention. At high-energy collisions light nuclei occur as frag-
ments of incoming nuclei, as at low-energy collisions, but we also deal with a genuine
production process — the energy released in a collision is converted into masses of
baryons and antibaryons which form nuclei and antinuclei.

The remnants of initial nuclei occur at rapidities of projectile and target nuclei
while the genuinely produced nuclides populate a midrapidity domain. Therefore,
products of the two mechanisms are kinematically well separated. Further on we are
interested only in the midrapidity domain where numbers of the nuclei and antinuclei
are approximately equal to each other at RHIC and are exactly equal at LHC. The
baryon-antibaryon symmetry clearly shows that the matter created in the collisions
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is (almost) baryonless — there is no net baryon charge. Together with light nuclei and
antinuclei up *He and *He there are also produced hypertritons and antihypertritons
both at RHIC and LHC [6,7].

According to the coalescence model [8,9], the production of light nuclei is a
two-step process: production of nucleons and formation of nuclei due to final-state
interaction among nucleons which are close phase-space neighbors. The energy scale
of the first step, which is a double nucleon mass, is much bigger than that of the
second one which is a nuclear binding energy. Consequently, a probability to produce
a given nuclide factorizes into the probabilities to produce the nucleons and to form
the nuclide. The latter probability takes into account an internal structure of the
produced nucleus.

Although the coalescence model is known to work well in a broad range of collision
energies, the model is well justified when nucleons are truly produced because of the
energy scale separation. So, it is not surprising that the model properly describes
production of light nuclei and antinuclei at RHIC and LHC [10-14].

The thermodynamical model, see the review [15], is also more reliable and simpler
at the highest available collision energies than at lower ones. Since thousands of
hadrons are produced at colliders, it is easier to justify the statistical assumption of
equipartition of energy. The model is also simpler because the matter produced at
midrapidity is baryonless and consequently the baryon chemical potential vanishes.
Therefore, particle’s yields are determined solely by two thermodynamic parameters:
the temperature and system’s volume. Nevertheless the model predicts very well not
only the yields of all hadron species measured at RHIC and LHC but also of light
nuclei and hypernuclei [16-18]. The predictions depend on masses and numbers of
internal degrees of freedom of the light nuclei but are independent of their internal
structures.

The evident success of the thermal model, which has attracted a lot of interest
[14,19-31], is very puzzling, as it is hard to expect that nuclei exist in the hot and
dense fireball environment. The temperature is much bigger than a binding energy and
the system is so dense that the inter-particle spacing is smaller than the typical inter-
nucleon distance in a nucleus. Therefore, proponents of the thermal model speculate
[18] that nuclei are produced as colorless droplets of quarks and gluons with quantum
numbers that match those of the final-state nuclei.

The thermal and coalescence models are physically different but its was observed
long ago that the models give rather similar yields of light nuclei [32]. The observation
has been recently confirmed [12,19], using a more refined version of the coales-
cence model [34-38], which properly treats a quantum-mechanical character of the
formation process of light nuclei.

The aim of this short but rather pedagogical review is to critically discuss the
thermal and coalescence models of production of light nuclei in relativistic heavy-
ion collisions. The phenomenon has been studied experimentally and theoretically in
a broad range of collision energies over decades. However, the process of a heavy-
ion collision crucially depends on a collision energy. Theoretical methods which are
applicable at low and high energies are also rather different. Therefore, our discussion
is limited to the highest collision energies accessible at RHIC and LHC. The methods
relevant at lower energies when the temperature of nuclear matter does not exceed,
say, 20 MeV, are discussed in [39,40] and references therein.

After presentation of the models, we discuss, following and improving the analysis
of reference [19], why the models predict similar yields of light nuclei. Subsequently
we consider a possibility to falsify one of the models. We present two proposals. The
first one is to compare the yield of “He to that of exotic nuclide *Li [19,20,22]. Since
the masses of both nuclei are close to each other, the yield of Li is according to
the thermal model about five times bigger than that of *He due to five spin states
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of 4Li and only one of *He. The coalescence model predicts instead a significantly
smaller ratio of the yields of Li into “He because the latter nuclide is well bound
and compact while the former one is loose. The model also predicts that the ratio
strongly depends, in contrast to the thermal model, on the collision centrality [20,22].

The second proposal to falsify one of the models relies on the observation [21] that
a hadron-deuteron correlation function can tell us whether deuterons are directly
emitted from a fireball or they are formed later on due to final-state interactions.
The radii of the sources of deuterons differ from each other by the factor 1/4/3 in the
two cases. Therefore, knowing the radius of a nucleon source from the proton-proton
correlation function we can quantitatively distinguish the emission of a deuteron from
the fireball, as in the thermal approach, from the formation of a deuteron afterwards,
as in the coalescence model.

We also discus the p—3He correlation function which is important, as discussed
at length in [22], in the context of both proposals. The correlation function needs to
be measured to obtain the yield of *Li which is unstable and decays into the p—3He
pair. The p—3He correlation function also carries information analogous to that of
the hadron-deuteron correlation function. If one assumes that He is emitted directly
from the fireball the source radius inferred from the p—3He correlation function is
smaller by the factor 1/3/2 than that corresponding to the scenario where nucleons
emitted from the fireball form the nuclide *He due to final-state interactions.

Throughout the article we use the natural units with c = h = kg = 1.

2 Coalescence and thermal models

Let us introduce the coalescence and thermal models. We stress again that we do not
consider light nuclei which are fragments of colliding nuclei but only those genuinely
produced at midrapidity in collider experiments at RHIC or LHC.

2.1 Coalescence model

As already mentioned in the introduction, production of light nuclei is a two-step
process in the coalescence model [8,9]. At first nucleons are produced and later on a
formation of nuclei proceeds due to final-state interactions of nucleons which are close
to each other in momentum and coordinate spaces. The fact that the energy scale of
the first step, which is the double nucleon mass, is much higher than that of the second
one, which is a typical nuclear binding energy, is important for two reasons. First of
all, the two steps of the process can be distinguished because the temporal scales are
roughly inverse of the energy scales. Consequently, the production of nucleons, which
occurs at first, is a fast process while the formation of nuclei is a slow process which
occurs subsequently. Secondly, a probability to produce a nucleus of A nucleons can
be factorized into the probability to produce (independently) A nucleons and the
probability that nucleons fuse into the nucleus. Therefore, the number of nuclei with
momentum p 4 is

dN 4 ANy 2
_ NN 1
o AA( dgp) , 1)

where p4 = Ap and p is assumed to be much bigger than the characteristic internal
momentum of a nucleon in the nucleus of interest, A4 is the formation rate of a
nucleus under consideration.
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One often assumes, as suggested long ago in [9], that nucleons form a nucleus if
they occur in a momentum sphere of a radius pg. Then,

Aa = gsgr (%pg) A_17 (2)

where ggs and g are spin and isospin factors which take care of probability that quan-
tum numbers of A nucleons match to those of the nuclide of interest. The nucleons are
assumed to be unpolarized. The momentum distributions of protons and of neutrons
are assumed to be of the same shape but the numbers of protons and of neutrons can
differ. The parameter pg, which is roughly a momentum of a nucleon in a nucleus, is
a free parameter of the model to be inferred from experimental data.

