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Abstract. Piezoelectrics are an important class of materials for mechan-
ical energy harvesting technologies. In this paper we evaluate the
piezoelectric harvesting process and define the key material properties
that should be considered for effective material design and selection.
Porous piezoceramics have been shown previously to display improved
harvesting properties compared to their dense counterparts due to the
reduction in permittivity associated with the introduction of poros-
ity. We further this concept by considering the effect of the increased
mechanical compliance of porous piezoceramics on the energy conver-
sion efficiency and output electrical power. Finite element modelling is
used to investigate the effect of porosity on relevant energy harvesting
figures of merit. The increase in compliance due to porosity is shown
to increase both the amount of mechanical energy transmitted into the
system under stress-driven conditions, and the stress-driven figure of
merit, FoMX

33, despite a reduction in the electromechanical coupling
coefficient. We show the importance of understanding whether a piezo-
electric energy harvester is stress- or strain-driven, and demonstrate
how porosity can be used to tailor the electrical and mechanical prop-
erties of piezoceramic harvesters. Finally, we derive two new figures of
merit based on the consideration of each stage in the piezoelectric har-
vesting process and whether the system is stress- (FX

ij ), or strain-driven
(F x

ij).

1 Introduction

Piezoelectric energy harvesting is an important technology for converting ambi-
ent mechanical energy, a necessary by-product of thermodynamic processes, into
useful electrical energy for powering wireless sensor networks, for example [1]. A
variety of figures of merit have been derived to aid in the selection of materials
for devices and provide insight into how piezoelectric materials can be engineered
to enhance their energy harvesting properties. One frequently used merit index is
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the electromechanical coupling coefficient, which is a measure of the efficiency of
conversion of input mechanical energy into stored electrical energy, and vice versa:

k2 =
Stored electrical energy
Input mechanical energy

=
Stored mechanical energy

Input electrical energy
(1)

and in terms of material properties, the coupling coefficient is given by:

k2
ij =

d2
ij

εX
ii s

E
jj

(2)

where dij is the piezoelectric strain coefficient, εX
ii is the permittivity at constant

stress and sE
jj is the mechanical compliance of the material under constant electric

field conditions. A high coupling factor is not necessarily an indicator of the energy
harvesting proficiency of a material, but rather relates to the efficiency of conver-
sion of the input mechanical/electrical energy to stored electrical/mechanical energy.
Piezoelectric energy harvesters, on the other hand, need to convert mechanical energy
into useable, or output, electrical energy.

As recently pointed out by Uchino [2] and Deutz et al. [3], the electromechanical
coupling coefficient is not the primary factor for predicting a piezoelectric’s energy
harvesting capabilities; instead the energy harvesting figure of merit derived by Islam
and Priya, based on an applied stress, is commonly used [4]:

FoMX
ij =

d2
ij

εX
ii

. (3)

The difference between the two merit indices in equations (2) and (3) is the lack
of a compliance term in equation (3), which has been postulated to be a potential
benefit for polymer-based piezoelectrics that exhibit high FoMX

ij values, despite their
low coupling coefficients, as a result of their high compliance and low piezoelectric
coefficients (dij) [3]. This concept is also relevant to the use of porosity to enhance
the performance of piezoelectric materials, whereby pores are intentionally introduced
into a piezoceramic in order to reduce the effective permittivity, whilst maintaining
relatively high piezoelectric strain coefficients. This leads to increased longitudinal
harvesting figures of merit, FoMX

33, with increasing porosity [5,6].
The elastic compliance, which is used to determine k2, is difficult to measure for

porous piezoceramics as quality factors (Qm) decrease compared to dense piezoceram-
ics [7]. This makes it challenging to accurately analyse the resonance data of porous
piezoelectrics, which is required to obtain mechanical properties, such as stiffness or
compliance, hence they are seldom reported in experimental studies. However, the
decrease in stiffness of ceramic materials with increasing pore fraction is well known
[8]. A decrease in the coupling coefficient with increasing porosity is therefore likely
according to equation (2), which will be demonstrated using a finite element model
later in this paper. Two questions arise from inspection of these two contrasting fig-
ures of merit with regards to the observed beneficial properties of porous piezoelectric
energy harvesters. Firstly, does the introduction of porosity into dense piezoceramics
reduce their efficiency as transducers of mechanical to electrical energy? Secondly,
is efficiency the most important parameter if maximising the output power for a
given vibrational energy source is the most important criteria? This paper will aim
to explore these questions by analysis of the piezoelectric energy harvesting process
with reference to relevant figures of merit and material properties in Section 2, before
testing out the findings with data obtained from finite element analysis of porous
piezoelectric materials in Section 3, followed by a discussion in Section 4.
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2 Derivation and analysis of figures of merit

The output electrical energy extracted from a piezoelectric energy harvesting material
depends on (i) the amount of mechanical energy applied to and transferred into
the material, (ii) the efficiency of conversion of input mechanical energy to stored
electrical energy and (iii) the efficiency of conversion of stored electrical energy into
usable, or output, electrical energy. In this section, these three stages of piezoelectric
energy harvesting will be analysed step-by-step to understand the origin of both the
coupling factor in equation (2) and energy harvesting figure of merit due to an applied
stress in equation (3), as well as considering the relevant merit indices for harvesting
from an applied strain.

