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Abstract. We analyse dynamics of genuinely multi-partite entangle-
ment of N-qubit states initially prepared in the form of so called
X-matrices with one qubit coupled to a Davies-type environment. We
develop an analytic formula for genuinely multi-partite concurrence of
the investigated states as a function of time and analyze its time evo-
lution with an emphasis on the qualitative difference between systems
affected by a pure decoherence only and those which do dissipate energy
at finite temperature.

1 Introduction

An effect of the omnipresent decoherence [1] has to be taken into account by all who
consider quantum mechanics as a modern and useful resource for information process-
ing. The celebrated entanglement [2] is (probably) the most “quantum” resource with
a wide spectrum of applications starting from quantum communication (e.g. telepor-
tation), cryptography (key management via the Ekert-like protocols) and quantum
computation based on multi-partite entangled cluster states [3]. Since all the proto-
cols act on the stage of real world at finite temperature, coupled to environment, it
is of vital importance to verify their effectiveness under an influence of noise.

Various aspects of entanglement of open quantum systems is an object of intensive
studies [4] both in a context of bi- and multi-partite entanglement. The latter is
‘harder’ to study simply because it is harder to define [5]. There are various classes
of entangled multi-partite systems: all of them useful but often very different. Except
the fully classified 3-partite case [6] one deals with a hard problems of identifying
various types of states with non-classical correlations.

In this work, we focus on a certain type of multi-partite entanglement – the genuine
multi-partite entanglement [7] which can be effectively characterized by its negativ-
ity [8] or concurrence [9]. We study an effect of decoherence modelled by the Davies
approximation [10] which, except mathematical rigour, has a well established physical
setting [11]. The Davies method has been successfully used in recent studies of various
problems in quantum information and physics of open quantum systems including
teleportation [12], bi-partite entanglement dynamics [13], quantum discord [14,15],
quantum cloning [16], Bell-type [14] and Leggett–Garg non-locality [17], properties
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of geometric phases of qubits [18], thermodynamic properties of nano-systems [19]
and quantum games [20]. Our present work continues and supplements our previous
studies of quantum phenomena in a presence of Davies environment modelled via the
Davies maps [21] related to quantum information processing.

2 Davies decoherece and entanglement

Quantum decoherence of, in particular, qubits is caused by the environment. Its influ-
ence on the qubitQ is modeled by the Hamiltonian in the formH = HQ +Henv +Hint

where HQ is the Hamiltonian of the qubit, HQ = ω
2 (|1〉〈1| − |0〉〈0|), with ω the

energy splitting of the qubit and |0〉, |1〉 spanning a Hilbert space of Q, Henv mod-
els the environment and Hint describes the qubit–environment interaction. In this
work we assume that the interaction between the qubit and its environment satisfies
the Davies weak coupling conditions [10,22] allowing for rigorous construction of the
qubit reduced (with respect to the environment) dynamics. It is a completely posi-
tive (strictly Markovian) semigroup built in terms of parameters of the microscopic
Hamiltonian of the full system [22]. The Davies semigroups can be rigorously and
consistently derived from microscopic models of open systems and they satisfy ther-
modynamic and statistical–mechanical properties of open quantum systems such as
the detailed balance condition and the Gibbs canonical distribution in the stationary
regime [11,22].

In this paper, we consider only certain elements of Davies semi-groups: the so
called Davies maps [12,14,15,17,21] which are completely positive and describe time
evolution of qubits (two-level systems with an energy splitting ω) coupled to a thermal
environment [10,11] via a mapping [21] acting on single qubit density matrices in the
following way [5]:

D|1〉〈1| = [1− (1− p)(1− e−At)]|1〉〈1|+ (1− p)(1− e−At)|0〉〈0|,
D|1〉〈0| = eiωt−Gt|1〉〈0|,
D|0〉〈1| = e−iωt−Gt|0〉〈1|,
D|0〉〈0| = p(1− e−At)|1〉〈1|+ [1− (1− e−At)p]|0〉〈0|.

(1)

The parameters A and G are related to energy relaxation time τE and dephasing
time τD [21]: A = 1/τE , G = 1/τD. In order for the mapping to correspond to a
physically plausible completely positive transformation, A and G need to oblige the
inequalities G ≥ A/2 ≥ 0 [21]. The ‘thermal weight’ p is related to the temperature T
as p = exp(−ω/2T )/[exp(−ω/2T ) + exp(ω/2T )]. Notice, that the long–time limit of
any qubit state evolving under the Davies map is a Gibbs state with all its physical
consequences [11].

Recall that a density matrix X of a state ρ is called an X–matrix (or X–state) if
it has the following form:

X =



a1 z∗1
. . . . .

