Skip to main content
Log in

Multilayer adaptive networks in neuronal processing

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The connectome is a wiring diagram mapping all the neural connections in the brain. At the cellular level, it provides a map of the neurons and synapses within a part or all of the brain of an organism. In recent years, significant advances have been made in the study of the connectome via network science and graph theory. This analysis is fundamental to understand neurotransmission (fast synaptic transmission) networks. However, neurons use other forms of communication as neuromodulation that, instead of conveying excitation or inhibition, change neuronal and synaptic properties. This additional neuromodulatory layers condition and reconfigure the connectome. In this paper, we propose that multilayer adaptive networks, in which different synaptic and neurochemical layers interact, are the appropriate framework to explain neuronal processing. Then, we describe a simplified multilayer adaptive network model that accounts for these extra-layers of interaction and analyse the emergence of interesting computational capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Sporns, G. Tononi, R. Kötter, PLoS Computat. Biol. 1, e42 (2005)

    Article  ADS  Google Scholar 

  2. A.M. Zador, J. Dubnau, H.K. Oyibo, H. Zhan, G. Cao, I.D. Peikon, PLoS Biol. 10, e1001411 (2012)

    Article  Google Scholar 

  3. A. Horn, D. Ostwald, M. Reisert, F. Blankenburg, NeuroImage 102, 142 (2014)

    Article  Google Scholar 

  4. D.J. Felleman, D.C. Van Essen, Cereb. Cortex 1, 1 (1991)

    Article  Google Scholar 

  5. W. Gerstner, W. Kistler, R. Naud, L. Paninski, Neuronal Dynamics (Cambridge University Press, Cambridge, UK, 2014)

  6. C. Bargmann, E. Marder, Nat. Methods 10, 483 (2013)

    Article  Google Scholar 

  7. C. Bargmann, BioEssays 34, 458 (2012)

    Article  Google Scholar 

  8. V. Brezina, Philos. Trans. R. Soc. B 365, 2363 (2010)

    Article  Google Scholar 

  9. E. Marder, Neuron 76, 1 (2012)

    Article  Google Scholar 

  10. D. Bucher, E. Marder, Cell 155, 482 (2013)

    Article  Google Scholar 

  11. J.G. White, E. Southgate, J.N. Thomson, S. Brenner, Philos. Trans. R. Soc. Lond. B 314, 1 (1986)

    Article  ADS  Google Scholar 

  12. L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, PLoS Computat. Biol. 7, e1001066 (2011)

    Article  ADS  Google Scholar 

  13. S. Achard, E. Bullmore, PLoS Computat. Biol. 3, e17 (2007)

    Article  ADS  Google Scholar 

  14. A.P. Alivisatos, M. Chun, G.M. Church, R.J. Greenspan, M.L. Roukes, R. Yuste, Neuron 74, 970 (2012)

    Article  Google Scholar 

  15. A.F. Alexander-Bloch, P.E. Vértes, R. Stidd, F. Lalonde, L. Clasen, J. Rapoport, J. Giedd, E.T. Bullmore, N. Gogtay, Cereb. Cortex 23, 127 (2013)

    Article  Google Scholar 

  16. S.T. Baker, D.I. Lubman, M. Yücel, N.B. Allen, S. Whittle, B.D. Fulcher, A. Zalesky, A. Fornito, J. Neurosci. 35, 9078 (2015)

    Article  Google Scholar 

  17. L. Barnett, C.L. Buckley, S. Bullock, Phys. Rev. E 79, 051914 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Nicosia, P.E. Vértes, W.R. Schafer, V. Latora, E.T. Bullmore, PNAS 110, 7880 (2013)

    Article  ADS  Google Scholar 

  19. E.K. Towlson, P.E. Vértes, S.E. Ahnert, W.R. Schafer, E.T. Bullmore, J. Neurosci. 33, 6380 (2013)

    Article  Google Scholar 

  20. F. Nadim, D. Bucher, Curr. Opin. Neurobiol. 29, 48 (2014)

    Article  Google Scholar 

  21. F. Fröhlich, Network Neuroscience (Academic Press, London, 2016)

  22. A. Fornito, A. Zalesky, E. Bullmore, Fundamentals of Brain Network Analysis (Academic Press, London, 2016)

  23. H. Sayama, I. Pestov, J. Schmidt, B.J. Bush, C. Wong, J. Yamanoi, T. Gross, Comput. Math. Appl. 65, 1645 (2013)

    Article  MathSciNet  Google Scholar 

  24. O.V. Maslennikov, V.I. Nekorkin, Physics-Uspekhi 60, 694 (2017)

    Article  ADS  Google Scholar 

  25. M. Wiedermann, J.F. Donges, J. Heitzig, W. Lucht, J. Kurths, Phys. Rev. E 91, 052801 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Aoki, L.E.C. Rocha, T. Gross, Phys. Rev. E 93, 040301 (2016)

