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Abstract. A memristor diode bridge chaotic circuit is proposed in this
paper. The proposed oscillator has only one nonlinear element in the
form of memristor. Dynamical properties of the proposed oscillator are
investigated. The fractional order model of the oscillator is designed us-
ing Grünwald–Letnikov (GL) method. Bifurcation diagrams are plot-
ted which shows that the proposed oscillator exhibits multistability.
Finally, the antimonotonicity property of the fractional order oscilla-
tor is discussed in detail with two control parameters. Such property
has not been explored for fractional order systems before.

1 Introduction

In the last three decades a lot of attention has been given to dynamical sys-
tems with elegant mathematical forms. In 1994, Sprott proposed a list of simplest
3-dimensional chaotic systems [1]. Those systems have been the source of inspira-
tion of many new simple chaotic systems [2–4]. Finding chaotic systems with special
properties is very interesting since it can help us to understand the generation of
chaotic attractors. There are many studies on designing chaotic flows with special
structural properties such as systems with no equilibrium point [5–8], stable equilibria
[9–12], line of equilibria [13], curve-equilibrium [14,15], surface-equilibrium [16–18],
and infinite equilibrium points [19–21]. Chaotic systems with other properties such
as fractional-order equations [22–24], multi-scroll attractors [25,26], megastability
[27–30], and extreme multistability [31–34] are also attractive. Multistability in a
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Fig. 1. Circuit structure of MDBO.

new 4-dimentional chaotic system has been investigated in [35]. In [31] multistable
memristor based Chua’s hyperchaotic system with plane of equilibria has been stud-
ied.

There are many categorization of dynamical systems based on different properties.
One of them categorizes dynamical systems into two groups, systems with self-excited
or systems with hidden attractors [36,37]. This categorization is based on the basin of
attractions of attractors. A self-excited attractor can be found using initial conditions
around an unstable equilibrium while hidden attractors cannot [38,39]. A time varying
controller for the synchronization of hidden chaotic attractors has been proposed in
[40].

Memristive chaotic and hyperchaotic systems have attracted lot of attentions
[41,42]. Many studies in the context of nonlinear dynamic have been done in this
area [43–48]. Chaotic dynamic of a memristive Wien-bridge oscillator has been stud-
ied in [49]. Also, fractional order chaotic systems have been a hot topic [50]. Although
there are some chaotic circuits recently published, only a few focused on dynamical
behaviors of the systems with fractional orders [51–53]. Motivated by this, we inves-
tigate a chaotic circuit with a first order memristor. In Section 2, the fractional order
model of memristive diode bridge oscillator is introduced. In Section 3, we discuss
the dynamics and multistability properties of the model. Conclusions and discussion
are given in the last section.

2 Fractional order memristive diode bridge oscillator (FOMDBO)

Memristive based chaotic oscillators have been discussed widely in literature. We
have derived the proposed memristive diode bridge oscillator (MDBO) circuit by
modifying the jerk system proposed in [54]. We have replaced the two diode element
with a memristor whose equivalent circuit is derived using a four diode bridge. The
electronic circuit of the proposed system is presented in Figure 1. The circuit has only
one nonlinear element. That element is in the form of the memristor if we assume
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Fig. 2. Diode bridge equivalent circuit of the memristor with a first order RC filter.

that all the operational amplifiers operate in the linear region (ideal) and has three
integrators and two inverting amplifiers.

To derive a new mathematical model of the circuit shown in Figure 1, we use the
generalized memristor which consist of a first order filter with a diode bridge [55] as
shown in Figure 2. All four diodes are chosen to be identical and the values of Rm
and Cm are chosen such that the system shows chaotic oscillations.