2.1 Input mechanical energy (maximising umech,in)

Firstly, let us consider the application of mechanical energy, in the form of either a
stress or a strain, to a piezoelectric material. If we mechanically excite the material,
some of the input energy will be converted into stored mechanical energy; the amount
of energy transferred from energy source into the harvester depends on the ratio
of the mechanical impedances of each component [2]. For simplicity, we assume a
linear relationship between stress (X) and strain (x), such that the material obeys
Hooke’s law:

umech,in =
1
2
xX. (4)

The stored mechanical energy per unit volume (umech,in) can be calculated for an
applied stress or strain, where stress and strain cases are denoted by superscripts
X and x in the following equations, respectively. If we know the Young’s modulus
(Y = X/x) of the material:

uX
mech,in =

X2

2Y
(5)

ux
mech,in =

x2Y

2
. (6)

For the applied stress case in equation (5), the stored mechanical energy is propor-
tional to the inverse of the stiffness of the material, i.e. umech,in ∝ 1/Y , whereas for
the applied strain case we observe that umech,in ∝ Y . The effect of stiffness on the
stored mechanical energy is shown in Figure 1, where it can be seen that for an
applied stress (Condition 1 in Fig. 1) the stored mechanical energy is higher for the
low stiffness material compared to the higher stiffness material. In the context of
utilising porosity to enhance energy harvesting performance of a piezoceramic, this
constitutes another potential benefit alongside the decrease in effective permittivity,
which is often the primary motivation for selecting a porous piezoceramic [5]. The
same principle applies to piezoelectric polymers, which typically have stiffnesses an
order of magnitude below that of piezoelectric ceramics [9]. The converse is true if we
consider an applied strain, as in Condition 2 in Figure 1, in which the material with
higher stiffness stores more mechanical energy. In this case, a high stiffness material
would also be favourable to achieve a high electromechanical coupling coefficient, k2,
see equation (2), which would be beneficial to efficiently convert the stored mechan-
ical energy to stored electrical energy, thus yielding more usable electrical energy.
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Fig. 1. Stress–strain curves demonstrating the difference in stored mechanical energy in
materials with different stiffnesses for a constant stress (Condition 1) and a constant strain
(Condition 2).

Throughout this paper, much of the discussion is presented in terms of mechanical
compliance, s, which is the inverse of the Young’s modulus, Y , such that s = 1/Y .

It is of benefit to consider applications where a harvester may need to operate
at the two contrasting harvesting conditions of constant stress and constant strain.
These can be related to the two modes of harvesting mechanical energy as discussed
by Bowen et al. [1], namely inertial and kinematic energy harvesting; Crossley and
Kar-Narayan then sub-divided kinematic harvesters into stress- or strain-driven sys-
tems [10]. For inertial harvesting, the active material is bonded to a mass that, when
subject to an acceleration, induces a force (or stress) in the piezoelectric material,
which is then converted into electrical energy; a harvester such as this is analogous to
the applied stress case. In kinematic energy harvesting the active material is directly
coupled to the relative motion of the mechanical energy source and could therefore be
thought of as a strain-driven harvester; for example, harvesting strain energy from
a car tyre. However, if a very high stiffness piezoelectric is bonded to a relatively
compliant structure, such as the rubber of a car tyre, the efficiency of transmission
of strain from the source into the active material would likely be poor. Hence, there
is a requirement for mechanical impedance matching of the energy source and the
piezoelectric element. Therefore, to define any given piezoelectric harvesting system
as either purely stress- or strain-driven is difficult. The first part of our analysis has
demonstrated that understanding the energy source is important before designing or
selecting the appropriate harvesting material. Tuning the mechanical impedance of
the piezoelectric to that of the source enables us to maximise the energy transferred
into the harvesting material, giving us the optimum chance of obtaining a high output
electrical power.

To summarise the discussion in this section, depending on whether we have a
stress- or strain-driven system we can maximise the mechanical energy transferred
into the material by:

(i) Stress-driven: select low stiffness, high compliance material.