.

an z∗n
zn bn

. .
. . . .

z1 b1


, (2)
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i.e. the only (possibly) nonzero elements are located on its diagonal or anti-diagonal.
In order for X to be a correctly defined density matrix its coefficients need to satisfy∑n

i=1(ai + bi) = 1 and |zi| ≤
√
aibi for all i. It has been proven in reference [9] that

genuinely multi-partite concurrence of an X-matrix is given by

CGM (X) = 2 max{0, |z1| − w1, . . . , |zn| − wn} (3)

with wj =
∑n

k=1,k 6=j

√
akbk. It is interesting to note that if CGM (X) is positive then

there is only one j for which CGM (X) = 2(|zj | − wj) (i.e. only one element real-
izes maximum in equation (3). Indeed, suppose that for some indices j1 6= j2 we
have 0 ≤ |zj1 | − wj1 = |zj2 | − wj2 . Expanding terms wj1 and wj2 and reducing sum-

mands appearing on both sides yields 0 < |zj1 |−
√
aj2bj2 = |zj2 |−

√
aj1bj1 . Using the

inequality between |zj | and
√
ajbj we further get |zj2 | −

√
aj1bj1 ≤

√
aj2bj2 − |zj1 |,

which leads us to a contradiction.
Further we will investigate a time evolution of non-interacting qubits prepared

initially as maximally entangled X-matrices. We assume that only one among qubits –
without lost of generality we assume that the first one – is weakly coupled to the
environment and its evolution is described by Davies map. In our model other qubits
do not interact with the environment, their evolution is free and governed by the
two-level Hamiltonians HQ. Under such assumptions the X-form of the initial state
remains preserved in the evolution and its time dependent X-form reads as

X(t) =



a1(t) z1(t)∗

. . . . .
.

an(t) zn(t)∗

zn(t) bn(t)

. .
. . . .

z1(t) b1(t)


, (4)

with coefficients aj(t), bj(t), zj(t) given by the following formulas:

aj(t) = aj(0)(1− u(t)) +
u(t)p

1− p
bn−j−1(0) (5)

bj(t) = an−j−1(0)u(t) +

(
1− u(t)p

1− p

)
bj(0) (6)

zj(t) = exp(−Gt) exp(−iωj) (7)

where u(t) = (1− p)[1− exp(−At)]. For the analysis of the entanglement dynamics,
it is necessary to investigate asymptotic behaviour of those coefficients:

lim
t→∞

zj(t) = 0 (8)

lim
t→∞

u(t) =

{
(1− p) if A > 0

0 if A = 0
(9)

lim
t→∞

aj(t) =

{
paj(0) + pbn−j−1(0) if A > 0

aj(0) if A = 0
(10)

lim
t→∞

bj(t) =

{
(1− p)an−j−1(0) + (1− p)bj(0) if A > 0

bj(0) if A = 0
(11)
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Fig. 1. Genuinely multi-partite concurrence of three-qubit GHZ state for different values
of the A/G ratio and p = 0.25. Notice that for A = 0 the entanglement sudden death never
occurs.

Fig. 2. Genuinely multi-partite concurrence of three-qubit GHZ state for different values of
temperature p and A/G = 1/2. Notice that only for p = 0 the entanglement sudden death
does not occur.

An explicit form of density matrix equation (4) allows us to find an explicit and exact
form of the concurrence equation (3). Note that in our model of evolution the sys-
tem starting in separable state will stay separable since |zj(t)| − wj(t) is decreasing
as a function of time. That is why we will therefore focus only on system start-
ing in the entangled state. It is not surprising that entanglement cannot be created
in our model since there is no non-local interaction between qubits either direct
(via qubit–qubit hamiltonian coupling) or indirect, via common heat bath mediat-
ing information exchange. In such a case, if CGM (X(0)) = 2(|zj(0)| − wj(0)) then
CGM (X(t)) = 2 max{0, |zj(t)| − wj(t)} for all times t – otherwise we would have
0 < |zj1(t)| − wj1(t) = |zj2(t)| − wj2(t) for some t > 0, which would contradict our
previous observation.

In the case of the dissipative environment (i.e. A > 0) the system undergoes the
entanglement sudden death (ESD) at p > 0, as limt→∞ |zj(t)|−wj(t) < 0 whereas for
the case of purely dephasing environment with A = 0, the situation can be different.
If CGM (X(0)) = 2(|zj(0)| − wj(0)) and wj(0) = 0, the ESD does not occur and the
entanglement decays asymptotically. In particular, these conclusions are applicable
for the N -qubit GHZ states. It is presented in Figure 1 where we plot the concurrence
CGM as a function of time for a simplest but otherwise generic case of three qubits
in a GHZ-state. There is a qualitative difference between pure dephasing and the
dissipative systems indicated by entanglement sudden death phenomenon. Obviously,
with increasing of temperature p the ESD occurs earlier as presented in Figure 2.

3 Summary

In our work, we attempt to simplify an otherwise highly complex problem of multi-
partite entanglement dynamics of open quantum systems and limit our consideration
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to (i) a very peculiar class of states – the X-states, (ii) a very peculiar type entan-
glement – genuine multi-partite and (iii) – last but not least – we investigate local
decoherence which, however, is modelled by a very general Davies approximation.
Utilizing exact result for a concurrence quantifying the entanglement we show a
qualitative difference between dissipative and purely dephasing environments indi-
cated by an existence of the (genuine multi-partite) entanglement sudden death
phenomenon. We hope that our studies not only supplement our earlier studies of
quantum information effects in a presence of thermal decoherence but also serve as
a modest contribution to understanding multi-partite entanglement.

The work has been supported by the NCN grant 2015/19/B/ST2/02856.
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