Skip to main content

Advertisement

Log in

Piezoelectric frequency up-conversion harvester under sawtooth wave excitation

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This work studied an impact based frequency up-conversion mechanism via discontinuous dynamics analysis. The mechanism consists of a piezoelectric beam and a moving stopper. The moving stopper is excited by a sawtooth wave and impacts with the piezoelectric beam, which makes the beam vibrate with its national frequency repeatedly. In the system complex dynamics are induced by impacts, hence to better understand the energy harvesting performance of the piezoelectric beam, we first seek the periodic motions of the system. As the system parameters vary, the output voltage and power of the piezoelectric beam with periodic motions were obtained. The piezoelectric beam was modeled as a mass-spring-damper system, and the linear piezoelectric constitutive law was used to obtain the lumped model of the piezoelectric beam. Using discontinuous dynamics analysis, the generated power and voltage were obtained, and the effect of frequency-up-conversion was demonstrated by comparing the generated power of two cases at low excitation frequencies: (1) the piezoelectric beam was excited via impact with the stopper and (2) the piezoelectric beam was directly subjected to the sawtooth wave. In order to better understand the energy harvesting performance of the piezoelectric harvester, the stable and unstable periodic motions were obtained. The bifurcation diagram of the period-1 and period-2 motions were studied analytically with varying excitation frequency and the initial distance between the stopper and the beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.A. Kelly, T.L. Gibson, Sol. Energy 85,111 (2011)

    Article  ADS  Google Scholar 

  2. S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, M.M. Tentzeris, Proc. IEEE 102, 1649 (2014)

    Article  Google Scholar 

  3. S. Monfray, O. Puscasu, G. Savelli, U. Soupremanien, E. Ollier, C. Guerin, L. Frechette, E. Leveille, G. Mirshekari, C. Maitre, P. Coronel, K. Domanski, P. Grabiec, P. Ancey, D. Guyomar, V. Bottarel, G. Ricotti, F. Boeuf, F. Gaillard, T. Skotnicki, Innovative thermal energy harvesting for zero power electronics, Nanoelectronics Workshop (SNW) (IEEE, 2012), pp. 1–4

  4. A. Harb, Renewable Energy 36, 2641 (2011)

    Article  Google Scholar 

  5. B.J. Bowers, D.P. Arnold, J. Micromech. Microeng. 19, 094008 (2009)

    Article  ADS  Google Scholar 

  6. T. Liu, S. Liu, X. Xie, C. Yang, Z. Yang, X. Zhai, https://doi.org/arXiv:1709.00493 (2017)

  7. R. Amirtharajah, A.P. Chandrakasan, IEEE J. Solid-state Circuits 33, 687 (1998)

    Article  ADS  Google Scholar 

  8. S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9, 64 (2001)

    Article  Google Scholar 

  9. B. Scully, L. Zuo, J. Shestani, Y. Zhou, Design and characterization of an electromagnetic energy harvester for vehicle suspensions, in ASME 2009 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2009), pp. 1007–1016

  10. W. Zhou, L. Zuo, IEEE/ASME Trans. Mechatron. 20, 773 (2015)

    Article  Google Scholar 

  11. F. Wang, W. Wu, A. Lozowski, V. Alizadehyazdi, A. Abedini, Energy harvesting with a piezoelectric thunder, in ASME 2015 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2015), pp. V04BT04A043–V04BT04A043