(ii) Strain-driven: select high stiffness, low compliance material.
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2.2 Conversion of input mechanical to stored mechanical and electrical energy
(maximising uelec,stored)

The next stage in the analysis is to consider the conversion of input mechanical
energy into stored electrical energy. The input mechanical energy, umech,in is partially
converted to stored electrical energy, uelec,stored, via the piezoelectric effect, with some
remaining as stored mechanical energy, umech,stored, and a small amount dissipated as
heat (dielectric loss, tan δ). The amount of input mechanical energy that is converted
to stored electrical energy per unit volume depends on the electromechanical coupling
coefficient, k2 [2]:

uelec,stored = k2umech,in (7)

with the remaining stored mechanical energy given by:

umech,stored = (1− k2)umech,in. (8)

Clearly the stored electrical energy, uelec,stored, for a given input mechanical energy,
umech,in, can be enhanced by improving the electromechanical coupling coefficient.
However, a low conversion efficiency and low k2 material may be suitable for a stress-
driven harvester if the decrease in stiffness and increase in compliance results in an
increase in umech,in (Eq. (5)), such that it outweighs the accompanied decrease in k2.

Piezoelectric energy harvesting figures of merit, such as equation (3), can be
derived from the stored electrical energy due to mechanical excitation, as it is reason-
able to assume that the output electrical energy is proportional to the stored electrical
energy. At low, off- resonance frequencies (�100 Hz) a piezoelectric material can be
considered as a parallel plate capacitor [4]. The energy stored in a capacitor is:

Uelec,stored =
1
2
CV 2 (9)

where C is the capacitance and V is the piezoelectric voltage developed between
the electrodes. We can relate the capacitance and voltage to the material properties.
Firstly, the capacitance of a material is:

C = ε0ε
X
33

A

t
(10)

where ε0 is the permittivity of free space (ε0 = 8.854 × 10−12 F/m), A is the cross-
sectional area and t is the thickness of the material. The open circuit voltage generated
due to the applied mechanical load depends on the piezoelectric strain coefficient, dij ,
and the constant stress permittivity, εX

ii ; to simplify, we will consider a stress or strain
applied in the 3-direction (i.e. the direction in which the material is poled). For an
applied stress:

Voc =
d33

εX
33

tX3 (11)

and for an applied strain:

Voc =
d33

εX
33

tx3Y. (12)



1542 The European Physical Journal Special Topics

Substituting equations (10)–(12) into equation (9) leads to the stored electrical energy
terms for both the stress and strain conditions1; we have divided by the volume of
the material to calculate the specific energy terms, i.e. uelec,stored = Uelec,stored/At.
For an applied stress:

uelec,stored =
1
2
d2
33

εX
33

X2
3 (13)

and for an applied strain:

uelec,stored =
1
2
d2
33

εX
33

x2
3Y

2. (14)

For all piezoelectric harvesting materials and conditions, the stored electrical energy
due to a mechanical input energy in the 3-direction is therefore proportional to
d2
33/ε

X
33, hence the interest in the constant stress energy harvesting figure of merit

(Eq. (3)). Again, we see that the stiffness of the material has no effect in terms of
the stored electrical energy due to an applied stress (Eq. (13)), whereas the stored
electrical energy due to an applied strain is dependent on the square of the stiffness
(Eq. (14)). This leads to a third figure of merit (written now in the general form
rather than for the longitudinal direction) based on an applied strain as:

FoMx
ij =

d2
ijY

2

εX
ii

. (15)

Rather than using the stiffness term, Rodig et al. defined this strain-driven figure of
merit using both the open and closed circuit compliance, sE

33 and sD
33, respectively [11]:

FoMx
ij =

d2
ij

εX
ii s

E
jjs

D
jj

. (16)

The replacement of the single stiffness term in equation (15) with the open and closed-
circuit compliance terms in equation (16) is more accurate in terms of the maximum
electrical power output, as no power can be derived at either zero or infinite electrical
impedance, i.e. short and open circuit conditions, respectively; in reality the output
power is maximum between these two conditions [3,10,11].

To summarise, the key points from this section are:

(i) To obtain high uelec,stored, high d2
ij/ε

X
ii values are favourable in both stress- and

strain-driven harvesters.

(ii) In strain-driven harvesters, a low compliance is also beneficial to maximise
uelec,stored.

(iii) In stress-driven harvesters, the compliance of the material has no effect on
uelec,stored.

2.3 Output electrical energy (maximising λmax or λmax/k
2)

So far we have considered (i) the effect of stiffness on the conversion of applied
mechanical energy to stored mechanical energy (Sect. 2.1) and (ii) the electrical

1These same equations can be derived by substituting equations (2), (5) and (6) into equation (7).
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energy stored by a piezoelectric due to an applied stress or strain (Sect. 2.2). To
this point no electrical power has been extracted from the piezoelectric material. The
final part of the harvesting process is the conversion of stored electrical to output elec-
trical energy. The output electrical energy depends on the impedance of the external
harvesting circuit, such that the electrical impedance of the material and the system
should be matched to obtain maximum output power. The maximum output energy
of a harvester due to a given stored mechanical energy depends on the transmission
coefficient, λmax [2,3], the full derivation of which can be found in [12]:

