Skip to main content
Log in

The coexistence of chaotic synchronization with three different nonautonomous systems under constraint conditions

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Because of the inherent randomness and extreme sensitivity to initial values of chaotic systems, chaos synchronization has become the key technology for chaotic applications. With the further research, scholars have found that using continuous systems to simplify discontinuous systems cannot get accurate results, and it needs to use discontinuous models to provide a precise description. Therefore, the synchronization with three different chaotic systems will be studied by using discontinuous dynamical system theory in this paper. Taking Holmes–Duffing system as master system, Pendulum and the Stiffening Spring as slave systems, the motion laws of the three systems in different motion spaces will be discussed systematically with controllers, and the analysis conditions for synchronization to start and disappear will be given. Through numerical simulations, partial synchronization and full synchronization among three systems will be realized, which proves the validity of this method and is conducive to the further study of the synchronization of complex periodic and chaotic motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 1196 (1990)

    Article  MathSciNet  Google Scholar 

  2. G. Grassi, D.A. Miller, Int. J. Bifurc. Chaos 17, 1337 (2007)

    Article  Google Scholar 

  3. A. Ouannas, M.M. Al-sawalha, Eur. Phys. J. Special Topics 225, 187 (2016)

    Article  ADS  Google Scholar 

  4. L. Zhang, T. Liu, J. Nonlinear Sci. Appl. 9, 1064 (2016)

    Article  MathSciNet  Google Scholar 

  5. K. Pyragas, Phys. Lett. A. 170, 421 (1992)

    Article  ADS  Google Scholar 

  6. A. Alfi, Int. J. Dyn. Control 2, 1 (2017)

    Google Scholar 

  7. A. Elsonbaty, A.M.A. El-Sayed, Nonlinear Dyn. 9, 2637 (2017)

    Article  Google Scholar 

  8. N. Cai, Y. Jing, S. Zhang, Commun. Nonlinear Sci. Numer. Simul. 15, 1613 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Z.M. Ge, Y.S. Chen, Chaos, Solitons Fractals 26, 881 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Siddique, M. Rehan, Nonlinear Dyn. 84, 1 (2016)

    Article  Google Scholar 

  11. A.M.A. El-Sayed, H.M. Nour, A. Elsaid, A.E. Matouk, A. Elsonbaty, Appl. Math. Model. 40, 3516 (2016)

    Article  MathSciNet  Google Scholar 

  12. Y. Feng, J. Pu, Z. Wei, Eur. Phys. J. Special Topics 224, 1593 (2015)

    Article  ADS  Google Scholar 

  13. A.C.J. Luo, Nonlinear Anal. Hybrid Syst. 2, 1030 (2008)

    Article  MathSciNet  Google Scholar 

  14. A.C.J. Luo, Commun. Nonlinear Sci. Numer. Simul. 14, 1901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.C.J. Luo, F.H. Min, Nonlinear Anal. Real. World Appl. 12, 1810 (2011)

    Article  MathSciNet  Google Scholar 

  16. A.C.J. Luo, F.H. Min, Chaos, Solitons, Fractals 44, 362 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. F.H. Min, A.C.J. Luo, Phys. Lett. A 375, 3080 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. F.H. Min, A.C.J. Luo, Int. J. Bifurc. Chaos 25, 1530016 (2015)

    Article  Google Scholar 

  19. A.C.J. Luo, Discontinuous Dynamical Systems on Time-varying Domains, (Higher Education Press, 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhong Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, F., Ma, H., Lv, Y. et al. The coexistence of chaotic synchronization with three different nonautonomous systems under constraint conditions. Eur. Phys. J. Spec. Top. 228, 1493–1514 (2019). https://doi.org/10.1140/epjst/e2019-800220-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800220-7

Navigation