Skip to main content
Log in

Unified scaling law for rate factor of crystallization kinetics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Features of the crystallization kinetics define directly the rate characteristics: the crystal nucleation rate, the crystal growth rate and the so-called kinetic rate factor known also as the attachment rate (of particles to the surface of a crystalline nucleus). We show that the kinetic rate factor as function of the reduced temperature follows a unified scaling power law. This scenario is confirmed by our simulation results for model atomistic systems (crystallizing volumetric liquids and liquid thin film) and by available experimental data for crystallizing polymers. We find that the exponent of this unified scaling law is associated with a measure of the glass-forming ability of a system. The results of the present study extend the idea of a unified description of the rate characteristics of the crystal nucleation and growth kinetics by means of the scaling relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)

    Chapter  Google Scholar 

  2. J.W.P. Schmelzer, A.S. Abyzov, V.M. Fokin, C. Schick, E.D. Zanotto, J. Non-Cryst, Solids 429, 24 (2015)

    Google Scholar 

  3. K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter (Elsevier, Amsterdam, 2010)

  4. V.I. Kalikmanov, Nucleation Theory, Lecture Notes in Physics (Springer, New-York, 2012)

    Google Scholar 

  5. F. Turci, T. Schilling, M.H. Yamani, M. Oettel, Eur. Phys. J. Special Topics 223, 421 (2014)

    Article  ADS  Google Scholar 

  6. H. Song, Y. Sun, F. Zhang, C.Z. Wang, K.M. Ho, M.I. Mendelev, Phys. Rev. Mater. 2, 023401 (2018)

    Article  Google Scholar 

  7. M.C. Weinberg, W.H. Poisl, L. Granasy, C.R. Chim. 5, 765 (2002)

    Article  Google Scholar 

  8. A.V. Mokshin, B.N. Galimzyanov, Phys. Chem. Chem. Phys. 19, 11340 (2017)

    Article  Google Scholar 

  9. D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)

    Article  ADS  Google Scholar 

  10. K.F. Kelton, A.L. Greer, J. Non-Cryst, Solids 79, 295 (1986)

    Google Scholar 

  11. P.K. Galenko, V. Ankudinov, K. Reuther, M. Rettenmayr, A. Salhoumi, E.V. Kharanzhevskiy, Philos. Trans. R. Soc. A 377, 20180205 (2019)

    Article  ADS  Google Scholar 

  12. G. Demange, H. Zapolsky, R. Patte, M. Brunel, Phys. Rev. E 96, 022803 (2017)

    Article  ADS  Google Scholar 

  13. G. Demange, H. Zapolsky, R. Patte, M. Brunel, N.P.J. Comput Mater. 3, 15 (2017)

    Article  Google Scholar 

  14. J.W. Barrett, H. Garcke, R. Nürnberg, Phys. Rev. E 86, 011604 (2012)

    Article  ADS  Google Scholar 

  15. S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004)

    Article  ADS  Google Scholar 

  16. J.W.P. Schmelzer, Mater. Phys. Mech. 6, 21 (2003)

    Google Scholar 

  17. C. Huang, S. Ruan, T. Cai, L. Yu, J. Phys. Chem. B 121, 9463 (2017)

    Article  Google Scholar 

  18. B.N. Galimzyanov, D.T. Yarullin, A.V. Mokshin, Acta Mater. 169, 184 (2019)

    Article  Google Scholar 

  19. A.V. Mokshin, B.N. Galimzyanov, J. Chem. Phys. 142, 104502 (2015)

    Article  ADS  Google Scholar 

  20. I. Avramov, E.D. Zanotto, M.O. Prado, J. Non-Cryst Solids 320, 9 (2003)

    Article  ADS  Google Scholar 

  21. M.L.F. Nascimento, C. Aparicio, Physica B 398, 71 (2007)

    Article  ADS  Google Scholar 

  22. Q. Shi, C. Zhang, Y. Su, J. Zhang, D. Zhou, T. Cai, Mol. Pharmaceutics 14, 2262 (2017)

    Article  Google Scholar 

  23. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)

    Article  ADS  Google Scholar 

  24. S. Miriglan, K.S. Schweizer, J. Chem. Phys. 140, 194507 (2014)

    Article  ADS  Google Scholar 

  25. P.G. Santangelo, C.M. Roland, Macromolecules 31, 4581 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii V. Mokshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokshin, A.V., Galimzyanov, B.N. & Yarullin, D.T. Unified scaling law for rate factor of crystallization kinetics. Eur. Phys. J. Spec. Top. 229, 427–432 (2020). https://doi.org/10.1140/epjst/e2019-900092-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900092-y

Navigation