  12. F. Wang, Z. Wang, M. Soroush, A. Abedini, Smart Mater. Struct. 25, 095044 (2016)

    Article  ADS  Google Scholar 

  13. B. Andò, S. Baglio, F. Maiorca, C. Trigona, Sens. Actuators A 202, 176 (2013)

    Article  Google Scholar 

  14. N.E. Dutoit, B.L. Wardle, S.G. Kim, Integr. Ferroelectr. 71, 121 (2005)

    Article  Google Scholar 

  15. S. Priya, D.J. Inman, in Energy harvesting technologies(Springer, 2009), Vol. 21

  16. P. Muralt, R. Polcawich, S. Trolier-McKinstry, MRS Bull. 34, 658 (2009)

    Article  Google Scholar 

  17. S.P. Beeby, M.J. Tudor, N. White, Meas. Sci. Technol. 17, R175 (2006)

    Article  Google Scholar 

  18. A. Erturk, D.J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008)

    Article  Google Scholar 

  19. N.G. Stephen, J. Sound Vib. 293, 409 (2006)

    Article  ADS  Google Scholar 

  20. H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007)

    Article  Google Scholar 

  21. I. Kuehne, D. Marinkovic, G. Eckstein, H. Seidel, Sens. Actuators A 142, 292 (2008)

    Article  Google Scholar 

  22. M. Marzencki, Y. Ammar, S. Basrour, Sens. Actuators A 145, 363 (2008)

    Article  Google Scholar 

  23. A. Abedini, S. Onsorynezhad, F. Wang, Study of an impact driven frequency up-conversion piezoelectric harvester, in ASME 2017 Dynamic Systems and Control Conference (American Society of Mechanical Engineers, 2017), pp. V003T41A005–V003T41A005

  24. T. Liu, C. Livermore, J. Phys.: Conf. Ser. 660, 012090 (2015)

    Google Scholar 

  25. T. Liu, R. St Pierre, C. Livermore, Smart Mater. Struct. 23, 095045 (2014)

    Article  ADS  Google Scholar 

  26. S.M. Jung, K.S. Yun, Appl. Phys. Lett. 96, 111906 (2010)

    Article  ADS  Google Scholar 

  27. M. Pozzi, M. Zhu, in Advances in energy harvesting methods (Springer, 2013), pp. 119–140

  28. L. Gu, C. Livermore, Smart Mater. Struct. 20, 045004 (2011)

    Article  ADS  Google Scholar 

  29. S. Onsorynezhad, A. Abedini, F. Wang, Analytical study of a piezoelectric frequency up-conversion harvester under sawtooth wave excitation, in ASME 2018 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers, 2018), pp. V002T18A004–V002T18A004

  30. P. Pillatsch, E.M. Yeatman, A.S. Holmes, Sens. Actuators A 206, 178 (2014)

    Article  Google Scholar 

  31. P.J. Holmes, J. Sound Vib. 84, 173 (1982)

    Article  ADS  Google Scholar 

  32. S.W. Shaw, P. Holmes, J. Sound Vib. 90, 129 (1983)

    Article  ADS  Google Scholar 

  33. M. Heiman, A. Bajaj, P. Sherman, J. Sound Vib. 124, 55 (1988)

    Article  ADS  Google Scholar 

  34. S. Shaw, J. Sound Vib. 99, 199 (1985)

    Article  ADS  Google Scholar 

  35. A.C.J. Luo, R.P. Han, Nonlinear Dyn. 10, 1 (1996)

    Article  Google Scholar 

  36. A.C.J. Luo, D. O’Connor, Int. J. Bifurc. Chaos 19, 1975 (2009)

    Article  Google Scholar 

  37. D. O’Connor, A.C.J. Luo, Int. J. Bifurc. Chaos 24, 1450163 (2014)

    Article  Google Scholar 

  38. J.W. Strutt, B. Rayleigh, in The theory of sound (Macmillan, 1896),Vol. 2

  39. A.C.J. Luo, Regularity and complexity in dynamical systems (Springer, 2012)

  40. A.C.J. Luo, Discretization and implicit mapping dynamics (Springer, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onsorynezhad, S., Wang, F. Piezoelectric frequency up-conversion harvester under sawtooth wave excitation. Eur. Phys. J. Spec. Top. 228, 1475–1491 (2019). https://doi.org/10.1140/epjst/e2019-800213-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800213-8

Navigation