Skip to main content
Log in

Study of the surface properties of NCCO electron-doped cuprate

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Whenever one is interested in making high temperature superconductor-based devices, the goodness of the sample surface in terms of structural and electrical properties is a strong issue. In fact, it is well known that the surface of high Tc superconducting samples is not bulk-representative, due to air contamination and to the possible presence of oxygen vacancies. In addition, the quality of the surface layer results to be crucial in surface sensitive measurements as in X-ray photoelectron and Angle-resolved photoemission spectroscopy. Recently, some studies have been dedicated to the realization of devices based on electron-doped cuprates, bilayers and nanowires, showing the actual possibility to realize good quality junctions by using these cuprates. In this work, we report on the fabrication of thin films of the electron-doped Nd2−xCexCuOδ compound and analyze the surface natural barrier of as-grown films by means of point contact spectroscopy measurements. Suitable treatments of samples in an ozone rich atmosphere have been developed in order to improve the surface quality of the films. Auger electron spectroscopy has been used to monitor the effectiveness of these treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Charpentier, R. Arpaia, J. Gaudet, D. Matte, R. Baghdadi, T. Löfwander, D. Golubev, P. Fournier, T. Bauch, F. Lombardi, Phys. Rev. B 94, 060503 (2016)

    Article  ADS  Google Scholar 

  2. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  3. H. Yamamoto, M. Naito, H. Sato, Phys. Rev. B 56, 2852 (1997)

    Article  ADS  Google Scholar 

  4. G. Panaccione, F. Offi, P. Torelli, G. Vanko, O. Tjernberg, P. Lacovig, A. Guarino, A. Fondacaro, A. Nigro, M. Sacchi, N.B. Brookes, G. Monaco, Phys. Rev. B 77, 125133 (2008)

    Article  ADS  Google Scholar 

  5. A. Guarino, G. Panaccione, F. Offi, G. Monaco, A. Fondacaro, P. Torelli, R. Fittipaldi, A. Vecchione, S. Pace, A. Nigro, J. Electron Spectr. Rel. Phenom. 212, 81 (2016)

    Article  Google Scholar 

  6. V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, Surf. Sci. 602, 3095 (2008)

    Article  ADS  Google Scholar 

  7. Z. Mori, M. Tadokoro, Z. Zulhairi, T. Doi, S. Koba, S. Higo, Y. Hakuraku, Supercond. Sci. Technol. 14, 45 (2001)

    Article  ADS  Google Scholar 

  8. M. Hoek, F. Coneri, N. Poccia, X. Renshaw Wang, X. Ke, G. Van Tendeloo, H. Hilgenkamp, APL Mater. 3, 086101 (2015)

    Article  ADS  Google Scholar 

  9. A. Guarino, A. Leo, G. Grimaldi, N. Martucciello, C. Dean, M.N. Kunchur, S. Pace, A. Nigro, Supercond. Sci. Technol. 27, 124011 (2014)

    Article  ADS  Google Scholar 

  10. A. Guarino, L. Parlato, C. Bonavolontà, M. Valentino, C. de Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, A. Nigro, J. Phys. Conf. Ser. 507, 012018 (2014)

    Article  Google Scholar 

  11. A. Avella, C. Buonavolontà, A. Guarino, M. Valentino, A. Leo, G. Grimaldi, C. de Lisio, A. Nigro, G. Pepe, Phys. Rev. B 94, 115426 (2016)

    Article  ADS  Google Scholar 

  12. A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, A. Nigro, IEEE Trans. Appl. Supercond. 27, 7501004 (2017)

    Article  Google Scholar 

  13. P. Romano, M. Riccio, A. Guarino, N. Martucciello, G. Grimaldi, A. Leo, A. Nigro, Measurement 122, 502 (2018)

    Article  Google Scholar 

  14. S. Uthayakumar, R. Fittipaldi, A. Guarino, A. Vecchione, A. Romano, A. Nigro, H.-U. Habermeier, S. Pace, Physica C 468, 2271 (2008)

    Article  ADS  Google Scholar 

  15. A. Guarino, G. Patimo, T. Di Luccio, A. Vecchione, A. Nigro, Physica C 495, 146 (2013)

    Article  ADS  Google Scholar 

  16. A. Guarino, R. Fittipaldi, A. Romano, A. Vecchione, A. Nigro, Thin Solid Films 524, 282 (2012)

    Article  ADS  Google Scholar 

  17. A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, A. Nigro, Physica B 536, 742 (2018)

    Article  ADS  Google Scholar 

  18. M. Naito, H. Yamamoto, H. Sato, Physica C 282–287, 965 (1997)

    Article  Google Scholar 

  19. J.G. Simmons, J. Appl. Phys. 34, 1793 (1963)

    Article  ADS  Google Scholar 

  20. J.G. Simmons, J. Appl. Phys. 34, 2581 (1963)

    Article  ADS  Google Scholar 

  21. W.F. Brinkman, R.C. Dynes, J.M. Rowell, J. Appl. Phys. 41, 1915 (1970)

    Article  ADS  Google Scholar 

  22. H. Yamamoto, M. Naito, H. Sato, Physica C 291, 67 (1997)

    Article  ADS  Google Scholar 

  23. B. Stäuble-Pümpin, B. Ilge, V.C. Matijasevic, P.M.L.O. Scholte, A.J. Steinfort, F. Tuinstra, Surf. Sci. 369, 313 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Avitabile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarino, A., Romano, P., Fujii, J. et al. Study of the surface properties of NCCO electron-doped cuprate. Eur. Phys. J. Spec. Top. 228, 733–739 (2019). https://doi.org/10.1140/epjst/e2019-800208-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800208-9

Navigation