Skip to main content
Log in

Holographic vector meson melting in a thermal gravity-dilaton background related to QCD

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A holographic model of probe vector mesons (quarkonia) is presented, where the dynamical gravity-dilaton background is adjusted to the thermodynamics of 2 +1 flavor QCD with physical quark masses. The vector meson action is modified to account for various quark masses. We focus on the Φ, Jψ and ϒ meson melting in agreement with hadron phenomenology in heavy-ion collisions at LHC, that is the formation of hadrons at the observed freeze-out temperature of 155 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Antinori, A. Dainese, P. Giubellino, V. Greco, M.P. Lombardo, E. Scomparin, Nucl. Phys. A 982, 1 (2019)

    Article  Google Scholar 

  2. F. Prino, R. Rapp, J. Phys. G 43, 093002 (2016)

    Article  ADS  Google Scholar 

  3. X. Yao, B. Müller, Phys. Rev. D 100, 014008 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Rapp et al., Nucl. Phys. A 979, 21 (2018)

    Article  ADS  Google Scholar 

  5. Y. Xu et al., Phys. Rev. C 99, 014902 (2019)

    Article  ADS  Google Scholar 

  6. S. Cao et al., Phys. Rev. C 99, 054907 (2019)

    Article  ADS  Google Scholar 

  7. N. Brambilla, M.A. Escobedo, A. Vairo, P. Vander Griend, Phys. Rev. D 100, 054025 (2019)

    Article  ADS  Google Scholar 

  8. C. Chattopadhyay, U.W. Heinz, Phys. Lett. B 801, 135158 (2020)

    Article  MathSciNet  Google Scholar 

  9. D. Bazow, U.W. Heinz, M. Strickland, Phys. Rev. C 90, 054910 (2014)

    Article  ADS  Google Scholar 

  10. R. Katz, P.B. Gossiaux, Ann. Phys. 368, 267 (2016)

    Article  ADS  Google Scholar 

  11. J.P. Blaizot, M.A. Escobedo, Phys. Rev. D 98, 074007 (2018)

    Article  ADS  Google Scholar 

  12. N. Brambilla, M.A. Escobedo, J. Soto, A. Vairo, Phys. Rev. D 97, 074009 (2018)

    Article  ADS  Google Scholar 

  13. D. Blaschke, F. Reinholz, G. Ropke, D. Kremp, Phys. Lett. 151B, 439 (1985)

    Article  ADS  Google Scholar 

  14. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  15. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 571, 36 (2003)

    Article  ADS  Google Scholar 

  16. A. Rothkopf, arXiv:1912.02253 [hep-ph] (2019)

  17. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  18. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014)

    Article  ADS  Google Scholar 

  19. A. Bazavov et al., [HotQCD Collaboration], Phys. Rev. D 90, 094503 (2014)

    Article  ADS  Google Scholar 

  20. A. Bazavov et al., [HotQCD Collaboration], Phys. Lett. B 795, 15 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Suganuma, T.M. Doi, K. Redlich, C. Sasaki, J. Phys. G 44, 124001 (2017)

    Article  ADS  Google Scholar 

  22. P. Colangelo, F. Giannuzzi, S. Nicotri, JHEP 1205, 076 (2012)

    Article  ADS  Google Scholar 

  23. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 80, 094019 (2009)

    Article  ADS  Google Scholar 

  24. R. Zöllner, B. Kämpfer, Phys. Rev. C 94, 045205 (2016)

    Article  ADS  Google Scholar 

  25. S. Borsanyi et al., Nature 539, 69 (2016)

    Article  ADS  Google Scholar 

  26. S.S. Gubser, A. Nellore, Phys. Rev. D 78, 086007 (2008)

    Article  ADS  Google Scholar 

  27. S. I. Finazzo, R. Rougemont, H. Marrochio, J. Noronha, JHEP 1502, 051 (2015)

    ADS  Google Scholar 

  28. S.I. Finazzo, J. Noronha, Phys. Rev. D 89, 106008 (2014)

    Article  ADS  Google Scholar 

  29. R. Zöllner, B. Kämpfer, Eur. Phys. J. Plus 135, 304 (2020)

    Article  Google Scholar 

  30. S.P. Bartz, T. Jacobson, Phys. Rev. D 94, 075022 (2016)

    Article  ADS  Google Scholar 

  31. S.P. Bartz, J.I. Kapusta, Phys. Rev. D 90, 074034 (2014)

    Article  ADS  Google Scholar 

  32. U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, F. Nitti, Lect. Notes Phys. 828, 79 (2011)

    Article  ADS  Google Scholar 

  33. N.R.F. Braga, M.A. Martin Contreras, S. Diles, Eur. Phys. J. C 76, 598 (2016)

    Article  ADS  Google Scholar 

  34. N.R.F. Braga, L.F. Ferreira, Phys. Rev. D 94, 094019 (2016)

    Article  ADS  Google Scholar 

  35. M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 81, 065024 (2010)

    Article  ADS  Google Scholar 

  36. H.R. Grigoryan, P.M. Hohler, M.A. Stephanov, Phys. Rev. D 82, 026005 (2010)

    Article  ADS  Google Scholar 

  37. N.R.F. Braga, L.F. Ferreira, A. Vega, Phys. Lett. B 774, 476 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Bellantuono, P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, Phys. Rev. D 96, 034031 (2017)

    Article  ADS  Google Scholar 

  39. A.E.R. Chumbes, J.M. Hoff da Silva, M.B. Hott, Phys. Rev. D 85, 085003 (2012)

    Article  ADS  Google Scholar 

  40. M. Eto, M. Kawaguchi, JHEP 1910, 098 (2019)

    Article  ADS  Google Scholar 

  41. M. Arai, F. Blaschke, M. Eto, N. Sakai, Phys. Rev. D 96, 115033 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. O. DeWolfe, S.S. Gubser, C. Rosen, Phys. Rev. D 83, 086005 (2011)

    Article  ADS  Google Scholar 

  43. R. Rougemont, A. Ficnar, S. Finazzo, J. Noronha, JHEP 1604, 102 (2016)

    ADS  Google Scholar 

  44. J. Knaute, R. Yaresko, B. Kampfer, Phys. Lett. B 778, 419 (2018)

    Article  ADS  Google Scholar 

  45. S.S. Gubser, F.D. Rocha, Phys. Rev. D 81, 046001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006)

    Article  ADS  Google Scholar 

  47. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 71, 1825 (2011)

    Article  ADS  Google Scholar 

  48. R. Larsen, S. Meinel, S. Mukherjee, P. Petreczky, Phys. Lett. B 800, 135119 (2020)

    Article  Google Scholar 

  49. S. Kim, P. Petreczky, A. Rothkopf, JHEP 1811, 088 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zöllner.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zöllner, R., Kämpfer, B. Holographic vector meson melting in a thermal gravity-dilaton background related to QCD. Eur. Phys. J. Spec. Top. 229, 3585–3594 (2020). https://doi.org/10.1140/epjst/e2020-000031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000031-9

Navigation