The mathematical model of the current and voltage are given by,

im = 2Ise−αVCm sinh (αVCm
)

dVCm

dt
=

2IsR(e−αVCm cosh (αVCm
)− 1)− VCm

RCm

(1)

where α = 1
2πηVT

and η, VT are the emission coefficient and thermal voltage respec-
tively [56]. To derive the state equations of the circuit, let us define the voltages across
the capacitors Ca, Cb, Cc, Cm as VCa

, VCb
, VCc

, VCm
respectively. Applying Kirchoffs

voltage and current laws to the circuit, the four state equations can be derived as,

Ca
dVCa

dt
=
VCb

Rb

Cb
dVCb

dt
=
VCc

Rb

Cc
dVCc

dt
=
VCa

R
− VCb

Ra
− VCc

R
− 2Ise−αVCm sinh (αVCm

)

Cm
dVCm

dt
=

2IsR(e−αVCm cosh (αVCm
)− 1)− VCm

R
·

(2)

To derive the dimensionless state equations of (2), we assign the state variables as
x = VCa

, y = VCb
, z = VCc

, w = VCm
. The parameters are taken as a1 = 1

RCa
,

a2 = 1
RCb

, a3 = 1
RCc

, a4 = − 1
RCc

, a5 = − 1
RaCc

, a6 = − 2Is

Cm
, a7 = α, a8 = 1

Cm
,
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Fig. 3. Four projections of the strange attractor of the MDBO system.

a9 = − 1
RmCm

. Applying these assumptions, the dimensionless state equation of the
MDBO system can be derived as,

ẋ = a1y

ẏ = a2z

ż = a3x+ a4z = a5y + a6e
−a7w sinh

(a7x

3

)
ẇ = a8

(
(−a6)

(
e−a7w cosh

(a7x

3

)
− 1
))

+ a9w.

(3)

The MDBO system shows strange attractor in parameter values a1 = 1, a2 = 2, a3 =
1, a4 = −1, a5 = −2.95, a6 = −5.36e−5, a7 = 5, a8 = 0.02, a9 = −3 and initial
conditions [0.1, 0.1, 0.1, 0.1]. Figure 3 presents the strange attractor of the MDBO
system.

The equilibria of the MDBO system can be calculated as follows:

w = − 1
a7

ln

(
−a3x

a6 sinh
(
a7x
3

))
0 = a8

(
(−a6)

(
e−a7w cosh

(a7x

3

)
− 1
))

+ a9w.

(4)

Equation (4) is a transcendental equation and cannot be solved analytically and
hence we choose numerical solutions using MATLAB to find the equilibrium points.
It can be seen that the MDBO system has a trivial fixed point E1 at [0, 0, 0, 0] and
have two nontrivial equilibrium points E2, E3 at ∓7.69, 0, 0, 0.0512. The eigenvalues
of the MDBO system at the trivial equilibrium point E1 are λ1 = 0.3166, λ2,3 =
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−0.6583 ± 2.4256i, λ4 = −3 and at nontrivial points E2, E3 are λ1,2 = 0.5903 ±
2.9709i, λ3 = −4.1245, λ4 = −1.8203. As can be observed from the eigenvalues the
equilibrium point E1 is a saddle focus of index-1 and equilibrium points E2, E3 are
saddle focus of index-2.

In this paper, the fractional order memristive diode bridge oscillator (FOMDBO)
has been proposed. The fractional order mathematical model of the proposed system
is derived using Grünwald-Letnikov (GL). Let us define the FOMDBO oscillator as,

Dqx = a1y

Dqy = a2z

Dqz = a3x+ a4z + a5y + a6e
−a7w sinh

(a7x

3

)
Dqw = a8

(
(−a6)

(
e−a7w cosh

(a7x

3

)
− 1
))

+ a9w.