It is also often required that nucleons, which fuse into a nucleus, must be close to
each other not only in the momentum space but in the coordinate space as well, see
e.g. [33]. The formula (2) is then modified.

To formulate a relativistically covariant coalescence model one uses, see e.g. [34],
the Lorentz invariant momentum distributions and writes down the relation analogous
to (1) as

N
EAdiA =By (EN

(3)

d3pa d*p

dNy ) 4
where F4 and Ey are energies of the nucleus and nucleons under consideration.
Demanding that the relations (1) and (3) are identical in the center-of-mass frame of
the nucleus, which is formed, the parameter B4 is found to be

Am
BA = WAA, (4)

where m is the nucleon mass. The form of the relation (3) implies that the parameter
B, is a Lorentz scalar. However, one should realize that the formula (4) does not have
a solid foundation. We return to this point after a quantum-mechanical approach to
the formation rate is introduced.

The phenomenological approaches to production of light nuclei, which are based
of the formula (2) or their variations, do not take into account a quantum-mechanical
character of the process of a bound state formation. However, it was discovered by
Sato and Yazaki [34] and discussed later on by several authors, see e.g. [35-37],
that the formation of a nucleus driven by final-state interactions is fully analogous
to the process responsible for short range correlations observed among final-state
hadrons with small relative velocities. Therefore, the quantum-mechanical formula
which gives the deuteron formation rate is almost identical to that of neutron-proton
correlation function [38]. The two quantities are actually related to each other due
to the completeness of quantum states [41-43].

The formation rate of a nucleus of A nucleons A4 is given as

Ay = gSgI(Qﬂ')?’(A_l)V/dg?"l d*ry...d%r 4 D(ry) D(rg) ... D(r,)

><|\I'(r1,r2,...r,4)\2, (5)

where gs and g; are, as previously, the spin and isospin factors; the multiplier
(2m)3(A=1) results from our choice of natural units where A = 1; V is the normal-
ization volume which disappears from the final formula; the source function D(r)
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is the normalized to unity position distribution of a single nucleon at the kinetic
freeze-out and ¥(rq,rs,...1r4) is the wave function of the nucleus of interest.

The formula (1) does not assume, as one might think, that the nucleons are emit-
ted simultaneously. The vectors r; with ¢ = 1,2,... A denote the nucleon positions
at the moment when the last nucleon is emitted from the fireball. For this reason,
the function D(r;) actually gives the space-time distribution. It is often chosen in the
isotropic Gaussian form

r2

D(r;) = (2rR2)~3/2 ¢ 212 (6)

where /3R, is the root-mean-square (RMS) radius of the nucleon source.

The Gaussian parametrization of the source function (6) is not only convenient
for analytical calculations but there is an empirical argument in favor of this choice.
The imaging technique [44] allows one to infer the source function from a two-particle
correlation function provided the inter-particle interaction is known. The technique
applied to experimental data from relativistic heavy-ion collisions showed that non-
Gaussian contributions to the source functions are rather small and do not much
influence the correlation functions [45].

As already mentioned, Lorentz invariant momentum distributions are used in the
relativistically covariant coalescence model and the coalescence rate formula (5) is
modified, see e.g. [34,36]. However, the modifications are actually heuristic as a the-
ory of strongly interacting bound states faces serious difficulties. In particular, there
is no factorization of a center-of-mass and relative motion. To avoid complications
one considers the formation process in the center-of-mass frame of the nucleus to be
formed where the process can be treated nonrelativistically even so momenta of nucle-
ons are relativistic in both the rest frame of the source and in the laboratory frame.
The point is that the formation rate is non-negligible only for small relative momenta
of the nucleons. Therefore, the relative motion can be treated as nonrelativistic and
the corresponding wave function is a solution of the Schrédinger equation. The source
function, which is usually defined in the source rest frame, needs to be transformed
to the center-of-mass frame of the pair as discussed in great detail in [46].

The practical calculations of the formation rate A4 for A = 2, 3 and 4, which
require a separation of a center-of-mass and relative motion, are presented in
Sections 3.2, 4.3 and 4.1, respectively.

It was repeatedly stated in the literature — starting from the very first paper on the
coalescence model [8] — that a neutron and proton must interact with a third body
to form a deuteron as otherwise the energy and momentum cannot be conserved
simultaneously. The statement, which was also extended to nuclei heavier than a
deuteron, is indeed correct if the neutron and proton are both on mass shell. However,
as observed long ago [36], nucleons, which are emitted from a fireball, are not on the
mass shell due to the finite space-time size of a fireball. The space-time localization
of a nucleon within the fireball washes out its four-momentum due to the uncertainty
principle. Using a more formal language of scattering theory, the nucleons are not in
an asymptotic state in the remote past or remote future which indeed requires the
mass-shell condition. Instead the nucleons are in an intermediate scattering state.
Therefore, there is no reason to impose the mass-shell constraint. Because the space-
time size of the fireball is of the same order as that of the nucleus, which is formed,
the mismatch of the energy-momentum is washed out by the uncertainty of energy
and momentum of the nucleons.

Let us also note that the models of relativistic heavy-ion collisions like AMPT or
UrQMD, which are close in spirit to Quantum Molecular Dynamics, do not treat a
formation of light nuclei dynamically. Instead there are ‘afterburners’ based on one
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or another version of the coalescence model, see [13] for AMPT and [33] for UrQMD.
Therefore, the models do not offer another approach to the production of light nuclei.

We close the presentation of the coalescence model by saying that whenever we
refer to the model we keep in mind the expression (1) with the formation rate given
by equation (5).

2.2 Thermal model

The fundamental postulate of the thermal model is the equipartition of fireball’s
energy among all degrees of freedom active in the system. Light nuclei are assumed
to be populated as all other hadrons and when the fireball decays the nuclei show up
in a collision final state. Their yield reflects a thermodynamic state of the fireball at
the moment of chemical freeze-out when inelastic collisions of fireball’s constituents
become no longer operative.

The partition function is evaluated as a mixture of ideal gases of all stable
hadrons and resonances. The presence of resonances corresponds to attractive interac-
tions among hadrons. Sometimes additional repulsive interactions are modelled with
an excluded volume prescription, see e.g. [27]. However, as authors of the thermal
model state [18], their results on thermal parameters remain unchanged from what
is obtained in the non-interacting limit except for the overall particle density which
is reduced by up to 25%.

