Skip to main content

Advertisement

Log in

Computational efficiency of symplectic integration schemes: application to multidimensional disordered Klein–Gordon lattices

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We implement several symplectic integrators, which are based on two part splitting, for studying the chaotic behavior of one- and two-dimensional disordered Klein–Gordon lattices with many degrees of freedom and investigate their numerical performance. For this purpose, we perform extensive numerical simulations by considering many different initial energy excitations and following the evolution of the created wave packets in the various dynamical regimes exhibited by these models. We compare the efficiency of the considered integrators by checking their ability to correctly reproduce several features of the wave packets propagation, like the characteristics of the created energy distribution and the time evolution of the systems’ maximum Lyapunov exponent estimator. Among the tested integrators the fourth order ABA864 scheme [S. Blanes et al., Appl. Numer. Math. 68, 58 (2013)] showed the best performance as it needed the least CPU time for capturing the correct dynamical behavior of all considered cases when a moderate accuracy in conserving the systems’ total energy value was required. Among the higher order schemes used to achieve a better accuracy in the energy conservation, the sixth order scheme s11ABA82_6 exhibited the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. D. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993)

    Article  ADS  Google Scholar 

  3. M. Molina, Phys. Rev. B 58, 12547 (1998)

    Article  ADS  Google Scholar 

  4. D. Clément, A.F. Varón, M. Hugbart, J.A. Retter, P. Bouyer, L. Sanchez-Palencia, D.M. Gangardt, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 95, 170409 (2005)

    Article  ADS  Google Scholar 

  5. C. Fort, L. Fallani, V. Guarrera, J.E. Lye, M. Modugno, D.S. Wiersma, M. Inguscio, Phys. Rev. Lett. 95 170410 (2005)

    Article  ADS  Google Scholar 

  6. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

    Article  ADS  Google Scholar 

  7. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)

    Article  ADS  Google Scholar 

  8. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  9. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)

    Article  ADS  Google Scholar 

  10. G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Phys. Rev. Lett. 100, 084103 (2008)

    Article  ADS  Google Scholar 

  11. A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008)

    Article  ADS  Google Scholar 

  12. S. Flach, D.O. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 024101 (2009)

    Article  ADS  Google Scholar 

  13. S. Flach, D.O. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 209903 (2009)

    Article  ADS  Google Scholar 

  14. I. García-Mata, D.L. Shepelyansky, Phys. Rev. E 79, 026205 (2009)

    Article  ADS  Google Scholar 

  15. Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Veksler, Y. Krivolapov, S. Fishman, Phys. Rev. E 80, 037201 (2009)

    Article  ADS  Google Scholar 

  17. Ch. Skokos, S. Flach, Phys. Rev. E 82, 016208 (2010)

    Article  ADS  Google Scholar 

  18. T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos, S. Flach, Europhys. Lett. 91, 30001 (2010)

    Article  ADS  Google Scholar 

  19. S. Flach, Chem. Phys. 375, 548 (2010)

    Article  Google Scholar 

  20. D.M. Basko, Ann. Phys. 326, 1577 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Mulansky, K. Ahnert, A. Pikovsky, Phys. Rev. E 83, 026205 (2011)

    Article  ADS  Google Scholar 

  22. M. Mulansky, K. Ahnert, A. Pikovsky, D.L. Shepelyansky, J. Stat. Phys. 145, 1256 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.D. Bodyfelt, T.V. Laptyeva, Ch. Skokos, D.O. Krimer, S. Flach, Phys. Rev. E 84, 016205 (2011)

    Article  ADS  Google Scholar 

  24. J.D. Bodyfelt, T.V. Laptyeva, G. Gligoric, D.O. Krimer, Ch. Skokos, S. Flach, Int. J. Bifurc. Chaos 21, 2107 (2011)

    Article  Google Scholar 

  25. S.S. Kondov, W.R. McGehee, J.J. Zirbel, B. DeMarco, Science 334, 66 (2011)

    Article  ADS  Google Scholar 

  26. T.V. Laptyeva, J.D. Bodyfelt, S. Flach, Europhys. Lett. 98, 60002 (2012)

    Article  ADS  Google Scholar 

  27. M. Mulansky, A. Pikovsky, Phys. Rev. E 86, 056214 (2012)

    Article  ADS  Google Scholar 

  28. F. Jendrzejewski, A. Bernard, K. Mueller, P. Cheinet, V. Josse, M. Piraud, L. Pezze, L. Sanchez-Palencia, A. Aspect, P. Bouyer, Nat. Phys. 8, 398 (2012)

    Article  Google Scholar 

  29. M. Mulansky, A. Pikovsky, New J. Phys. 15, 053015 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ch. Skokos, I. Gkolias, S. Flach, Phys. Rev. Lett. 111, 064101 (2013)

    Article  ADS  Google Scholar 

  31. Ch. Antonopoulos, T. Bountis, Ch. Skokos, L. Drossos, Chaos 24, 024405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. T.V. Laptyeva, M.V. Ivanchenko, S. Flach, J. Phys. A 47, 493001 (2014)

    Google Scholar 

  33. Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 89, 029907 (2014)