λmax = max
(

output electrical energy
input mechanical energy

)
= max

(
uelec,out

umech,in

)
(17)

where

λmax =
(

1
k
−
√

1
k2
− 1
)2

. (18)

The transmission coefficient enables the prediction of the maximum output electrical
energy due to the input mechanical energy by rearranging equation (17):

uelec,out,max = λmaxumech,in. (19)

Substituting in equation (7) shows that the output electrical energy is proportional
to the stored electrical energy (i.e. the energy harvesting figures of merit in Eq. (3)
(applied stress) and (16) (applied strain)):

uelec,out,max =
λmax

k2
uelec,stored. (20)

The maximum output electrical energy, uelec,out,max, is shown in equation (20) to
vary with the product of λmax/k

2 and uelec,stored. The effect of k2 on λmax (blue
line) and λmax/k

2 (dashed green line) is shown in Figure 2. The relationship between
between k2 and λmax/k

2 varies linearly between λmax/k
2 = 0.25, when k2 = 0, and

λmax/k
2 = 0.343, when k2 = 0.5. Therefore, even for small k2 values, increases in the

output electrical energy will always be achieved if FoMX
ij or FoMx

ij can be improved
by at least 1.37 times (i.e. 0.343/0.25), e.g. from the introduction of porosity, which
may reduce k2 due to an increase in compliance (Eq. (2)), but increase FoMX

ij due
to a decrease in permittivity (Eq. (3)). Due to the dependence of the strain-driven
figure of merit on the square of the stiffness of the material (Eq. (15)), porosity will
not be an effective method to enhance FoMx

ij .
In this section, we have discussed what we consider to be the three main stages of

piezoelectric energy harvesting: (i) transfer of mechanical energy into the piezoelec-
tric material; (ii) conversion of stored mechanical energy into stored electrical energy
due to the piezoelectric effect; and (iii) converting the stored electrical energy into
useable electrical energy, i.e. the output electrical power. As discussed in Section 1,
porosity has been shown previously to be a useful tool for tuning the properties of
piezoelectric ceramics to enhance the energy harvesting capabilities [5,6]. The follow-
ing section draws on the analysis to this point in the context of porous piezoelectrics
for energy harvesting to understand how the relevant properties (piezoelectric coef-
ficient, permittivity and compliance) vary due to the introduction of porosity, and
depending on the mode of harvesting, i.e. whether it is stress- or strain-driven.
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Fig. 2. Effect of k2 on the transmission coefficient, λmax, and λmax/k
2 (both on y-axis).

To summarise, the key finding from this section is:

(i) A high k2 is necessary for a high transmission coefficient, λmax, and λmax/k
2,

however, when k2 < 0.5, the main priority should be maximising uelec,stored

since λmax/k
2 does not vary significantly in this range.

3 Finite element model

Finite element modelling has been used to provide a dataset to demonstrate the theory
discussed in Section 2. The model presented is a porous poling model, used previously
to explain the behaviour of porous lead zirconate titanate (PZT) materials with
equiaxed pores [13], porous sandwich layer barium titanate [14] and porous barium
titanate with aligned, anisotropic pores formed via the freeze casting method [6]. This
model takes into account the complex electric field distribution during poling, which is
the process required to align ferroelectric domains to yield a spontaneous polarisation.
The spontaneous polarisation results in piezoelectric behaviour; when a mechanical
stress or strain is applied to the material it results in a change in the net polarisation.
This induces a piezoelectric voltage that can then be used to drive the flow of charge
in an external circuit, thus enabling these materials to directly convert mechanical
energy into electrical energy. From this model we can obtain material properties
as a function of porosity, such as piezoelectric strain coefficients, dij , permittivity,
εX

ii , mechanical compliances under both open and short circuit conditions, sE
jj and

sD
jj , respectively, and open circuit voltages due to applied stress and strain conditions.

These effective properties have then been used to calculate electromechanical coupling
coefficients, k33 and k2

33 (Eq. (2)), the energy harvesting figures of merit, FoMX
ij and

FoMx
ij for constant stress and strain conditions (Eqs. (3) and (16)), respectively,

and the transmission coefficient, λmax (Eq. (19)). The stored mechanical and output
electrical energy have been calculated using equations (5) and (6), and equation (19),
respectively. Porous barium titanate with equiaxed, randomly distributed porosity
will be the focus of this study, but the effect of porosity on both barium titanate and
other ferroelectric ceramics, such as PZT, is comparable. Ansys APDL modelling
software was used to conduct this study.
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3.1 Modelling methodology

