Skip to main content
Log in

Precipitation, planar defects and dislocations in alloys: Simulations on Ni3Si and Ni3Al precipitates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present simulations of the formation of Ni3Si precipitates using a combination of molecular dynamics (MD) and the Metropolis Monte Carlo (MMC) method. Applying this technique to a Ni-Si solid solution in Cu matrix leads to Ni3Si precipitates with L12 structure as observed in experiments. Since L12 structured precipitates are most relevant for precipitation strengthening of several alloys, we focus on planar defects and dislocations in Ni3Si and Ni3Al. Ab initio calculations of the generalised stacking fault energies of Ni3Si presented in our previous work [S. Hocker, H. Lipp, E. Eisfeld, S. Schmauder, J. Roth, J. Chem. Phys. 149, 024701 (2018)] revealed that the complex stacking fault is not stable and the inflection point as well as the minimum corresponding to the antiphase boundary is shifted. In this study it is shown that this behaviour can be understood from the analysis of charge densities. Furthermore, the consequences on dislocations in Ni3Si and Ni3Al are discussed and interactions of edge dislocations with Ni3Si and Ni3Al precipitates are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Hocker, H. Lipp, E. Eisfeld, S. Schmauder, J. Roth, J. Chem. Phys. 149, 024701 (2018)

    Article  ADS  Google Scholar 

  2. F. Soisson, A. Barbu, G. Martin, Acta Mater. 44, 3789 (1996)

    Article  Google Scholar 

  3. S. Hocker, P. Binkele, S. Schmauder, Appl. Phys. A 115, 679 (2014)

    Article  ADS  Google Scholar 

  4. F. De Geuser, B.M. Gable, B.C. Muddle, Philos. Mag. 91, 315 (2011)

    Article  ADS  Google Scholar 

  5. S. Sajadi, S. Hocker, A. Mora, P. Binkele, J. Seeger, S. Schmauder, Phys. Status Solidi B 254, 1600407 (2017)

    Article  ADS  Google Scholar 

  6. J.Y. Cheng, B.B. Tang, F.X. Yu, B. Shen, J. Alloys Compd. 614, 189 (2014)

    Article  Google Scholar 

  7. Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, Y.L. Jia, Mater. Sci. Eng. A 527, 6728 (2010)

    Article  Google Scholar 

  8. S.A. Lockyer, F.W. Noble, J. Mater. Sci. 29, 218 (1994)

    Article  ADS  Google Scholar 

  9. Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, Z. Xiao, Intermetallics 42, 77 (2013)

    Article  Google Scholar 

  10. Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J.M. Xie, W.W. Yang, D.L. Chen, Mater. Sci. Eng. A 572, 65 (2013)

    Article  Google Scholar 

  11. Y.N. Osetsky, D.J. Bacon, J. Nucl. Mater. 323, 268 (2003)

    Article  ADS  Google Scholar 

  12. C. Kohler, P. Kizler, S. Schmauder, Mater. Sci. Eng. A 400, 481 (2005)

    Article  Google Scholar 

  13. S. Hocker, D. Rapp, S. Schmauder, Phys. Status Solidi B 254, 1600479 (2017)

    Article  ADS  Google Scholar 

  14. J. Stadler, R. Mikulla, H.-R. Trebin, Int. J. Mod. Phys. C 8, 1131 (1997)

    Article  ADS  Google Scholar 

  15. J. Roth, F. Gähler, H.-R. Trebin, Int. J. Mod. Phys. C 11, 317 (2000)

    ADS  Google Scholar 

  16. O.N. Mryasov, Y.N. Gornostyrev, M. van Schilfgaarde, A.J. Freeman, Acta Mater. 50, 4545 (2002)

    Article  Google Scholar 

  17. H. Hou, Z. Wen, Y. Zhao, L. Fu, N. Wang, P. Han, Intermetallics 44, 110 (2014)

    Article  Google Scholar 

  18. N.S. Stoloff, Int. Mater. Rev. 34, 153 (1989)

    Article  Google Scholar 

  19. M.J. Mills, The flow strength anomaly in metals and intermetallic compounds (Dordrecht, Springer Netherlands, 2000), pp. 469–478

  20. V. Vitek, V. Paidar, Chapter 87 – non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials, in A tribute to F.R.N. Nabarro, volume 14 of dislocations in solids, edited by J.P. Hirth (Elsevier, 2008), pp. 439–514

  21. Y.M. Wang-Koh, Mater. Sci. Technol. 33, 934 (2017)

    Article  Google Scholar 

  22. H.M. Tawancy, N.M. Abbas, A.I. Al-Mana, T.N. Rhys-Jones, J. Mater. Sci. 29, 2445 (1994)

    Article  ADS  Google Scholar 

  23. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  24. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  ADS  Google Scholar 

  25. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  Google Scholar 

  26. A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)

    Article  ADS  Google Scholar 

  27. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  28. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  29. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  30. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  31. G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Kokalj, Comput. Math. Sci. 28, 155 (2003)

    Article  Google Scholar 

  35. P.L. Williams, Y. Mishin, J.C. Hamilton, Model. Simul. Mater. Sci. Eng. 14, 817 (2006)

    Article  ADS  Google Scholar 

  36. M.I. Mendelev, M. Asta, M.J. Rahman, J.J. Hoyt, Philos. Mag. 89, 3269 (2009)

    Article  ADS  Google Scholar 

  37. T. Miyazawa, T. Fujii, S. Onaka, M. Kato, J. Mater. Sci 46, 4228 (2011)

    Article  ADS  Google Scholar 

  38. J.M. Chen, T.S. Sun, R.K. Viswanadham, J.A.S. Green, Metall. Trans. A 8, 1935 (1977)

    Article  Google Scholar 

  39. Y. Mishin, Acta Mater. 52, 1451 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Hocker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocker, S., Lipp, H. & Schmauder, S. Precipitation, planar defects and dislocations in alloys: Simulations on Ni3Si and Ni3Al precipitates. Eur. Phys. J. Spec. Top. 227, 1559–1574 (2019). https://doi.org/10.1140/epjst/e2019-800154-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800154-6

Navigation