In the fireball rest frame a momentum distribution of hadrons h at the moment
of chemical freeze-out is, see e.g. [15],

% _ 9h Vehem e_Bchem(Ep_uf)7 (7)
d3p (2m)3
where g, is the number of internal degrees of freedom of the hadron h, my is its
mass and Ep = y/m3 + p? is the energy, Venem is the system’s volume at the chem-
ical freeze-out, Bchem = 1/Tehem is the inverse temperature and p is the chemical
potential related to conserved charges carried by the hadron. The baryon chemical
potential usually plays an important role but, as already mentioned, the matter cre-
ated in midrapidity at collider energies is baryonless and consequently the chemical
potential vanishes. We note that the formula (7) is classical that is it neglects effects
of quantum statistics. The effects are usually minor because of many hadron species
which populate many quantum states. The formula (7) also neglects inter-hadron
interactions.
The yield of hadrons h is

Pp gn
Ny, = gh‘/chcm/ (27_‘_)3 € AEo — ﬁ V;:hcmm%Tchch2(ﬂchcmmh)v (8)

where Ks(z) is the so-called Macdonald function which for x > 1 can be approxi-

mated as
T g 15 1

Experimentally observed yields of hadrons include not only the direct contribution
given by equation (8), but contributions, which sometimes are sizable, coming from
decays of unstable states [15]. Therefore, to predict a yield of, say, protons, one has
to take into account all unstable hadron states which ultimately decay into a proton.



Strong Correlations in Dense Matter Physics 3565

The contributions are weighted with the decay branching ratios. In case of light
nuclei, their yields should include nuclear excited states which decay into a nuclide
of interest.

A microscopic mechanism responsible for production of light nuclei in the fireball
is unspecified and may be even unknown. As the formula (8) shows, the yields of
hadrons are determined by their masses and internal degrees of freedom, and by two
thermodynamical parameters: Veperm and Tipem. The temperature, however, is much
bigger than a typical nuclear binding energy and the inter-particle spacing is smaller
than a characteristic size of light nuclei. So, the nuclei cannot exist in the fireball —
they are as ‘snowflakes in hell’ [47]. Proponents of the thermal model argue [18] that
there are colorless droplets of quarks and gluons present in the fireball and those with
appropriate quantum numbers are converted later on into light nuclei.

2.3 Do the models differ?

The coalescence model offers a microscopic picture in a sense that it uniquely identifies
the physical process responsible for light nuclei production that is the final state
interaction. The thermal approach instead presents a macroscopic description. So, one
wonders whether the production mechanisms of light nuclei behind the coalescence
and thermal models are physically different from each other.

One can argue that instead of the two models we should rather consider, as in the
study [24], hadron-hadron and hadron-deuteron interactions which are responsible
for a deuteron production and disintegration in a fireball before its decay. Such an
approach is physically sound if a particle source and an average inter-hadron spacing
in the source are both much bigger than a deuteron size. Additionally the lifetime of
the source should be much longer than the characteristic time of deuteron formation.

However, the assumptions are rather far from reality of relativistic heavy-ion
collisions. The deuteron radius is about 2 fm and the time of deuteron formation,
which is of the order of the inverse binding energy, is roughly 100 fm/c. Consequently,
the size of the particle source is of the same order as the deuteron radius, the inter-
hadron spacing in the source is smaller than a deuteron, and the lifetime of the
source is significantly shorter than the deuteron formation time. Therefore, a state of
a neutron-proton pair in between the frequent collisions cannot be identified with an
asymptotic deuteron state which is defined in a scattering theory either in a remote
past or remote future.

The coalescence mechanisms of deuteron formation and direct thermal production
are physically different in relativistic heavy-ion collisions because the particle source is
small and dense when compared to a deuteron and the source lifetime is shorter than
the deuteron formation time. According to the coalescence model, light nuclei are
formed long after nucleons are emitted from the source. The thermal model assumes
that light nuclei are emitted directly from the source.

3 Yield of deuterons

As already mentioned in the introduction, its was observed long ago that the coales-
cence and thermal models give rather similar yields of light nuclei [32]. The results of
the thermal model can be easily reproduced by means of simple formulas but those
of the coalescence model are usually obtained using Monte Carlo generators, see e.g.
[12]. Therefore, it is hard to see how it happens and why its happens that the models
predict similar yields of light nuclei. For this reason we derived [19] simple analytical
formulas which give the ratio of yields of deuterons — the simplest nuclei — in the two
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models. The model parameters were inferred from experimental data. In this section
we recapitulate and improve the analysis presented in [19].

3.1 D/p in thermal model
The yield of protons is given by the formula (8). Since SBchem™, where m is the

proton mass, equals 6 for Tehem = 156 MeV, we use the approximation (9) and write
the proton yield as

Tc em 3/2 15Tc em T2
Np _ 2)\p Vchem<m h ) e_Bchcmm (1 + < h + O( chem))7 (10)
m

27 m2

where except the spin degeneracy factor 2 we have included the parameter )\, which
takes into account a sizable contribution of protons coming from decays of baryon
resonances [15]. The parameter will be estimated later on.

Since the number of deuterons is given by the formula analogous to (10), the ratio
of the deuteron to proton yield is

2
D _ 32 e Pebemm (1 _ 1oTchem (9<T°hem)>, (11)

D Ap 16m m2

where the spin degeneracy factor of a deuteron is 3 and its mass is approximated as
2m. We note that the parameter Ap analogous to A, is not introduced because the
contribution of deuterons, which originate from decays of excited light fragments, is
negligible [30].

3.2 D/p in coalescence model

The momentum distribution of the final-state deuterons is given by the formulas (1)
and (5) both with A = 2. Introducing the center-of-mass variables

R=_(r; +r3), r=rp—ry, (12)

N |

and writing down the deuteron wave function as ¢ (ry, re) = ePRpp(r), the deuteron
formation rate equals

Ao =) [ & D, 60, (13)

where the normalized to unity ‘relative’ source function is

D,(r) = /d3RD(R+ %r) D(R - %r) _ (ﬁ)me‘égm_ (14)

The latter equality holds for the Gaussian single-particle source function (6). In this

section the source radius carries the index ‘kin’ not ‘s’ to stress that we deal with
the kinetic freeze-out. The factor % reflects the fact the deuterons come from the

neutron-proton pairs in three spin triplet states out of four possible spin states of
unpolarized two nucleons.
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To compute the deuteron yield, the nucleon momentum distribution needs to be
specified. We write down the proton distribution in terms of the transverse momentum

pr), transverse mass (mp = \/m?2 + p2 ), and rapidity (y) as
T

N, 1 dN, 15)
d3p  mqcoshy dy d?pr’

and we choose the distribution at midrapidity which is flat in rapidity and azimuthal
angle and it exponentially decays with the transverse mass that is

dN, N, ePrinm

- —Brinmr 16
dyPpr ~ 2wy Tan(m + Tan) © ! (16)

where Ay is a small rapidity interval centered at y = 0 and Ti;y is the effective tem-
perature at the kinetic freeze-out which takes into account a sizable radial expansion
of the fireball. One checks that the distribution (16) is normalized to N,,.