To define a geometry with randomly distributed equiaxed porosity, a 5 × 5 × 5 mm
cube was meshed into 303 equiaxed elements. Elements were then randomly assigned
the properties of either unpoled barium titanate [15] or air (relative permittivity,
εr = 1, zero stiffness) based on the desired pore fraction. A further step was taken to
remove floating ceramic elements, i.e. those completely surrounded by air. The volt-
age degrees of freedom of the nodes at the surfaces of the block at z = 0 and z = lz
were coupled to simulate electrodes. A poling field was then applied parallel to the
z-axis (calibrated by fitting to experimental data from [16] as detailed in [13,14]) to
the model and the local electric field in each element analysed. This model has been
validated against experimental data previously and shown to give a good represen-
tation of the behaviour of porous piezoceramics with equiaxed pores [13,14]. Where
the local field in the z-direction in an element was greater than the coercive field of
barium titanate (Ec = 0.5 kV/mm [15]) the properties of the element were changed
from unpoled to poled barium titanate, with the primary polarisation direction par-
allel to the z-axis. After the distribution of poled material had been determined, an
electric field was applied to the electrodes and the piezoelectric coefficients, d33 and
d31, were calculated from the induced strain. The effective permittivity, εX

33, was cal-
culated from the sum of the stored electrical energy using equations (9) and (10).
Constant field compliance (short circuit conditions), sE

33, was measured by applying
a stress parallel to the z-direction and grounding the electrodes, i.e. defining the volt-
age at each electrode as zero, and using the strain to calculate the property using
the relationship s = x/X. Similarly, sE

11 was calculated from the strain in x when
a force was applied parallel to the x-axis, i.e. the 1-direction. The constant dielec-
tric displacement (open circuit) compliance, sD

jj , was measured in the same way as
the short circuit compliance but with only one electrode grounded to V = 0 V and
the other electrode free to vary in response to the piezoelectric effect. As the model
geometries were generated randomly for each pore fraction, there was a slight spread
in data depending on the distribution of porosity. The model was therefore run five
times for each pore fraction.

3.2 Finite element model results

The effect of porosity on the effective piezoelectric strain coefficients, d33 and d31, is
shown in Figure 3a, and the effect of porosity on the compliance is shown in Figure 3b.
Introducing porosity into a ferroelectric ceramic leads to inhomogeneous poling field
distributions that result in ferroelectric regions in the vicinity of pores remaining
unpoled [6,13,14], i.e. the net spontaneous polarisation after poling remains zero.
These unpoled regions do not contribute to the piezoelectric response of the mate-
rial, hence we see a decrease in the effective longitudinal and transverse piezoelectric
coefficients with increasing pore fraction. The decrease in piezoelectric coefficients is
detrimental to the harvesting properties (Eqs. (3) and (16)), however, this effect is
offset by the larger decrease in the effective permittivity of the ferroelectric ceramic
with increasing pore fraction, shown in Figure 3c. This leads to an increase in the
longitudinal energy harvesting figure of merit due to an applied stress, FoMX

33, see
Figure 4a, as the permittivity falls at a faster rate than the longitudinal strain coef-
ficient, which is the dominant factor in this case, see equation (3). However, the
figure of merit FoMX

31 decreases with porosity due to significant decreases in d31, see
Figure 4a.

As discussed in Section 2, the stress-driven figure of merit is not dependent on
the compliance of the material (Eq. (2)), however, for a strain-driven harvester, the
figure of merit is inversely proportional to the product of the open and short circuit
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Fig. 3. Effect of pore fraction on (a) longitudinal (d33) and transverse (d31) piezoelectric
strain coefficients, (b) constant field (sE

33) and constant dielectric displacement (sD
33) com-

pliance and (c) relative permittivity (εr = εX
33/ε0, where ε0 is the permittivity of free space

(8.854× 10−12 F/m)).

compliance (Eq. (16)), in addition to being proportional to d2
ij/ε

X
ii . The longitudi-

nal constant strain figure of merit, FoMx
33, for porous barium titanate is shown in

Figure 4b and decreases to close to zero for fp = 0.6 due to the significant increase
in the compliance with increasing pore fraction, shown in Figure 3b. The transverse
constant strain figure of merit, FoMx

31, also decreases with increasing pore fraction,
reducing to almost zero at fp = 0.4, see Figure 4b. The longitudinal electromechanical
coupling coefficient also decreases as a function of porosity, shown for both k33 and
k2
33 in Figure 4c. Compliance increases at a similar rate to that which permittivity

decreases, effectively cancelling these terms out, so that the associated drop in d33

with porosity results in the reduction in k2
33. The transmission coefficient, λmax, and

λmax/k
2 are plotted as a function of porosity in Figure 4d; these two pre-factors are

proportional to the maximum output electrical energy, see equations (19) and (20).
The introduction of porosity significantly reduces λmax, which is related to a decrease
in piezoelectric coefficients and increase in compliance, however, λmax/k

2 does not
change significantly with increasing pore fraction, as predicted in Figure 2.

