Skip to main content
Log in

Design of high-accuracy eight-channel surface electromyography acquisition system and its application

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The surface electromyography (sEMG) acquisition system has the advantages of small size, high precision, low power consumption and easy operation. We have developed a low-cost and portable eight-channel sEMG acquisition system, in which consists of the related analog front end (AFE), main control unit (MCU) and power supply system. The AFE circuit converts the sEMG signal to the digital signal after filtering the direct current and the two stage amplification. The MCU controls the analog-to-digital converter (ADC) using serial peripheral interface (SPI), packages the data and sends the data to the android through a high-speed wireless module. The power supply system provides stable voltage source and can be powered by battery. Experimental results show that the designed eight-channel sEMG acquisition system exhibits an excellent electrical performance with the amplifier resolution of 8.1 μV, the system noise of lower than 15.3 μV, the sampling rate of 1000 Hz and power consumption of about 30.7 mW. The recognition rate is as high as 98% using support vector machines when detecting normal and fatigue state. This device can be applied in the fields of family health monitoring and the detection of the muscle state in daily life and work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Heinrichs, Physiotherapy 84, 405 (1998)

    Google Scholar 

  2. R. Hu, Y. Li, W. Xu, L. Cheng, H. Ren, J. Voice Found. 31, 126.e1 (2015)

    Article  Google Scholar 

  3. M. Dasog, K. Koirala, P. Liu, E.A. Clancy, IEEE Trans. Neural Syst. Rehabil. Eng. 22, 664 (2014)

    Article  Google Scholar 

  4. F. Duan, L. Dai, IEEE Trans. Ind. Electron. 64, 4276 (2017)

    Article  ADS  Google Scholar 

  5. P. Pavitra, P. Sadasivan, IEEE Eng. Med. Biol. Soc. 26, 608 (2004)

    Google Scholar 

  6. M. Liang, C. Damien, B. Fouad, Z. Wei, H. Bo, G. Francois, Int. J. Ind. Ergon. 41, 10 (2011)

    Article  Google Scholar 

  7. P.K. Edwards, J.R. Ebert, C. Littlewood, T. Ackland, A. Wang, J. Orthop. Sports Phys. Therapy 1, 1 (2017)

    Google Scholar 

  8. C. Huang, X. Chen, S. Cao, B. Qiu, X. Zhang, J. Neural Eng. 14, 046005 (2017)

    Article  ADS  Google Scholar 

  9. A.C.M.V. Rijn, A. Peper, C.A. Grimbergen, Med. Biol. Eng. Comput. 28, 389 (1990)

    Article  Google Scholar 

  10. Y. Zhang, L. Dai, Y.H. Luo, S. Huo, IEEE Int. Conf. Electron. Meas. Instrum. 10, 132 (2011)

    Google Scholar 

  11. A. Dutta, R. Kobetic, R. Triolo, ASME J. Devices 2, 027565 (2008)

    Article  Google Scholar 

  12. E. Koutsos, P. Georgiou, IEEE Int. Symp. Circuits Syst. 10, 1388 (2014)

    Google Scholar 

  13. Datasheet, ADS1278, quad/octal, simultaneous sampling, 24bit analogto-digital converters. Texas Instruments, 2009

  14. F.N. Guerrero, E.M. Spinelli, M.A. Haberman, IEEE Transact. Biomed. Circuits Syst. 10, 787 (2016)

    Article  Google Scholar 

  15. YY/T 1095-2015, Myoelectric biofeedback equipment

  16. T. Muehlemann, D. Haensse, M. Wolf, Opt. Express 16, 10323 (2008)

    Article  ADS  Google Scholar 

  17. N.L. Everdell, D. Airantzis, C. Kolvya, T. Suzuki, C.E. Elwell, Med. Eng. Phys. 35, 1692 (2013)

    Article  Google Scholar 

  18. D.R. Rogers, D.T. MacIsaac, J. Electromyogr. Kinesiol. 21, 811 (2011)

    Article  Google Scholar 

  19. Z. Ju, G. Ouyang, K. Wilamowska, H. Liu, IEEE Sens. J. 13, 3302 (2013)

    Article  ADS  Google Scholar 

  20. X. Xi, M. Tang, S.M. Miran, Z. Luo, Sensors 17, 1229 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, C., Zhou, T., Wei, B. et al. Design of high-accuracy eight-channel surface electromyography acquisition system and its application. Eur. Phys. J. Spec. Top. 227, 933–942 (2018). https://doi.org/10.1140/epjst/e2018-800001-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800001-8

Navigation