The number of deuterons is found as

, dNp . /dNp\2 2N2 Ao
Np= [ d? - & ( ) =2 .
b / Py AZ/ P\ ap 7 AY Tien(Tin + m)?

To obtain the formation rate Ay in a simple analytic form, we do not use the
Hulthén wave function of a deuteron, as we did in [38], but we choose not only the

Gaussian parameterizations of the source function but also of |¢p(r)|?. Thus, we get
3 7.‘_3/2
Ay = - , (17)
4 (R, + 5Rp)*?

where Rp is the root-mean-square radius of a deuteron. In our original paper [19]
the factor 2/3 in front of R2, in equation (17) was missing which influenced though
insignificantly our numerical results.

Using the formula (17), the ratio of the deuteron to proton yields equals

B _ 3ﬁ )\p ‘/chem (mTchem)3/2 (18)
p o (2m)32Ay (R, + 3R3)%/? Tiin(Tian + m)?

15T chem T2
xeBenemm [ 1 4 5Ten + O Zchem ,
8m m2

where the number of protons N, is assumed to be the same as in the thermal model
and it is given by equation (10).

The ratio of the ratios (18) and (11), which is denoted as @, equals the ratio of
deuteron yields in the coalescence and thermal models because the proton yield is
assumed to be the same in both approaches. The ratio @ equals

(D/p) o _ Dewm
(D/p)TM Dru

_ )\127 V;:hem (mTchem)3/2 1+ 45Tchem —|—O Tc2hem
" 57 Ay (BE,, + 35 Tan(Taw +m)? \| | 1om |

Q




3568 The European Physical Journal Special Topics

Table 1. The ratio @ and the centrality dependent parameters of Pb-Pb collisions at
\/ﬁ = 2.76 TeV. The numbers in the first three columns are taken from the experimental
study [3]. The parameters Vehem, Tkin and Riin are estimated as explained in the text. The
ratio @ is given by equation (19).

Centrality Np <pT > Vehem Tkin Ryin Q
[GeV] [fm®] [MeV] [fm]
0-10% 0.098 2.12 3 590 900 4.3 0.52
10-20% 0.076 2.07 2 780 890 3.7 0.61
20-40% 0.048 1.92 1 760 850 3.1 0.65
40-60% 0.019 1.63 696 760 2.5 0.51

In the next section, after estimating the parameters which enter equation (19), a
magnitude of the ratio @ is computed.

3.3 Discussion of D/p ratio

The D/p ratio found within the thermal model (11) is determined by the proton
mass m, the temperature of chemical freeze-out T¢hem and the parameter A, which
we choose in such a way that at Tipemn = 156 MeV the ratio (11) reproduces the
experimental value 3.6 x 10™3 measured in Pb-Pb collisions at \/sny = 2.76 TeV [3].
Thus, one finds A, = 2.51 which is used further on.

To obtain the D/p ratio within the coalescence model (18), one needs, except
m, Tehem and Ay, the values of Ay, Rp, Vehem; Rkin and Tii,. The measurement
[3] was performed in the rapidity window Ay = 1. The root-mean-square radius of
the deuteron is Rp = 2 fm [48]. Vipem can be found from the deuteron analog of the
formula (10), using the measured number of deuterons at different collision centralities
given in [3].

In our original paper [19] we used the femtoscopic pion data [49] to get a value of
Ryin. However, the experimental analysis [50] shows that the radii of pion sources are
significantly bigger than those of proton sources. Therefore, we use here the radii of
(anti-)proton sources inferred from proton-proton and antiproton-antiproton corre-
lation functions at the smallest transverse momentum [50]. Since the data presented
in [50] are for different centrality bins than those in [3] we have performed a linear
interpolation or extrapolation to get values of Ry, for centrality bins given in the
first column of the Table 1.

The parameter Ty, from the formula (19) is the effective temperature at kinetic
freeze-out which takes into account a sizable radial expansion of the fireball. To
determine Ti;, we express it through the mean transverse momentum of deuterons
(pr) given in [3] using the formula

fooo dep% e—,@kin\/ 4m2+p2, 4m2

= 2Bxkinm
- € K5(2B8kinm). (20
157 dprpr o= Bany/Am2 4023 Tyin(1 + 2Bkinmn) 2( ). (20)

(pr) =

Since the effective kinetic temperature is comparable to the nucleon mass, the
approximation (9) cannot be applied to the Macdonald function in equation (20).
In Table 1 we list the values of the ratio @ defined by equation (19) for the
four collision centralities together with the parameters of Pb-Pb collisions at \/sny =
2.76 TeV. The predictions of the models are seen to differ by the factor smaller
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than 2 for all four centralities where number of deuterons grows five times from the
peripheral to central collisions.

We conclude that the two models indeed predict very similar yields of deuterons.
We do not see any deeper reason for the similarity but it is also not accidental, this
is a game of numbers — the parameters, which characterize the produced matter at
the chemical and kinetic freeze-out, are correlated with each other in a specific way.

4 How to falsify one of the models?

As we discussed in the previous section, the thermal and coalescence model predict
similar yields of light nuclei. One asks whether one of the models can be falsified.
For this purpose we need a situation that the models give quantitatively different
predictions. Below we discuss two such situations and two proposals to distinguish
the models. The first one is to measure the yield of exotic nuclide “Li and compare
it to that of *He. The ratio of yields of “Li to *He is different in the thermal and
coalescence models [19,20,22]. The second proposal is to measure a hadron-deuteron
correlation function which appears to carry information [21] whether a deuteron is
emitted from a fireball together with all other hadrons, as assumed in the thermal
model, or a deuteron is formed only after nucleons are emitted, as in the coales-
cence model. Another version of the second proposal is to measure a hadron—>He
correlation function which can tell us about an origin of *He [22].

