Skip to main content
Log in

Space-time resolution of size-dispersed suspensions in Deterministic Lateral Displacement microfluidic devices

Running Deterministic Lateral Displacement under transient conditions to improve separation resolution: a proof of concept

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Deterministic Lateral Displacement (DLD) is a relatively recent microfluidics-assisted technique which allows the size-based separation of a population of micrometric particles suspended in a buffer solution. The core of the device is a shallow channel with rectangular cross-section filled with an array of solid obstacles arranged in a spatially periodic lattice, whose directions are slanted with respect to the channel walls. In practical implementations of DLD, particles are continuously introduced at a localized position of the channel entrance and migrate along different average directions downstream the device according to their size. Thus, at steady state, size-sorted subpopulations can be collected at different positions of the channel outlet. Besides, theoretical predictions of recent models of particle transport in these devices suggest that not only the direction of the average particle velocity, but also its magnitude (i.e. the mobility) depends sensitively on particle size. By exploiting this dependence, a novel use of DLD devices is here proposed, where the size-driven separation is realized over time and space by running the process under transient conditions, thus mimicking a classical chromatographic separation. We show how this approach is particularly effective for particles of specific (critical) dimensions, which are known to impair the efficiency of the steady-state separation process. Numerical predictions based on a hard-wall repulsive potential for the particle-obstacle interaction suggest that unprecedented separation performance for near-critical particle size could be obtained in transient conditions within the same channel length used for the time-continuous separation. The case of cylindrical obstacles and spherically shaped particles is considered in detail as an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.B. Kerby, R.S. Legge, A. Tripathi, Anal. Chem. 78, 8273 (2006)

    Article  Google Scholar 

  2. J.P. McMullen, K.F. Jensen, Org. Proc. Res. Dev. 15, 398 (2011)

    Article  Google Scholar 

  3. F. Raynal, A. Beuf, F. Plaza, J. Scott, P. Carrière, M. Cabrera, J.P. Cloarec, É. Souteyrand, Phys. Fluids 19, 017112 (2007)

    Article  ADS  Google Scholar 

  4. C.X. Zhao, L. He, S.Z. Qiao, A.P. Middelberg, Chem. Eng. Sci. 66, 1463 (2011)

    Article  Google Scholar 

  5. A. Borgia, B.G. Wensley, A. Soranno, D. Nettels, M.B. Borgia, A. Hoffmann, S.H. Pfeil, E.A. Lipman, J. Clarke, B. Schuler, Nat. Commun. 3, 1195 (2012)

    Article  ADS  Google Scholar 

  6. R. Russell, I.S. Millett, M.W. Tate, L.W. Kwok, B. Nakatani, S.M. Gruner, S.G. Mochrie, V. Pande, S. Doniach, D. Herschlag et al., Proc. Natl. Acad. Sci. 99, 4266 (2002)

    Article  ADS  Google Scholar 

  7. M. Giona, A. Adrover, S. Cerbelli, F. Garofalo, Phys. Fluids 21, 123601 (2009)

    Article  ADS  Google Scholar 

  8. A. Adrover, S. Cerbelli, F. Garofalo, M. Giona, Anal. Chem. 81, 8009 (2009)

    Article  Google Scholar 

  9. F. Yuan, K.M. Isaac, Sens. Actuat. B 238, 226 (2017)

    Article  Google Scholar 

  10. F. Garofalo, A. Adrover, S. Cerbelli, M. Giona, AIChE J. 56, 318 (2010)

    Google Scholar 

  11. K. Ward, Z.H. Fan, J. Micromech. Microeng. 25, 094001 (2015)

    Article  ADS  Google Scholar 

  12. S. Cerbelli, A. Adrover, F. Garofalo, M. Giona, Microfluid. Nanofluid. 6, 747 (2009)

    Article  Google Scholar 

  13. T. Sun, R. Chance, W. Graessley, D. Lohse, Macromolecules 37, 4304 (2004)

    Article  ADS  Google Scholar 

  14. D.W. Inglis, N. Herman, G. Vesey, Biomicrofluidics 4, 9 (2010)

    Google Scholar 

  15. N. Li, D. Kamei, C.M. Ho, in Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007 (2007), p. 932

  16. S. Holm, J. Beech, M. Barrett, J. Tegenfeldt, Lab Chip 11, 1326 (2011)

    Article  Google Scholar 

  17. J. Green, M. Radisic, S. Murthy, Anal. Chem. 81, 9178 (2009)

    Article  Google Scholar 

  18. B.H. Wunsch, J.T. Smith, S.M. Gifford, C. Wang, M. Brink, R.L. Bruce, R.H. Austin, G. Stolovitzky, Y. Astier, Nat. Nanotechnol. 11, 936 (2016)

    Article  ADS  Google Scholar 

  19. L. Huang, E. Cox, R. Austin, J. Sturm, Science 304, 987 (2004)

    Article  ADS  Google Scholar 

  20. D. Inglis, J. Davis, R. Austin, J. Sturm, Lab Chip 6, 655 (2006)

    Article  Google Scholar 

  21. H. Brenner, D. Edwards, Macrotransport Processes (Butterworth-Heinemann Series in Chemical Engineering, 1993)

  22. S. Cerbelli, Asia-Pacific J. Chem. Eng. 7, S356 (2012)

    Article  Google Scholar 

  23. S. Cerbelli, M. Giona, F. Garofalo, Microfluid. Nanofluid. 15, 431 (2013)

    Article  Google Scholar 

  24. S. Cerbelli, F. Garofalo, M. Giona, Microfluid. Nanofluid. 19, 1035 (2015)

    Article  Google Scholar 

  25. R. Devendra, G. Drazer, Anal. Chem. 84, 10621 (2012)

    Article  Google Scholar 

  26. K. Loutherback, K. Chou, J. Newman, J. Puchalla, R. Austin, J. Sturm, Microfluid Nanofluid. 9, 1143 (2010)

    Article  Google Scholar 

  27. A. Grimm, O. Gräser, Europhys. Lett. 92, 24001 (2010)

    Article  ADS  Google Scholar 

  28. G. Davino, Rheolog. Acta 52, 221 (2013)

    Article  Google Scholar 

  29. M. Maxey, J. Riley, Phys. Fluids 26, 883 (1983)

    Article  ADS  Google Scholar 

  30. J. Frechette, G. Drazer, J. Fluid Mech. 627, 379 (2009)

    Article  ADS  Google Scholar 

  31. J. McGrath, M. Jimenez, H. Bridle, Lab Chip 14, 4139 (2014)

    Article  Google Scholar 

  32. R. Zwanzig, Nonequilibrium statistical physics (Oxford University Press, Oxford, 2001)

  33. M. Giona, Physica A 473, 561 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Giona, F. Garofalo, Phys. Rev. E 92, 032104 (2015)

    Article  ADS  Google Scholar 

  35. S. Cerbelli, Phys. Rev. E 87, 060102 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Cerbelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murmura, M.A., Adrover, A. & Cerbelli, S. Space-time resolution of size-dispersed suspensions in Deterministic Lateral Displacement microfluidic devices. Eur. Phys. J. Spec. Top. 228, 5–23 (2019). https://doi.org/10.1140/epjst/e2019-800142-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800142-1

Navigation