Skip to main content

Advertisement

Log in

Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact

  • Regular Article
  • Topical issue
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Frequency up-conversion is an effective approach to increase the output power of a piezoelectric energy harvester (PEH). In this work, we studied a piezoelectric energy harvesting system, which converts low-frequency vibration from ambient sources to the resonant vibration of the PEH to improve the energy harvesting efficiency. The PEH includes two beams, a pair of rack and pinions, and a slider crank mechanism to retrieve energy from ambient low-frequency vibrations through impacts. The soft driving beam is subjected to a sinusoidal base excitation along the transverse direction. The piezoelectric bimorph undergoes both slow longitudinal motion as well as transverse vibrations. The transverse vibration of the bimorph is induced by impacts which is the vibration source to generate output power. The longitudinal motion of the bimorph is used to control the impact with the soft driving beam, which guarantees the harvester to pump in more kinetic energy from the driving beam. Using the discontinuous dynamic theory, the energy harvesting performance of the impact-controlled system was studied in period one and period two motions. The stability of periodic solutions was investigated and bifurcation diagrams of impact velocities, times and displacements were obtained. The harvested power of the piezoelectric beam versus the based excitation frequency was also obtained, and the results were compared to the power generation of a piezoelectric beam directly subjected to the base excitation along the transverse direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, J.L. Rose, Smart Mater. Struct. 16, 1208 (2007)

    Article  ADS  Google Scholar 

  2. T.J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, G. Coppotelli, Smart Mater. Struct. 22, 75027 (2013)

    Article  Google Scholar 

  3. P. Rizzo, M. Cammarata, D. Dutta, H. Sohn, K. Harries, Smart Mater. Struct. 18, 25016 (2009)

    Article  Google Scholar 

  4. S.G. Taylor, G. Park, K.M. Farinholt, M.D. Todd, Smart Mater. Struct. 22, 25024 (2013)

    Article  Google Scholar 

  5. G. Owojaiye, Y. Sun, Ad Hoc Networks 11, 1237 (2013)

    Article  Google Scholar 

  6. R. Vullers, R. Schaijk, H. Visser, J. Penders, C. Hoof, IEEE Solid-State Circuits Mag. 2, 29 (2010)

    Article  Google Scholar 

  7. V.C. Gungor, G.P. Hancke, IEEE Trans. Ind. Electron. 56, 4258 (2009)

    Article  Google Scholar 

  8. S.M. Glenn, T.D. Dickey, B. Parker, W. Boicourt, Oceanography 13, 24 (2000)

    Article  Google Scholar 

  9. R. Murray, J. Rastegar, Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys, in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring (2009), pp. 72880E–72880E.

  10. J. Sibert, Electronic tagging and tracking in marine fisheries, in Electronic Tagging and Tracking in Marine Fisheries (Springer, Berlin, 2001), pp. 1–6

  11. Y. Cha, M. Verotti, H. Walcott, S.D. Peterson, M. Porfiri, Bioinspiration Biomim. 8, 36003 (2013)

    Article  Google Scholar 

  12. P.L. Green, K. Worden, K. Atallah, N.D. Sims, J. Sound Vib. 331, 4504 (2012)

    Article  ADS  Google Scholar 

  13. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013)

    Article  ADS  Google Scholar 

  14. T. Xue, S. Roundy, J. Phys.: Conf. Ser. 660, 12098 (2015)

    Google Scholar 

  15. Q.C. Tang, Y.L. Yang, X. Li, Smart Mater. Struct. 20, 125011 (2011)

    Article  ADS  Google Scholar 

  16. L. Gu, C. Livermore, Smart Mater. Struct. 20, 45004 (2011)

    Article  Google Scholar 

  17. P.S. Gandhi, V. Vyas, J. Mech. Sci. Technol. 31, 63 (2017)

    Article  Google Scholar 

  18. F.C. Moon, S. Shaw, Int. J. Nonlinear Mech. 18, 465 (1983)

    Article  ADS  Google Scholar 

  19. P.J. Holmes, J. Sound Vib. 84, 173 (1982)

    Article  ADS  Google Scholar 

  20. S. Shaw, P.J. Holmes, Phys. Rev. Lett. 51, 623 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Heiman, A. Bajaj, P. Sherman, J. Sound Vib. 124, 55 (1988)

    Article  ADS  Google Scholar 

  22. A.C.J. Luo, R. Han, Nonlinear Dyn. 10, 1 (1996)

    Article  Google Scholar 

  23. Y. Guo, A.C.J. Luo, Complex motions in a Fermi Oscillator, in Nonlinear Approaches in Engineering Applications, edited by L. Dai, R. Jazar (Springer, Berlin, 2011), pp. 105–134

  24. D.M. O’Connor, A.C.J. Luo, Int. J. Bifurc. Chaos 24, 1450163 (2014)

    Article  Google Scholar 

  25. A.C.J. Luo, Discontinuous Dynamical Systems (Springer, Berlin, 2012)

  26. A. Abedini, S. Onsorynezhad, F. Wang, Study of an impact driven frequency up-conversion piezoelectric harvester, in ASME 2017 Dynamic Systems and Control Conference (2017), p. V003T41A005

  27. S. Onsorynezhad, A. Abedini, F. Wang, Analytical study of a piezoelectric frequency up-conversion harvester under Sawtooth wave excitation, Proceedings of the ASME 2018 Dynamic Systems and Control Conference September 30-October 3, Atlanta, USA, 2018 (2018)

  28. J.W. Strutt and B. Rayleigh, The Theory of Sound (Macmillan, London, 1896), Vol. 2

  29. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (Wiley Interscience, New York, NY, 2011)

  30. A.C.J. Luo, Discretization and Implicit Mapping Dynamics (Springer, Berlin, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, A., Wang, F. Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact. Eur. Phys. J. Spec. Top. 228, 1459–1474 (2019). https://doi.org/10.1140/epjst/e2019-800211-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800211-8

Navigation