We can now use the data from the model to evaluate the discussion from Section 2.
Firstly, using equations (4)–(6), the stored mechanical energy due to an applied stress
and strain was calculated and is plotted as a function of porosity in Figures 5a and 5b,
respectively. As predicted by equation (4), the stored mechanical energy increases
with porosity in the applied stress case as the material becomes more compliant;
the converse is true for the applied strain case where the dense and low compliance
barium titanate stores the most mechanical energy. For the applied stress case, the
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Fig. 4. Effect of pore fraction on the energy harvesting figures of merit for (a) constant
stress (FoMX

ij ) and (b) constant strain, (FoMx
ij); (c) longitudinal electromechanical coupling

coefficient, k33 and k2
33, and (d) the transmission coefficient, λmax, and λmax/k

2, which are
the respective pre-factors in equations (19) and (20).

barium titanate with the highest pore fraction examined of fp = 0.6 stores approx-
imately six times more energy than the dense material; for the applied strain case,
the stored energy decreases by six-fold for the material with fp = 0.6 compared to
the dense material. The maximum output energy was calculated using equation (19),
with the results shown in Figures 5c and 5d for applied stress and applied strain
cases, respectively. Unsurprisingly, the output energy due to an applied stress or an
applied strain follow similar trends to that of the respective stress and strain-driven
figures of merit shown in Figures 4a and 4b. This is predicted by equation (20) that
tells us that uelec,out,max is proportional to both FoMX

33 and FoMx
33. The maximum

output energy predicted by the model for harvesting energy from a mechanical stress
occurs at fp = 0.6, which yields a 30% increase in output electrical energy compared
to the dense barium titanate at fp = 0, see Figure 5c.

The output open circuit voltages for the stress and strain cases were obtained
from the model and shown in Figures 6a and 6b, respectively. Once more we see that
for the given stress condition, the output voltage increases with increasing porosity
as the voltage is related to the piezoelectric voltage coefficient, gij = dij/ε

X
33. The

longitudinal voltage coefficient, g33, increases with porosity as the permittivity, εX
33,

reduces at a faster rate than the piezoelectric coefficient, d33. The voltage due to
a given strain decreases with porosity, however, as with all the strain cases in this
section, the required input stress (or force) is significantly higher to achieve the
same strain in both a low compliance dense material and a highly compliant porous
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Fig. 5. Stored mechanical energy due to (a) an applied stress (uX
mech,stored) and (b) an

applied strain (ux
mech,stored), and maximum output energy for (c) applied stress (uX

elec,out,max)
and (d) strain (ux

elec,out,max), calculated from equation (19); 1 picostrain was used as applying
1 Pa to the dense material results in a strain on this order of magnitude. All data in these
plots results from a force/strain applied longitudinally.

Fig. 6. Open circuit voltage response due to (a) an applied stress (1 Pa) and (b) and applied
strain (1 nanostrain); the strain value was selected to give a similar voltage-axis scale.

material, which outweighs the fact the g33 is lower for the dense barium titanate
compared to the porous material.
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Fig. 7. Schematic showing piezoelectric material design considerations at each stage of
vibrational energy harvesting process. Green boxes represent usable energy, orange boxes
represent energy in the system that is not converted to usable electrical energy (although may
be available for further harvesting cycles) and red boxes represent lost, i.e. non-recoverable
energy.

4 Discussion

We have demonstrated through analysis of the various figures of merit (e.g. Eqs. (2),
(3), (16) and (20)) for piezoelectric energy harvesting materials in Section 2 and a case
study of the properties of porous piezoelectric ceramics in Section 3, the complexities
around designing/selecting piezoelectric materials for energy harvesting applications.
A summary of the energy harvesting process with reference to key material properties
and equations derived in Section 2 is shown in Figure 7. The first stage considered in
Figure 7 is the mechanical energy source, with only some of the energy transferred
effectively into the material; the remaining energy is reflected, which depends on the
mechanical impedance matching between the source and the material [2]. Next, a
small amount of the mechanical energy is dissipated as heat due to extrinsic effects
such as ferroelectric domain motion [17], i.e. dielectric loss, commonly given by the
loss tangent, tan δ. The remaining stored mechanical energy is partially converted
to stored electrical energy, with the unconverted mechanical energy available for
subsequent cycles [3]. Of the stored electrical energy, which is proportional to the
energy harvesting figures of merit discussed in Section 2 (Eqs. (3) and (16)), only
some is converted to output electrical power.