    Article  ADS  Google Scholar 

  34. O. Tieleman, Ch. Skokos, A. Lazarides, Europhys. Lett. 105, 20001 (2014)

    Article  ADS  Google Scholar 

  35. A.J. Martínez, P.G. Kevrekidis, M.A. Porter, Phys. Rev. E 93, 022902 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. V. Achilleos, G. Theocharis, Ch. Skokos, Phys. Rev. E 93, 022903 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.J. Martínez, H. Yasuda, E. Kim, P.G. Kevrekidis, M.A. Porter, J. Yang, Phys. Rev. E 93, 052224 (2016)

    Article  ADS  Google Scholar 

  38. Ch. Antonopoulos, Ch. Skokos, T. Bountis, S. Flach, Chaos, Solitons Fractals 104, 129 (2017)

    Article  ADS  Google Scholar 

  39. C. Chong, M.A. Porter, P.G. Kevrekidis, C. Daraio, J. Phys. Condens. Matter 29, 413003 (2017)

    Article  Google Scholar 

  40. S. Donsa, H. Hofstätter, O. Koch, J. Burgdörfer, I. Březinová, Phys. Rev. A 96, 043630 (2016)

    Article  ADS  Google Scholar 

  41. V. Achilleos, G. Theocharis, Ch. Skokos, Phys. Rev. E 97, 042220 (2018)

    Article  ADS  Google Scholar 

  42. E. Hairer, C. Lubich, G. Wanner, Structure-preserving algorithms for ordinary differential equations inGeometric Numerical Integration, Springer Series in Computational Mathematics (Springer, New York, 2002), Vol. 31, Chap. VI

  43. R.I. McLachan, G.R.W. Quispel, Acta Numer. 11, 341 (2002)

    Article  MathSciNet  Google Scholar 

  44. R.I. McLachan, G.R.W. Quispel, J. Phys. A 39, 5251 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. E. Forest, J. Phys. A 39, 5321 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Blanes, F. Casas, A. Murua, Bol. Soc. Esp. Mat. Apl. 45, 89 (2008)

    Google Scholar 

  47. Ch. Skokos, E. Gerlach, J.D. Bodyfelt, G. Papamikos, S. Eggl, Phys. Lett. A 378, 1809 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Gerlach, J. Meichsner, Ch. Skokos, Eur. Phys. J. Spec. Topics 225, 1103 (2016)

    Article  ADS  Google Scholar 

  49. J. Laskar, P. Robutel, Cel. Mech. Dyn. Astron. 80, 39 (2001)

    Article  ADS  Google Scholar 

  50. Ch. Skokos, G.A. Gottwald, J. Laskar, inChaos Detection and Predictability, Lecture Notes in Physics (Springer Verlag, Berlin, 2016), Vol. 915

  51. G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Meccanica 15, 9 (1980)

    Article  ADS  Google Scholar 

  52. G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Meccanica 15, 21 (1980)

    Article  Google Scholar 

  53. Ch. Skokos, Lect. Notes Phys. 790, 63 (2010)

    Article  ADS  Google Scholar 

  54. R.D. Ruth, IEEE Trans. Nucl. Sci. 30, 2669 (1983)

    Article  ADS  Google Scholar 

  55. R.I. Mclachlan, BIT 35, 258 (1995)

    Article  MathSciNet  Google Scholar 

  56. A. Farres, J. Laskar, S. Blanes, F. Casas, J. Makazaga, A. Murua, Cel. Mech. Dyn. Astron. 116, 141 (2013)

    Article  ADS  Google Scholar 

  57. H. Yoshida, Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  58. E. Forest, R.D. Ruth, Phys. D 43, 105 (1990)

    Article  MathSciNet  Google Scholar 

  59. S. Blanes, F. Casas, A. Farres, J. Laskar, J. Makazaga, A. Murua, Appl. Numer. Math. 68, 58 (2013)

    Article  MathSciNet  Google Scholar 

  60. W. Kahan, R. Li, Math. Comput. 66, 1089 (1997)

    Article  ADS  Google Scholar 

  61. M. Sofroniou, G. Spaletta, Opt. Meth. Soft. 20, 597 (2005)

    Article  Google Scholar 

  62. G. Benettin, L. Galgani, J.-M. Strelcyn, Phys. Rev. A 14, 2338 (1976)

    Article  ADS  Google Scholar 

  63. Ch. Skokos, E. Gerlach E., Phy. Rev. E 82, 036704 (2010)

    Article  ADS  Google Scholar 

  64. E. Gerlach, Ch. Skokos, Discr. Contin. Dyn. Syst. Supp. 2011, 475 (2011)

    Google Scholar 

  65. E. Gerlach, S. Eggl, Ch. Skokos, Int. J. Bifurc. Chaos 22, 1250216 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Skokos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senyange, B., Skokos, C. Computational efficiency of symplectic integration schemes: application to multidimensional disordered Klein–Gordon lattices. Eur. Phys. J. Spec. Top. 227, 625–643 (2018). https://doi.org/10.1140/epjst/e2018-00131-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00131-2

Navigation