4.1 “Livs. ‘He

The mass of exotic nuclide 4Li is close to the mass of “He. However, there are five spin
states of 4Li, which has spin 2, and only one spin state of *He, which has zero spin.
Consequently, the thermal model predicts about five times bigger yield of Li than
that of “He. If one takes into account the mass difference of *Li and *He the ratio of
yields is reduced from 5 to 4.3 at the temperature of 156 MeV. Since the nuclide *Li
is loose while “He is well bound and compact, the coalescence model is expected to
predict a significantly smaller ratio of yields of *Li to *He than the thermal model.
So, let us derive the ratio which in the coalescence model is given by the ratio of the
formation rates to be computed according to the formula (5) with A = 4.
The modulus squared of the wave function of *He is chosen as

[Whe(r1, 72,73, 14)* = Coe Pl b riutd, e, 4isa) (21)

where C, is the normalization constant, r;; = r; — r; and « is the parameter related
to the RMS radius R, of *He. Further calculations are performed using the Jacobi
variables defined as

R = J(ri +r24715+14), ri=R-ix—1iy— 1z
X=ry—ry, r;=R+ix— 1y — iz,

= 71 _ 2 1 (22)
y =r3 — 5(r1 +r2), r3 =R+ 5y — 12,
ZEI‘4—%(I‘1+I‘2+P3), I'4=R+%Z,

which have the nice property that the sum of squares of particles’ positions and the
sum of squares of differences of the positions are expressed with no mixed terms of
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the Jacobi variables that is

1 2 3
r? 41341 +r] =4R? + 5x2 + §y2 + Zz2, (23)
8
iy + iy + 17, + 133 + 15, + 15, = 2x° + §y2 + 32°. (24)

With the help of relations (23) and (24), one easily finds
26 ra\9/2 32

Ca =35 (*) ) = 55 D2’ 25
V\r “ 2°R2 (25)

where V is the normalization volume of the plane wave describing a free motion of
the center of mass.

Substituting the formulas (6) and (21) with the parameters (25) into equation (5),
one finds the coalescence rate of *He as

79/2 1

29/2 (Rg + %R3)9/27

Afe = (26)

where the spin and isospin factors have been included. Since “He is the state of zero
spin and zero isospin, the factors are gs = gr = 1/2% because there are 2% spin and
24 isospin states of four nucleons and there are two zero spin and two zero isospin
states.

The stable isotope °Li is a mixture of two cluster configurations *He—2H and
3He—3H [51]. Since *Li decays into p 42 He, we assume that it has the cluster structure
p—3He. Following [51] we parametrize the modulus squared of the wave function of
414, which is approximately treated here as a stable nucleus, as

|W1i(re,ro,1r3,14) 2 = Oy e Ptz trigtris) g o —7e” Vi (922) %, (27)

where the nucleons number 1, 2 and 3 form the 3He cluster while the nucleon number
4 is the proton; z is the Jacobi variable (22); Y7,,(€25) is the spherical harmonics
related to the rotation of the vector z with quantum numbers [, m. The summation
over m is included in the spin factor gg.

Using the Jacobi variables, one computes the constant Cp; together with the
parameters § and 7y as

24 1/293.7/2 1 21
Li=%7 5272, Y= 537 4p2 _ap2y’ (28)
w2V 3R? 23(4R}, — 3R2?)
where R, and Ry, are the root-mean-square radii of the cluster 3He and of the nuclide

414, respectively.
Substituting the formulas (6) and (27) into equation (5), one finds the coalescence
rate of 4Li as

. 1579/2 4
Af = 2517::/2 3 - /2’ (29)
(R2+ 3R2)"(R2 + 7Ry, — 3R?)

where the isospin and spin factors are computed as follows. The nuclide has the
isospin I = 1, I, = 1 and thus the isospin factor is g; = 3/2% because there are
three isospin states I = 1, I, = 1 of four nucleons. The spin of the ground state of
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Fig. 1. The ratio of formation rates of 4Li to “He as a function of Ry for four values of
Ry; = 2.0, 2.5, 3.0 and 3.5 fm.

4Li is 2 which can be arranged with the orbital angular momentum ! = 1 and [ = 2.
We assume here that the cluster *He has spin 1/2 as the free nuclide *He. When the
spins of 3He and p are parallel or antiparallel, the orbital number is { =1 or [ = 2,
respectively. However, the ground state of 4Li is of negative parity which suggests
that [ = 1. We note that the parity of a two-particle system is P = 7;12(—1)! and
the internal parities 11, 72 of 'H and 3He are both positive. When [ = 1, the total
spin of >He and p has to be one and there are 32 such spin states of four nucleons.
Consequently, there are 32 angular momentum states with 5 states corresponding to
spin 2 of 4Li and thus gg = 5/2%.

The ratio of the formation rates A} and A® depends on four parameters: R,
R., Ry; and R.. The fireball radius at the kinetic freeze-out R, can be inferred from
the proton-proton correlation functions which have been precisely measured at LHC
[50,52]. The RMS radius of *He is R, = 1.68 fm [48] and the RMS radius of the
cluster 3He, which is identified with the radius of a free nucleus 3He, is R. = 1.97 fm
[48]. The radius Ry; is unknown but it is expected to be 2.5-3.5 fm. The ratio of AL
to ,Affe is shown in Figure 1 as a function of R, for four values of Rr; = 2.0, 2.5, 3.0
and 3.5 fm.

As already mentioned, the ratio of yields of Li to He in the thermal model equals
about 5 and it is independent of the size of particle’s source. Figure 1 shows that the
ratio is significantly smaller in the coalescence model and it significantly depends on
R, that is it depends on collision centrality. Therefore, performing measurements at
several centralities it should be possible to quantitatively distinguish the coalescence
mechanism of light nuclei production from the creation in a fireball.

The nuclide “Li is unstable and it decays into p + >He with the width of 6 MeV
[55], see also [56]. Therefore, the yield of Li can be experimentally obtained through
a measurement of the p—3He correlation function which is discussed in Section 4.4.

4.2 Hadron-deuteron correlations

In this section we show that a hadron-deuteron correlation function carries informa-
tion about the source of deuterons and allows one to determine whether a deuteron is
directly emitted from the fireball or if it is formed afterwards. At first we derive the
hadron-deuteron correlation function treating a deuteron as in the thermal model,
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that is as an elementary particle emitted from a source together with all other
hadrons. Further on a deuteron is treated as a neutron-proton bound state formed
at the same time when the hadron-deuteron correlation is generated.

4.2.1 Deuteron as an elementary particle

The h— D correlation function R is defined as

dN, dNp dN,
i = R(q) (30)
dBprdipp d®pr, d*pp
where (‘;3]_\; ol jg’\;g and d%fg% — are number densities of A, D and h— D pairs with

momenta pg, pp and (pr, Pp); q is the relative momentum of h and D in their center-
of-mass frame. If the correlation results from quantum statistics and/or final-state
interactions, the correlation function is known to be [57,58]

M®=/fmﬁmmmDmM%mﬂwﬁ (31)

where the source function D(r) is, as previously, the probability distribution of emis-
sion points and q(rp,rp) is the wave function of the hadron and deuteron in a
scattering state.

