Skip to main content
Log in

Is there always a conservation law behind the emergence of fractal and multifractal?

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

One of the most basic ingredients of fractal or multifractal is its scale-invariance or self-similar property albeit they appear seemingly disordered or apparently bewildering. In this article, we give several examples of deterministic, random and stochastic fractals as well as multifractals to show that there is always at least one conservation law behind all these systems. On the other hand, it is well-known and it has been shown here too that fractals and multifractals are self-similar which is also some form of symmetry that sends the object to itself. This is reminiscent to Noether’s first theorem that states that for every continuous symmetry of an action, there exists a conserved quantity. Finding the connection between conserved quantity in fractal and multifractal with scale-invariance of self-similarity can actually be coined as an equivalent counterpart of the Noether’s first theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Mandelbrot, Fractals: Form, Chance, and Dimension (Freeman, San Francisco, 1977)

  2. B.B. Mandelbrot, J. Bus. 36, 392 (1963)

    Article  Google Scholar 

  3. B.B. Mandelbrot, J.R. Wallis, Water Resour. Res. 5, 321 (1969)

    Article  ADS  Google Scholar 

  4. B.B. Mandelbrot, Science 156, 636 (1967)

    Article  ADS  Google Scholar 

  5. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982)

  6. B.B. Mandelbrot, Fractals and Chaos: The Mandelbrot Set and Beyond (Springer, New York, 2004)

  7. E.E. Peters, Fractal Market Analysis: Applying Chaos Theory to Investment and Economics (John Wiley & Sons, New York, 1994)

  8. G. Korvin, Fractal Models in the Earth Sciences (Elsevier, Amsterdam, 1992)

  9. T. Vicsek, Fractal Growth Phenomena, 2nd edn. (World Scientific, Singapore, 1992)

  10. J. Feder, Fractals (Plenum Press, New York, 1988)

  11. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (John Wiley &Sons, Chichester, 2003)

  12. M.E.J. Newman, Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  13. G. Cantor, Math. Ann. 21, 545 (1881)

    Article  Google Scholar 

  14. W. Sierpiński, C.R. Acad. Sci. Paris 162, 629 (1916)

    Google Scholar 

  15. H.T. Hattori, V.M. Schneider, O. Lisboa, J. Opt. Soc. Am. A 17, 1583 (2000)

    Article  ADS  Google Scholar 

  16. A.K. Golmankhaneh, D. Baleanu, J. Mod. Opt. 63, 1364 (2016)

    Article  ADS  Google Scholar 

  17. P.L. Krapivsky, S. Redner, Am. J. Phys. 72, 591 (2004)

    Article  ADS  Google Scholar 

  18. J. Ajuirre, R.L. Viana, M.A.F. Sanján, Rev. Mod. Phys. 81, 333 (2009)

    Article  ADS  Google Scholar 

  19. M.K. Hassan, J. Kurths, Physica A 315, 342 (2002)

    Article  ADS  Google Scholar 

  20. M.K. Hassan, J. Kurths, Phys. Rev. E 64, 016119 (2001)

    Article  ADS  Google Scholar 

  21. M.K. Hassan, M.Z. Hassan, Phys. Rev. E 79, 021406 (2009)

    Article  ADS  Google Scholar 

  22. P.L. Krapivsky, E. Ben-Naim, Phys. Lett. A 196, 168 (1994)

    Article  ADS  Google Scholar 

  23. M.K. Hassan, G.J. Rodgers, Phys. Lett. A 208, 95 (1995)

    Article  ADS  Google Scholar 

  24. M.K. Hassan, G.J. Rodgers, Phys. Lett. A 218, 207 (1996)

    Article  ADS  Google Scholar 

  25. S. Sears, M. Soljacic, M. Segev, D. Krylov, K. Bergman, Phys. Rev. Lett. 84, 1902 (2000)

    Article  ADS  Google Scholar 

  26. N. Hatano, J. Phys. Soc. Jpn. 74, 3093 (2005)

    Article  ADS  Google Scholar 

  27. P.L. Krapivsky, S. Redner, Am. J. Phys. 72, 591 (2004)

    Article  ADS  Google Scholar 

  28. K. Esaki, M. Sato, M. Kohmoto, Phys. Rev. E 79, 056226 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. D.S. Mahecha, Int. J. Astrobiol. 15, 319 (2016)

    Article  Google Scholar 

  30. M.K. Hassan, N.I. Pavel, R.K. Pandit, J. Kurths, Chaos Solitons Fractals 60, 31 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  31. S.K. Friedlander, Smoke, Dust and Haze (John Wiley & Sons, New York, 1977)

  32. M. Thorn, M. Seesselberg, Phys. Rev. Lett. 72, 3622 (1994)

    Article  ADS  Google Scholar 

  33. M.L. Broide, R.J. Cohen, Phys. Rev. Lett. 64, 2026 (1990)

    Article  ADS  Google Scholar 

  34. S. Melle, M.A. Rubio, G.G. Fuller, Phys. Rev. Lett. 87, 115501 (2001)

    Article  ADS  Google Scholar 

  35. E. Ben-Naim, P.L. Krapivsky, J. Phys.: Condens. Matter 17, S4249 (2005)

    ADS  Google Scholar 

  36. D. Johnstone, G. Benedek, in Kinetics of Aggregation and Gelation, edited by F. Family, D.P. Landau (North-, Amsterdam, 1984)

  37. J. Silk, S.D. White, Astrophys. J. 223, L59 (1978)

    Article  ADS  Google Scholar 

  38. M. von Smoluchowski, Z. Phys. Chem. 92, 215 (1917)

    Google Scholar 

  39. P.L. Krapivsky, E. Ben-Naim, J. Phys. A: Math. Gen. 33, 5465 (2000)

    Article  ADS  Google Scholar 

  40. E. Ben-Naim, P.L. Krapivsky, J. Phys. A: Math. Gen. 33, 5477 (2000)

    Article  ADS  Google Scholar 

  41. J. Ke, Y. Zheng, Z. Lin, X. Chen, Phys. Lett. A 368, 188 (2007)

    Article  ADS  Google Scholar 

  42. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987)

  43. M.K. Hassan, M.Z. Hassan, N. Islam, Phys. Rev. E 88, 042137 (2013)

    Article  ADS  Google Scholar 

  44. M.K. Hassan, M.Z. Hassan, Phys. Rev. E 77, 061404 (2008)

    Article  ADS  Google Scholar 

  45. M.K. Hassan, M.Z. Hassan, Phys. Rev. E 79, 021406 (2009)

    Article  ADS  Google Scholar 

  46. S. Kwon, Y. Kim, Phys. Rev. E 83, 031132 (2011)

    Article  ADS  Google Scholar 

  47. P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 50, 3502 (1994)

    Article  ADS  Google Scholar 

  48. F.R. Dayeen, M.K. Hassan, Chaos Solitons Fractals 91, 228 (2016)

    Article  ADS  Google Scholar 

  49. D. Boyer, G. Tarjus, P. Viot, Phys. Rev. E 51, 1043 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamrul Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.K. Is there always a conservation law behind the emergence of fractal and multifractal?. Eur. Phys. J. Spec. Top. 228, 209–232 (2019). https://doi.org/10.1140/epjst/e2019-800110-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800110-x

Navigation