Considering the complete piezoelectric energy harvesting process shown in
Figure 7 and discussed in this paper, we can define two new figures of merit by
substituting in the figures of merit derived from the electrical energy stored for both
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Fig. 8. The maximum output electrical energy for (a) stress- and (b) strain-driven porous
barium titanate from Figure 7 plotted as a function of the newly derived figures of merit
in longitudinal mode, FX

33 (Eqs. (21) and (23)) and F x
33 (Eqs. (22) and (24)), for stress and

strain cases, respectively.

an applied stress (Eq. (3)) and strain (Eq. (16)) into equation (20) in Section 2.2.
First, for an applied stress:

FX
ij =

λmax

k2
ij

d2
ij

εX
ii

(21)

and for an applied strain:

F x
ij =

λmax

k2
ij

d2
ij

εX
ii s

E
jjs

D
jj

. (22)

These can be written in terms of the electromechanical coupling coefficient, k2
ij ; for

an applied stress:

FX
ij =

(
1−

√
1− k2

ij

)2
sE

jj

k2
ij

(23)

and the strain case is:

F x
ij =

(
1−

√
1− k2

ij

)2
k2

ijs
D
jj

. (24)

To demonstrate effectiveness of these new figures of merit we have plotted them
against the modelled uelec,out,max from Section 3.2 in Figures 8a and 8b for the stress
and strain cases, respectively. We observe a linear fit between the longitudinal figures
of merit, FX

33 and F x
33 and output energy, uelec,out,max in both cases, which demon-

strates that the merit indices are successful in predicting the output electrical energy.
One advantage of FX

ij and F x
ij is that they not only consider the stored electrical

energy, such as in FoMX
ij and FoMx

ij , but rather they consider the complete harvest-
ing cycle shown in Figure 7. These new figures of merit also clearly show the relevance
of compliance to both the stress- and strain-driven cases. It is worth noting that the
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figures of merit for stored electrical energy in equations (3) and (16) are still relatively
accurate in predicting the output power, and offer an easy ranking system as they do
not require knowledge of a material’s mechanical properties.

Depending on the type of energy harvesting system and characteristics of the
input mechanical energy source, the mechanical properties of the piezoelectric can
play an important role in maximising the harvesting capabilities of the material.
For example, the input mechanical energy can be maximised by using either a more
compliant material for a constant stress case, or by using a stiffer material for a
constant strain case. A high electromechanical coupling coefficient is favourable in
terms of yielding improved conversion of input mechanical energy to stored electrical
energy and is therefore often discussed in terms of the efficiency with which a material
can convert mechanical to electrical energy. In the stress-driven harvesting case, a
lower electromechanical coupling coefficient due to a high compliance is outweighed
by the fact mechanical energy is more effectively delivered into the material. Such
a material may be considered to be ‘less efficient’ at converting mechanical into
electrical energy (lower k2

ij), despite delivering more output power for a given input
mechanical stress. Nevertheless, for energy harvesting applications, such as for low
power electronics, materials should be designed to yield maximum output power. As
can be seen from the figures of merit discussed in this paper, e.g. equations (3), (16),
(21) and (22), a high d2

ij/ε
X
33 is required regardless of whether the system is stress-

or strain-driven.
With regards to the use of porous piezoelectrics for vibrational harvesting appli-

cations, we have shown that when the source is in the form of an applied stress,
the increased compliance due to the introduction of pores that have effectively zero
stiffness is not significantly detrimental to the overall performance, despite the accom-
panied reduction in k2

ij and λmax. In fact, when we consider that for optimum
performance it is critical to match the mechanical impedances of the active material
to the source energy, porosity provides an additional tool to engineer the properties
of piezoelectric ceramics depending on the exact characteristics of the mechanical
source energy (as well enabling independent tuning of piezoelectric coefficients and
permittivity that has already been discussed in detail elsewhere [5,6]). Similarly, the
electrical impedances of the piezoelectric and the harvesting circuit should also be
matched, with porosity again providing a potential method to achieve this. Porous
piezoceramic structures can also be infiltrated with polymers as a method to mitigate
some of the detrimental effects of porosity on mechanical strength, for example. The
introduction of porosity to match impedances between source and material has been
of interest for many years for use of piezoelectric materials in low frequency SONAR
devices [18–20] but has rarely been discussed for piezoelectric energy harvesting
materials.

For harvesters subjected to very high stresses, the detrimental effect of porosity
on the mechanical strength requires careful consideration [21], as do stress concen-
trations caused by the high pore fractions that may lead to depolarisation of the
ferroelectric material, reducing the piezoelectric properties [22]. However, the largest
mechanical stresses are likely to be present in strain-driven harvesters of high stiff-
ness materials. For strain-driven harvesting, high stiffness materials are beneficial
to maximise the input mechanical energy (Eq. (6)), electromechanical coupling and
transmission coefficients (Eqs. (2) and (18), respectively) and the strain-driven fig-
ure of merit (Eq. (16)). The need for impedance matching is still critical as if, for
arguments sake, we were to consider an infinitely stiff material, the harvesting-mode
could no longer be considered as strain-driven as it would be impossible to transfer
the strain into the material; for this to be case, the source must be significantly more
stiff than the piezoelectric harvesting material.
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4.1 Future directions in energy harvester design

In this paper, we have provided an overview of the considerations that should be
taken into account when designing or selecting a piezoelectric material for energy
harvesting applications. Although written from the point of view of the materials
engineer, to design an effective harvester it is evident the whole system needs to be
considered. This means that a detailed understanding of the mechanical energy source
and the application is as important as the ability to tune the properties of the active
material. The individual fields of research on mechanical energy harvesting systems,
piezoelectric energy harvesting materials (both in terms of specific material systems
and composite/material structures), and harvesting electronics are sufficiently mature
to see them start to be commercialised. The drive now should be to combine the best
characteristics of the materials, harvester and electronics, with consideration of the
other components and the complete system, to improve energy harvesting devices
compared to the current state of the art.