Let us eliminate the center-of-mass motion of the h— D pair in a non-relativistic
manner. We introduce the center-of-mass variables

MpThr +Mprp

R=
M )

r=r,—rp, (32)
where M = mj, + mp, and we write down the wave function as iq(rp,rp) =

e'RP ¢ (r) with P being the momentum of the center of mass. The correlation function
(31) is then found to be

R(a) = [ D, (x) 6a(r)P, (33)
where the ‘relative’ source is
_ 3 mp _mn
Dr(r)_/d RD(R+ Mr)D(R Mr). (34)

With the Gaussian single-particle source function (6), the relative source function
equals

1 3/2 _ x%
D)= (gpm) ¢ (35)

which is independent of particle masses even so the variable R given by equation (32)
depends on mj;, and mp.

The single particle source function (6) is assumed to be independent of particle’s
momentum and particle’s mass. This is not quite right as, in general, a source radius
depends on both particle’s mass m and momentum. More precisely, it scales with the
particle’s transverse mass m | = /m? + p? . For the case of one-dimensional analysis
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relevant for our study, the effect is well seen in Figure 8 of reference [50] where
experimental data on Pb-Pb collisions at LHC, which are of particular interest for
us, are presented. The dependence of the source radius on m is evident when we deal
with pions and my < 0.9 GeV. However, the dependence becomes much weaker for
protons when m 2 1.0 GeV. The figure shows that the radius of proton source tends
to decrease in central Pb-Pb collisions when m grows from 1.1 GeV to 1.7 GeV but
the decrease is not seen for the collision centrality 10—30% nor 30—50%. The behavior
is well understood as the decrease of the source radius with growing m_ is caused by
the collective radial flow which is stronger in central than in peripheral collisions.

In case of proton-deuteron correlations, which are of our particular interest, the
interval of m, from 1 to 2 GeV is of crucial importance. The experimental data
from non-central collisions, which are presented in Figure 8 of reference [50], show
no dependence of the source radius on m  in the interval. Since we are interested
in rather peripheral collisions, where the source radii are sufficiently small and the
effect we suggest to measure is significant, it is legitimate to assume that the source
radius is independent of particle’s transverse mass.

If the Coulomb interaction is absent but there is a short-range strong interaction,
the wave function can be chosen, as proposed in [58], in the asymptotic scattering
form

etar

Oa(r) = ¢ + (), (36)

where ¢ = |q| and f(q) is the s—wave (isotropic) scattering amplitude.
With the source function (35) and the wave function (36), the correlation function
(33) equals

R( )_1+L‘f( )|2_ﬂoﬂ )
YA or2q M
L Rf(q) dre” RE sin(2qr). (37)

_|_ P
2771/2qu 0

The remaining integral needs to be taken numerically. The formula (37) has been
repeatedly used to compute correlation functions of various two-particle systems.

When one deals with charged particles, the formula (36) needs to be modified
because the long-range electrostatic interaction influences both the incoming and out-
going waves. However, the Coulomb effect can be approximately taken into account
[59] by multiplying the correlation function by the Gamow factor that equals

2m 1
Glg=t— ——~—, 38
(@) apq exp(:l:a%rq) -1 (38)

where the sign + (—) is for the repelling (attracting) particles and ap is the Bohr
radius of the pair.
4.2.2 Deuteron as a bound state

Let us now derive the h— D correlation function treating the deuteron as a neutron-
proton bound state created due to final-state interactions similarly to the h— D
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correlation. Then, the correlation function is defined as

dNnp
d3py, d3pp

dNy, dN,, dN,
? d?’ph dgpn dgp;o7

=R(aq) A (39)

where p,, = p, = pp/2 and q is the relative momentum of 2 and D. The deuteron
formation rate Az is given by the formula (5) with A = 2. The correlation function
multiplied by the deuteron formation rate equals

R(q) A2 = 2(277)3 / d3ry, &r,, dsrp D(ry,) D(rp)D(rp) |[¥hnp(th, Iy, rp)|2, (40)

where Ypnp(rp, Iy, Tp) is the wave function of a h—D system. The spin factor 3/4 has
the same origin as that in equation (13).

To compute the integral in equation (40), we introduce the Jacobi variables of a
three-particle system

R = mnrn+m],\.;1rp+mhrh ,

Tnp =TIy — ry, (41)
_ MpCp+mpl

'np =Th — Tppa

with M = m,, + m, + my, mp = m,, +m, and we write down the wave function as

¢hnp(rha Iy, rp) = ¢'PR ¢2D (th) YD (rnp)v (42)

where ¥}, (rp,p) and pp(r,,) are the wave functions of the relative motion of p and
D and of internal motion of D, respectively.

Using the Gaussian source (6), the integral over the center-of-mass position R in
equation (40) gives

/d3RD(rn) D(rp) D(rp) = Di(rnp) Dar(tib), (43)

where D,.(r) is again given by equation (35) and the normalized function Ds,(r)
equals

1 )3/2 _x2

D (r) = (37TR2 ¢ 3R (44)

As a result of the integration over R in the right-hand-side of equation (40),
the formation rate, which is given by equation (13) factors out. Consequently, the
rate, which is also present in the left-hand-side of equation (40), drops out and the
correlation function equals

R(q) = /d37“hD Ds,.(rnp) U5 (rhp)|?. (45)

The formula (45) has the same form as (33) but the source function differs. When
deuterons are directly emitted from the fireball as ‘elementary’ particles the radius
of deuteron source is the same as the radius of proton source. When deuterons are
formed only after emission of nucleons from the fireball, the source becomes bigger
because the deuteron formation is a process of spatial extent. More quantitatively, the
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Fig. 2. p—D correlation function.

source radius of deuterons treated as bound states is bigger by the factor 1/4/3 = 1.15
than that of ‘elementary’ deuterons.

4.2.3 p—D correlation function

We have first considered the K D correlation function which has appeared not very
sensitive to a source radius because the strong interaction of K~ and D is rather weak
that is the scattering length is short. The p—D system is better suited for our purpose.

Since the p— D pair can have spin 1/2 or 3/2 there are two interaction channels.
The s—wave scattering lengths of p— D scattering in the 1/2 and 3/2 channels are,
respectively, 4.0 and 11.0 fm [60]. As nucleons are assumed unpolarized, the p—D
correlation function is computed as the average

Rla) = 5 RV (a) + 5 R (), (46)

where the weights factors 1/3 and 2/3 reflect the numbers of spin states in the two
channels.

The average p—D correlation function is shown in Figure 2 for three values of the
source radius which are chosen in such a way that R, = 2.00 fm = /4/3 - 1.73 fm =

% -1.50 fm. The function strongly depends on Rg. Therefore, it should be possible to
infer the source radius from experimentally measured p— D correlation function and
compare it to R obtained from the p—p correlation function. If deuterons are directly
emitted from the fireball, the radii of proton and deuteron sources are the same. If
deuterons are formed due to final-state interactions, the radius of deuteron source
is bigger by the factor y/4/3. To distinguish the two scenarios the p— D correlation
function should be measured with such an accuracy that one can distinguish the two
neighboring curves in Figure 2.