    Article  ADS  Google Scholar 

  27. T. Aoki, K. Yawata, T. Aoyagi, Phys. Rev. E 91, 012908 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Netw. 2, 203 (2014)

    Article  Google Scholar 

  29. M. De Domenico, C. Granell, M.A. Porter, A. Arenas, Nat. Phys. 12, 901 (2016)

    Article  Google Scholar 

  30. M. De Domenico, Gigascience 6, 1 (2017)

    Article  Google Scholar 

  31. G. Menichetti, D. Remondini, P. Panzarasa, R.J. Mondragón, G. Bianconi, PLoS One 9, e97857 (2014)

    Article  ADS  Google Scholar 

  32. N. Kopell, H.J. Gritton, M.A. Whittington, M.A. Kramer, Neuron 83, 1319 (2014)

    Article  Google Scholar 

  33. N. Daur, F. Nadim, D. Bucher, Curr. Opin. Neurobiol. 41, 1 (2016)

    Article  Google Scholar 

  34. B. Bentley, R. Branicky, C.L. Barnes, Y.L. Chew, E. Yemini, E.T. Bullmore, P.E. Vértes, W.R. Schafer, PLoS Computat. Biol. 12, e1005283 (2016)

    Article  ADS  Google Scholar 

  35. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  36. W.S. McCulloch, W. Pitts, Bull. Math. Biophys. 5, 115 (1943)

    Article  MathSciNet  Google Scholar 

  37. X. Li, Q. Chen, F. Xue, Philos. Trans. R. Soc. A 375, 20160286 (2017)

    Article  ADS  Google Scholar 

  38. O.V. Maslennikov, D.S. Shchapin, V.I. Nekorkin, Philos. Trans. R. Soc. A 375, 20160288 (2017)

    Article  ADS  Google Scholar 

  39. J.M. Fellous, C. Linster, Neural Comput. 10, 771 (1998)

    Article  Google Scholar 

  40. A.J. Yu, Computational models of neuromodulation, in Encyclopedia of Computational Neuroscience, edited by D. Jaeger, R. Jung (Springer, New York, 2014)

  41. K. Doya, Nat. Neurosci. 11, 410 (2008)

    Article  Google Scholar 

  42. K. Doya, Neural Netw. 15, 495 (2002)

    Article  Google Scholar 

  43. R. Holca-Lamarre, J. Lücke, K. Obermayer, Front. Comput. Neurosci. 11, 54 (2017)

    Article  Google Scholar 

  44. G.J. Gutierrez, E. Marder, eNeuro 1, ENEURO.0009-14 (2014)

    Article  Google Scholar 

  45. T. O’Leary, A.H. Williams, J.S. Caplan, E. Marder, PNAS 110, E2645 (2013)

    Article  Google Scholar 

  46. E. Marder, M.L. Goeritz, A.G. Otopalik, Curr. Opin. Neurobiol. 31, 156 (2015)

    Article  Google Scholar 

  47. J.A. Reggia, E. Ruppin, D. Glanzman (eds.), Disorders of Brain, Behavior and Cognition: the Neurocomputational Perspective (Elsevier Science, Amsterdam, 1999)

  48. R. Chaudhuri, I. Fiete, Nat. Neurosci. 19, 394 (2016)

    Article  Google Scholar 

  49. S. Tonegawa, M. Pignatelli, D.S. Roy, T.J. Ryan, Curr. Opin. Neurobiol. 35, 101 (2015)

    Article  Google Scholar 

  50. T.J. Ryan, D.S. Roy, M. Pignatelli, A. Arons, S. Tonegawa, Science 348, 1007 (2015)

    Article  ADS  Google Scholar 

  51. H.K. Titley, N. Brunel, C. Hansel, Neuron 95, 19 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Amigó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A., Amigó, J.M. Multilayer adaptive networks in neuronal processing. Eur. Phys. J. Spec. Top. 227, 1039–1049 (2018). https://doi.org/10.1140/epjst/e2018-800037-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800037-y

Navigation