(5)

The discrete form of the FOMDBO system is given by,

x(tk) = (a1y (tk−1))hq −
N∑
j=0

βqjx(tk−j)

y(tk) = (a2z (tk−1))hq −
N∑
j=0

βqj y(tk−j)

z(tk) =

(
a3x(tk−1) + a4z(tk−1) + a5y(tk−1)

+ a6e
−a7w(tk−1) sinh

(
a7x (tk−1)

3

))
hq −

N∑
j=0

βqj z(tk−j)

w(tk) =
(
a8

(
(−a6)

(
e−a7w(tk−1) cosh

(
a7x (tk−1)

3

)
− 1
))

+a9w (tk−1))hq −
N∑
j=0

βqjw(tk−j)

(6)

where h is the step size, q is the fractional order of the differential equation, and βj is
binomial coefficients required for the numerical simulation. The value of N is taken
as the truncation window size L and as k when all the available memory elements
are used.

The parameter values are considered as a1 = 1, a2 = 2, a3 = −1, a4 = −1, a6 =
−5.36e−5, a7 = 5, a8 = 0.02, a9 = −3 and initial conditions are [0.1, 0.1, 0.1, 0.1].
Figures 4 and 5 show the chaotic attractor of the FOMDBO system in a5 = −2.95 and
a5 = −1.9. For both cases the commensurate fractional orders are kept as q = 0.99.

3 Dynamical properties of FOMDBO

3.1 Route to chaos

To discuss the dynamical properties of FOMDBO, bifurcations with respect to chang-
ing parameters and fractional order of the system is investigated. The bifurcation
parameter has been chosen as a2 while the other parameters are kept constant as
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Fig. 4. 2D phase portraits of the FOMDBO in a5 = −2.95.

Fig. 5. 2D phase portraits of the FOMDBO system in a5 = −1.9.



Memristor-based Systems: Nonlinearity, Dynamics and Applications 1975

Fig. 6. (a) Bifurcation of the FOMDBO system with respect to changing parameter a2;
and (b) the corresponding Lyapunov exponents.

a1 = 1, a3 = −1, a4 = −1, a5 = −2.95, a6 = −5.36e−5, a7 = 5, a8 = 0.02,
a9 = −3 and the commensurate fractional order of the system is taken q = 0.995.
Initial conditions are considered [0.1, 0.1, 0.1, 0.1]. Bifurcation diagram of FOMDBO
and Lyapunov exponents (LEs) with respect to changing parameter a2 are shown in
Figure 6. The FOMDBO shows a period doubling route to chaos and has creation and
annihilation of period doublings which is known as antimonotonicity. This property
of the system will be investigated in detail at a later part of this paper.

Next, we investigate bifurcation diagram of FOMDBO with respect to changing
commensurate fractional order. In this case, we fix all the other system parameters
except a5 to their respective values (chaotic solution) and initial conditions taken
as [0.1, 0.1, 0.1, 0.1]. The bifurcation is derived for two conditions, a5 = −2.95 and
a5, = −1.9 and they are shown in Figures 7a and 7b respectively. In a5 = −2.95, the
system shows chaotic oscillations in the interval 0.987 ≤ q < 1 which can be seen
in Figures 7a and 7b show antimonotonicity by period doubling in 0.975 ≤ q < 0.98
and reverse route of period doubling in 0.992 ≤ q < 0.995.
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Fig. 7. (a) Bifurcation of the FOMDBO system with respect to changing fractional order q
in a5 = −2.95. (b) Bifurcation of the FOMDBO system with respect to changing fractional
order q in a5 = −1.9.

Fig. 8. Lyapunov spectrum of the FOMDBO system in a5 = −2.95 with respect to changing
fractional order q.

The Lyapunov exponents (LEs) of the FOMDBO in a5 = −2.95 are shown in
Figure 8. Lyapunov exponents are derived using the Wolf’s algorithm [57] and the
fractional order predictor-corrector [58] solver fde12 [59] instead of the ode solvers
[60]. The positive largest Lyapunov exponent proves the existence of chaos in higher
values of fractional order q.
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Fig. 9. (a) Bifurcation of the FOMDBO with respect to changing parameter a2 with forward
(blue plot) and backward (red plot) continuation, (b) the corresponding Maximum Lyapunov
exponent (MLE) with forward (blue plot) and backward (red plot) continuation.

