Skip to main content
Log in

Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications (Kluwer Academic Publishers, 1995)

  2. E.A. Ekimov et al., Nature 428, 542 (2004)

    Article  ADS  Google Scholar 

  3. E. Bustarret, Phys. Status Solidi A 205, 997 (2008)

    Article  ADS  Google Scholar 

  4. Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004)

    Article  ADS  Google Scholar 

  5. H. Okazaki et al., Appl. Phys. Lett. 106, 052601 (2015)

    Article  ADS  Google Scholar 

  6. L. Boeri, J. Kortus, O.K. Andersen, Phys. Rev. Lett. 93, 237002 (2004)

    Article  ADS  Google Scholar 

  7. K.-W. Lee, W.E. Pickett, Phys. Rev. Lett. 93, 237003 (2004)

    Article  ADS  Google Scholar 

  8. L. Boeri, J. Kortus, O.K. Andersen, J. Phys. Chem. Solids 67, 552 (2006)

    Article  ADS  Google Scholar 

  9. F. Giustino et al., Phys. Rev. Lett. 98, 047005 (2007)

    Article  ADS  Google Scholar 

  10. K. Nakamura et al., Phys. Rev. B 87, 214506 (2013)

    Article  ADS  Google Scholar 

  11. K. Ueno et al., J. Phys. Soc. Jpn. 83, 032001 (2014)

    Article  ADS  Google Scholar 

  12. M. Dankerl et al., Phys. Rev. Lett. 106, 196103 (2011)

    Article  ADS  Google Scholar 

  13. M. Dankerl et al., Appl. Phys. Lett. 100, 023510 (2012)

    Article  ADS  Google Scholar 

  14. T. Yamaguchi et al., J. Phys. Soc. Jpn. 82, 074718 (2013)

    Article  ADS  Google Scholar 

  15. Y. Takahide et al., Phys. Rev. B 89, 235304 (2014)

    Article  ADS  Google Scholar 

  16. Y. Takahide et al., Phys. Rev. B 94, 161301(R) (2016)

    Article  ADS  Google Scholar 

  17. G. Akhgar et al., Nano Lett. 16, 3768 (2016)

    Article  ADS  Google Scholar 

  18. D. Daghero et al., Phys. Rev. Lett. 108, 066807 (2012)

    Article  ADS  Google Scholar 

  19. M. Tortello et al., Appl. Surf. Sci. 269, 17 (2013)

    Article  ADS  Google Scholar 

  20. E. Piatti et al., Phys. Rev. B 95, 140501(R) (2017)

    Article  ADS  Google Scholar 

  21. G.A. Ummarino et al., Phys. Rev. B 96, 064509 (2017)

    Article  ADS  Google Scholar 

  22. E. Piatti et al., Phys. Rev. Materials (to be published), arXiv:1810:02801

  23. R.S. Gonnelli et al., Sci. Rep. 5, 9554 (2015)

    Article  Google Scholar 

  24. E. Piatti et al., J. Supercond. Nov. Magn. 29, 587 (2016)

    Article  Google Scholar 

  25. L.J. Li et al., Nature 529, 185 (2016)

    Article  ADS  Google Scholar 

  26. G. Pippione et al., Phys. Status Solidi A 214, 1700223 (2017)

    Article  ADS  Google Scholar 

  27. K. Ushizawa et al., Diam. Relat. Mater. 7, 1719 (1998)

    Article  ADS  Google Scholar 

  28. G. Inzelt, in Electroanalytical Methods: Guide to Experiments and Applications, edited by F. Scholz (Springer-Verlag, Berlin, 2010), p. 147

  29. W.L. McMillan, Phys. Rev. B 24, 2739 (1981)

    Article  ADS  Google Scholar 

  30. A.I. Larkin, D.E. Khmel’nitskii, J. Exp. Theor. Phys. 56, 647 (1982)

    Google Scholar 

  31. A.J. Heeger, Phys. Scr. 2002, 30 (2002)

    Article  Google Scholar 

  32. P. Gonon et al., J. Appl. Phys. 78, 7059 (1995)

    Article  ADS  Google Scholar 

  33. S. Kouno et al., Sci. Rep. 8, 14731 (2018)

    Article  ADS  Google Scholar 

  34. N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1979)

  35. N.F. Mott, Metal-Insulator Transition (Taylor & Francis, London, 1990)

  36. J.M. Lu et al., Science 350, 1353 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y. Saito, Y. Kasahara, J.T. Ye, Y. Iwasa, T. Nojima, Science 350, 409 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Fête, L. Rossi, A. Augieri, C. Senatore, Appl. Phys. Lett. 109, 192601 (2016)

    Article  ADS  Google Scholar 

  39. E. Piatti et al., Appl. Surf. Sci. 461, 17 (2018)

    Article  ADS  Google Scholar 

  40. http://www.ioffe.ru/SVA/NSM/Semicond/Diamond/bandstr.html#masses

  41. A.T. Collins, A.W.S. Williams, J. Phys. C.: Solid State Phys. 4, 1789 (1971)

    Article  ADS  Google Scholar 

  42. V. Prosser, Czech. J. Phys. B 15, 128 (1965)

    Article  ADS  Google Scholar 

  43. D. Braga et al., Nano Lett. 12, 5218 (2012)

    Article  ADS  Google Scholar 

  44. Y. Saito, Y. Iwasa, ACS Nano 9, 3192 (2015)

    Article  Google Scholar 

  45. E. Piatti et al., Appl. Surf. Sci. 395, 37 (2017)

    Article  ADS  Google Scholar 

  46. R.S. Gonnelli et al., 2D Mater. 4, 035006 (2017)

    Article  Google Scholar 

  47. E. Piatti, Q.H. Chen, J.T. Ye, Appl. Phys. Lett. 111, 013106 (2017)

    Article  ADS  Google Scholar 

  48. D. Ovchinnikov et al., Nat. Commun. 7, 12391 (2016)

    Article  ADS  Google Scholar 

  49. J.M. Lu et al., Proc. Natl. Acad. Sci. USA 115, 3551 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato S. Gonnelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piatti, E., Galanti, F., Pippione, G. et al. Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films. Eur. Phys. J. Spec. Top. 228, 689–696 (2019). https://doi.org/10.1140/epjst/e2019-800188-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800188-9

Navigation