The dependence of the p— D correlation function on R; becomes weaker as R
grows. Consequently, the analysis of higher pr particles from non-central events, when
the sources are relatively small, is preferred.

Our proposal to distinguish the scenario of deuterons directly emitted from the
fireball from that of deuterons formed due to final-state interactions does not relay
on an absolute value of the source size inferred from the p— D correlation function
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but on a comparison of source size parameters inferred from the p—D and p—p
correlation functions. Therefore, systematic uncertainties of the femtoscopic method,
both experimental and theoretical, are not of crucial importance here, as they are
expected to influence in a similar way the source parameters inferred from the p—D
and p—p correlation functions.

We note that the size of the proton source in p—p collisions at LHC was measured
with an experimental accuracy of 7% where the statistical error is only 2% [52]. Our
proposal requires an accuracy better than 15% which, however, does not include sys-
tematic experimental and theoretical uncertainties. Therefore, the required accuracy
of the measurement seems achievable.

It should be also noted that the p—D correlation function was measured in heavy-
ion collisions at low and intermediate collision energies that is from a few tens to a
few hundreds of MeV /nucleon, see the review [53] and references therein. The p— D
correlations in Pb-Pb collisions at LHC are currently under study by the ALICE
Collaboration [54].

4.3 p—3He correlations

The p—3He correlation function is interesting for two different reasons. It is needed
to obtain the yield of Li but at the same time the correlation function carries infor-
mation about a source of *He. It allows one to determine whether *He is directly
emitted from the fireball, as in the thermal model, or it is formed afterwards, as in
the coalescence approach.

4.3.1 General formula of p—3He correlation function

If the nucleus ®He is treated as an elementary particle emitted from a source, the
p—3He correlation function is defined as

dNpowe dN, dNsy,

NpiHe 47
dBppd3pspe 4 d3pp Bpspe’ (47)

and it is given by equation (33) where the source function (35) enters. The wave
function ¢q(r), however, describes not the relative motion of h and D but of p and
3He.

Taking into account that the nucleus 3He is a bound state of (p, p,n) formed due
to final-state interactions at the same time when the correlation among 3He and p is
generated, the correlation function is defined as

AN, 51,
d*ppd3pspe

dN, dNy dNy dNn
* Bp, d*(pspe/3) 3 (pste/3) 4 (pspe/3)’

=R(q) A (48)

where Asj is the formation rate of a nucleus *He given by the formula (5) with A = 3.
The product of the formation rate and correlation function is

R(pPp, Pspe)As = gggj(27r)6/d3rpd3r1d3r2d3r3 D(rp)D(r1)D(r2)D(r3)

X|prHe(I'p,I'1,I‘2,I‘3)|2, (49)
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where D(r;) with ¢ = p,1,2,3 is again the source function while 9}, spe(rp,r1,r2,T3)
is the wave function of p and 3He.

Let us compute As. Using the Jacobi variables for a system of three particles with
equal masses

RE%(I‘l—FI'Q—FI'g), r1:R—%x—%y,
X =1y —Tq, ry :R+%xf%y, (50)
yErs—%(rl‘H‘z)a r3 =R+§y7

and writing down the wave function of *He as

7vZB‘He(rlar%I‘S) = eiPR ¢3He(xv Y)a (51)

with @sye(x,y) being the wave function of relative motion, the formation rate equals

As = gsgr(2m)° / Pxd®y D, (x,y) [dstie(x, 7). (52)

where the normalized two-particle relative source function D,.(x,y) is

Di(x,y) = /d3RD(R— %x— %y) D(R+ %x - %y) D(R+ %y)
-l (53)

(2\/§7TR§)3

The latter equality holds for the Gaussian parametrization (6).
To derive the p—3He correlation function we use the Jacobi variables for a system
of four particles defined by equation (22) and we write down the wave function as
¢p3He(I‘p7 ry,ro, 1‘3) = ¢'PR Sﬁq(z) ¢3He(X7 Y)a (54)
where (q(z) is the wave function of relative motion in the center of mass of p—3He

system. Computing the integral (49), one finds that A3 factors out and the correlation
function equals

R(q) = / @1 Dy (r) |pq(r) . (55)

The source function Dy, (r) is defined through the equality

D, (x,y) D4 (z) = (QW)G/d?’RD(R - %x - %y - %z)

1 1 1 2 1 3
D(R Sx sy )D(R y o= )D(R 2 )
X +5x 3~ 1% +3y 12 +4z (56)
where the function D,(x,y) is given by equation (53). Using the Gaussian
parametrization (6), the normalized source function Dy, (r) is found as

L)

8w R2 (57)

Da(2) = (
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The correlation functions (33) and (55) differ only due to the different source
functions (35) and (57), respectively. The source radius of nuclei *He treated as bound
states is bigger by the factor \/3/2 ~ 1.22 than that of the ‘elementary’ nuclides *He.
When the source radius inferred from the p—p correlation function is the same as the
radius obtained from the p—3He correlation function, it means that the nuclides >*He
are directly emitted from the fireball. If the radius is bigger by 1/3/2, the nuclides are
formed due to final-state interactions. The question is, however, whether the p—3He
correlation function is sensitive enough to the change of source radius from Ry to
v/3/2 Rs. The question is discussed in the next section.

4.3.2 p—3He correlation function

The effect of s—wave scattering and Coulomb repulsion of p and 3He is computed
exactly as in the case of p— D correlation function discussed in Section 4.2.1. The
difference is that both proton and 3He have spin 1/2 and there are singlet (spin
zero) and triplet (spin one) channels of the p—*He scattering. Consequently, the spin
average p—>He correlation function is given not by equation (46) but it equals

Rla) = ;R*(@) + S R'(a). (5%)

The singlet and triplet scattering lengths are sizable [61] and are
as = 11.1 fm, a; = 9.05 fm. (59)

Our main interest is the of p—3He resonance interaction due to the transient
state of Li. The resonance mass equals Ag = 4,07 MeV above the sum of masses
of proton and 3He and its width is I' = 6,03 MeV [56]. The amplitude, which takes
into account the resonance scattering, is [62]

f(q,0) = f(q) + fi (q¢) Pi(cos ), (60)

where f(q) is the s—wave scattering amplitude, and f] (g) is the resonance contribu-
tion with [ being the orbital momentum of the resonance, P(cos#) is the Legendre
polynomial which for [ = 1 equals P;(cosd) = cosf. As discussed in Section 4.1, the
orbital angular momentum of 4Liis [ = 1.