Fig. 10. Coexisting attractors of FOMDBO in a2 = 1.82. Initial conditions are
[7.03, 4.77, 1.05, 0] in blue plot and [6.4,−6.5,−0.59, 0.06] in red plot.

3.2 Multistability analysis

In order to investigate multistability of a system, we should track the attractors of
the system with different initial conditions. One common way to detect multistability
in a dynamical system is plotting bifurcation diagram of the system with forward and
backward continuation. Parameter a5 = −2.95, commensurate fractional order taken
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Fig. 11. Coexisting attractors of FOMDBO in a2 = 2. Initial conditions are [0.1, 0.1, 0.1, 0.1]
in blue plot and [−0.1,−0.1,−0.1,−0.1] in red plot.

as q = 0.99 and the other parameters are fixed to their respective chaotic solutions. In
the forward (or backward) continuation method bifurcation diagram is obtained by
plotting local maxima of the coordinate z in terms of the parameter that is increased
(or decreased) in tiny steps in the range of 0.5 ≤ a2 ≤ 3. The final states at each
parameter serves as the initial conditions for the next parameter. Plotting bifurcation
diagram with forward and backward continuation represents a simple way to localize
the window in which the system develops multistability. In Figure 9, the existence
of a chaotic attractor in forward continuation in the interval 1.784 ≤ a2 ≤ 1.887 can
be seen while the backward continuation shows period 3 limit cycles in that range.
Also, a very narrow band of chaotic attractor can be seen in 2.155 ≤ a2 ≤ 2.163
with forward continuation. But in the backward continuation a period 6 limit cycle
can be seen. These claims are well supported by the finite time Lyapunov exponents
(only the maximum LE is plotted) shown in Figure 9b. They are calculated using the
Wolf’s algorithm [57,60–62] with re-initialized initial conditions obtained in forward
and backward continuations. So, the proposed FOMDBO system has hysteresis since
the bifurcation diagram with forward and backward continuation are different in
some interval of parameters. In other words, the system shows bi-stability. Figure 10
shows the coexisting attractor of FOMDBO in a2 = 1.82 and two different initial
conditions. The FOMDBO shows a chaotic attractor with coexisting limit cycles as
shown with blue and red plots respectively. Figure 11 presents coexisting chaotic
attractors in a2 = 2 with two antisymmetric initial conditions.

3.3 Antimonotonicity

The process of period doubling and its inverse route which can occur in the bifurcation
diagram of a system is termed as antimonotonicity. To investigate this in detail,
we derive the bifurcation of FOMDBO with a2 and a5 as the control parameters.
The fractional order in this analysis is taken as q = 0.99 and we use the forward
continuation to plot the bifurcation diagrams. Figures 12a–f show the bifurcation
diagrams of the FOMDBO with respect to changing parameter a2 and in various
values of control parameter a5. The novelty of this study is that such a feature has
not been discussed in literatures with fractional order models. The evidence of period
doubling route to chaos and its inverse route is clearly seen from the bifurcation plots
reported in Figure 12.

4 Conclusions

A fractional order memristor diode bridge oscillator was proposed and dynamical
properties of the proposed oscillator have been discussed. The fractional order model
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Fig. 12. Bifurcation diagram of FOMDBO with respect to changing a2 and for different
constant values of a5. (a) a5 = −1.7, (b) a5 = −2.2, (c) a5 = −2.5, (d) a5 = −2.8, (e)
a5 = −3, (f) a5 = −3.2.

was derived using Grünwald–Letnikov. FOMDBO system showed multistability and
coexisting attractors which were investigated in detail. In addition, the fractional
order system exhibited antimonotonicity property which was investigated by keeping
two control parameters and deriving the bifurcation plots. As far as we know such
properties were not discussed in the literature with fractional order models.
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