We have shown that porosity can be an effective way of improving harvest-
ing figures of merit in certain cases, namely in stress-driven systems. In reality,
polymer second phases are likely to be necessary to provide the composite with
sufficient mechanical toughness to survive the operating conditions, which can be rel-
atively harsh in terms of stresses, strains and the lifetime of any material or device.
Using polymeric matrices with piezoactive ceramics as the second phase may also
be effective for stress-driven harvesters [3], overcoming the inherent brittleness of
ceramic materials. However, whilst the effective permittivity remains inherently low
for polymer-based composites, the piezoelectric strain coefficients are significantly
lower than porous ceramic systems, which can adversely affect output electrical
power.

The porous barium titanate microstructures modelled in Section 3 have equiaxed
pores, such as those formed by methods such as the BURPS process. As often reported
for porous ferroelectrics, an issue with these materials for use as energy harvesters
are the poor transverse properties caused by significant reductions in the transverse
piezoelectric strain coefficients, d31. Perhaps the most common operation mode for
piezoelectric energy harvesters is in bending, due to higher strain profiles, so this is
a significant drawback for using porous or composite materials. However, commer-
cially available macro-fibre composites (MFCs) with PZT-5A fibres have d31 values
close to that of the dense PZT (d31 = –210 pC/N for a P1-type MFC from Smart
Material, USA) by virtue of the fibres being aligned in the 1-direction; as there is
no connectivity in the 2-direction, it is likely the d32 coefficient is close to zero. Pro-
cessing techniques for fabricating porous ceramics have advanced significantly in the
past decade or so and therefore much more complex structures can be achieved with
excellent control of microstructures possible, including long-range alignment of both
ceramic and porous phases. Advanced processing methods of interest include freeze
casting [6,23], self-organisational methods, such as gel casting [24] and ionotropic gela-
tion [25,26], and additive manufacturing, i.e. printing technologies [27]. Using these
methods to produce ‘pseudo-fibre composites’ may prove advantageous for reducing
the cost of commercially available MFCs by being able to produce them on a larger
scale with excellent control over volume fractions of each phase, thus giving control
over longitudinal and transverse piezoelectric coefficients (i.e. keeping them as high as
possible), dielectric properties, and mechanical properties, for example. An additional
step of sectioning the sintered bodies would likely be required in this case, although
freeze casting offers the potential for producing near-net shape materials. This is an
area of research that has yet to be explored in depth.
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5 Conclusions

A detailed overview of the complete piezoelectric energy harvesting process has been
described to aid with effective materials selection and design. Whether the stiffness
of the material has an effect on its harvesting ability depends on if a harvester is
stress- or strain-driven. In a stress-driven system, selecting a low stiffness material,
for example a porous piezoceramic, allows more efficient transfer of mechanical energy
into the material, which can outweigh the decrease in electromechanical coupling and
transmission coefficients. Electrical impedance matching between the piezoelectric
material and the harvesting cicuit is also important to maximise the harvested energy.

In all cases the electrical output energy should be the key design consideration,
regardless of whether that reduces the efficiency at which the piezoelectric material
converts mechanical to electrical energy, i.e. the k2

ij of a piezoelectric. We have derived
two new figures of merit, FX

ij and F x
ij , for stress- and strain-driven piezoelectric har-

vesting materials, respectively. These merit indices take into account each step of the
harvesting process and assess the material properties required to obtain a high out-
put electrical energy, rather than stored electrical energy from which previous figures
of merit have been derived (FoMX

ij and FoMx
ij for stress and strain, respectively).

In both stress- and strain-driven systems, a high d2
ij/ε

X
ii is required to achieve high

output electrical power. For stress-driven systems, materials with high piezoelectric
strain coefficients, dij , and low permittivity, εX

ii are favourable, and increased compli-
ance may be an additional benefit, making polymer, composite or porous piezoelectric
materials promising. In strain-driven systems, the low permittivity of porous piezo-
ceramics is outweighed by their increased compliance, which results in a decrease
in both F x

ij and FoMx
ij figures of merit. In these cases a high dij coefficient and low

compliance should be the main criteria used to select a material, however, mechanical
impedance matching must be carefully considered.
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