The resonance amplitude is of the Breit-Wigner form

20+ 1 ;T

7(q) = =\ ,
fl (Q) R % E—Em—%il“

(61)

where Ey and I' are the resonance energy and its width and the parameter Ag,
which is assumed to be real, controls a strength of the resonance. In case of the 4Li
resonance, the energy difference, which enters the amplitude, is

q2
E-Fy=L _ap, (62)

2p

and the momentum ¢, which corresponds to the resonance peak, is go = 75.7 MeV.

When compared to the original formula (134.12) from the textbook [62], we have
introduced the parameter Ar and have replaced the factor (21 4+ 1)/q by (21 +1)/qo,
where gg corresponds to the energy Fp, to avoid the divergence of the amplitude at
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Fig. 3. The p—3He correlation function which takes into account only the resonance of 4Li.

q = 0. The modification is legitimate as, strictly speaking, the amplitude is valid only
in the vicinity of the resonance. In our numerical calculations we assume that A\g = 1
but, as we discuss further on, the parameter Ar can be and should be inferred from
experimental data.

The correlation function, which is computed with the source function (57) and
takes into account the resonance interaction, is

3

32,
W) L (@)]*

R(q) = Ro(q) + (

+ 2(87312)3/2 (ﬁflr((I) REK1(q) —Sf/ () %Kl(q)>7 (63)

where Ro(q) is the correlation function due to s—wave scattering only. For [ = 1 the
coefficient J; and the function K;(q) are

25/27T3/2
J]_ == W RS, (64)
32 — 32 sin?(qr)
RK4(q) = ——/ dre 373 sin(2qr) _|_7/ dre ®R% — (65)
23/2713/2 R 842R2 R2 32 sin(2qr
SK(q) = W(l—ke / dr e 5 7(70 ) (66)

In Figure 3 we show the p—3He correlation function which takes into account only
the resonance interaction. The peak at ¢ = qo = 75.7 MeV is well seen. Figure 4 shows
the spin-average correlation function which takes into account the s—wave scatter-
ing, the resonance interaction and the Coulomb repulsion included by means of the
Gamow factor (38). The resonance contributes only to the triplet correlation function
because, as explained in Section 4.1, the spin of p and *He, which are constituents of
414, equals unity. One observes that the s—wave scattering and Coulomb repulsion
strongly deform the resonance peak.
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Fig. 4. The spin-average p—>He correlation function which takes into account the s—wave
scattering, the resonance *Li in the triplet channel and the Coulomb repulsion.

A measurement of the p—3He correlation function in relativistic heavy-ion col-
lisions at LHC is difficult but possible. The correlation function was measured in
40 Ar—induced reactions on 97 Au at the collision energy per nucleon of 60 MeV [63].
It was also measured in relativistic Au—Pt collisions at AGS [64].

One asks whether the p—3He correlation function is sensitive enough to the change
of the source radius from R to 1/3/2 R, that allows one to judge about the origin of
3He: whether the nuclides are directly emitted from the source or they are formed due
to final-state interactions. The answer obviously depends on accuracy of the p—3He
correlation function to be experimentally measured but Figure 4 suggests that it
will be a difficult task. The problem is that the source radius Rs must be inferred
from experimental data together with the parameter Az which controls the resonance
strength.

4.4 Yield of “Li

As discussed in the previous section, the resonance peak of the p—3He correlation

function is distorted by the Coulomb repulsion and s—wave scattering. So, it is not

obvious how to infer the resonance yield from the distribution of the p—3He pairs.
To derive the yield of Li, we start with the formula (47), which is written as

Wypne _ o ANy AN
PP~ Y By, Bpoge |y

(67)

where P = p, + psye. The correlation function strongly depends on q but the depen-
dN, dNsp,
d3pp d3p3y,
resonance. So, it is taken at q = 0.

To get the yield of *Li, one should sum up the number of correlated p—3He pairs
within the resonance peak. However, the peak is deformed by the Coulomb repulsion
and s—wave scattering. So, we suggest to fit an experimentally obtained correlation
function with the theoretical formula (63) where Ag, which enters the amplitude
(61) to control a strength of the resonance, is treated as a free parameter. Then, the
contribution from the resonance can be disentangled.

dence of the product

on q is rather weak in the momentum domain of the
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Fig. 5. The ratio of *Li to *He yields as a function of gmax for four values of R..
Denoting the correlation function shown in Figure 3, which differs from unity

solely due to the resonance interaction, as Rg(q), the yield of “Li of the momentum
P equals

dN4Li 3 de dN3He

BP 47 PBp, Bpsge

(68)

)
q=0

where the factor 3/4 takes into account that 4Li is produced only in the triplet channel
and

Sr=d4r /qux (RR(q) - 1) ¢dq. (69)

Since the source function is assumed to be isotropic and the correlation function
depends on q only through ¢, the trivial angular integration has been performed in
equation (69). The upper limit of the integral (69) should be chosen in a such way
that the integral covers the resonance peak centered at gy = 76 MeV/c.

To get the ratio of the yields of *Li to *He one has to express the yields of 3He and
of protons through the yields of nucleons. Keeping in mind the coalescence formula
(1), equation (68) is written as

dN4Li
a3pP

dNy )4, (70)

3
= 2 Sp Ay SN
8 s (dBPN
where the additional factor 1/2 takes into account that half of nucleons are protons.
Consequently, the ratio of *Li to *He yields equals

4 .
# _ 3SR As . (71)
He 8Alle

In Figure 5 we show the ratio as a function of gnax for Ag = 1 and four values of
Rs. There are indicted the values of relative momenta of *He and p (in the center-of-
mass frame) which correspond to the energy of the resonance peak Ey, to Ey + 1T, to
Ey + 3T, etc. The integral (69) is seen to change rather slowly for gmax bigger than,
say, 150 MeV but it is not clear whether the integral saturates when gua.x — 0.
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As observed in reference [42] and further studied in [43], the analogous integrals of
correlation functions usually diverge as gmax — 00 because the correlation functions
tend to unity as ¢~2 or slower. However, it is not physically reasonable to extend the
integral (69) to a value of gmax higher than, say, gmax = 177 MeV which corresponds
to Ey + 3T". The value of S does not change very much when guax is increased from
177 MeV to 286 MeV with the latter value corresponding to Ey + 9I'. Finally we
observe that for Ag = 1 and gmax ~ 150 MeV the ratio varies between 4 and 5.5.

At the end we note that the yield of *Li was measured in Au—Pt collisions at
AGS [64] but it is unclear how the problem of distorted resonance peak was resolved.

5 Closing remarks

It is truly surprising result that production of light nuclei at the highest accessible
energies of heavy-ion collisions is equally well described by two completely different
models. Our objective was to broadly present the problem and to consider proposals
to falsify one of the models. The measurements which are proposed are challenging
but possible. Hopefully, we will learn weather the ideas discussed here are actually
useful not in a remote future.
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