Skip to main content
Log in

Strain rate and triaxiality effects on the dynamic ductile damage of DOMEX 355MC

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The effect of strain rate on the ductile fracture of DOMEX 355MC, a high strength low alloy steel, is investigated using notched specimens loaded in uniaxial tension at quasi-static and high strain rates. The high strain rate tests are conducted on a tensile Split Hopkinson Bar (SHB), which incorporates a novel mechanism for tensile loading using an otherwise standard gas gun. Furthermore, the Tensile SHB uses a novel “fir-tree” gripping system which permits rapid changing of specimens, minimises slack between specimens and the bar and prevents slippage. The experiments were simulated in explicit FEA using a material model that incorporates temperature and rate sensitive plasticity, to identify the local strain at fracture. The intent of the simulations is to extend the pragmatic approach of Wierzbicki and co-authors [Int. J. Mech. Sci. 46, 81 (2004); Study on the effect of the third stress invariant on ductile fracture, Tech. Rep. 151, 2006; Int. J. Plast. 24, 1071 (2008)], who studied the effect of triaxiality and Lode angle on strain at fracture at quasi-static rates, to a higher strain rates. The experiments conducted had a Lode angle of approximately 1 prior to the onset of necking. The strain at fracture for DOMEX 355MC decreased as strain rate increased, for the range of strain rates and Lode angles which were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Bao, T. Wierzbicki, Int. J. Mech. Sci. 46, 81 (2004)

    Article  Google Scholar 

  2. Y. Bai, X. Teng, T. Wierzbicki, Study on the effect of the third stress invariant on ductile fracture, Tech. Rep. 151, Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 2006

  3. Y. Bai T. Wierzbicki, Int. J. Plast. 24, 1071 (2008)

    Article  Google Scholar 

  4. F. McClintock, J. Appl. Mech. 35, 363 (1968)

    Article  ADS  Google Scholar 

  5. J. Rice, D. Tracey, J. Mech. Phys. Solids 17, 201 (1969)

    Article  ADS  Google Scholar 

  6. A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977)

    Article  Google Scholar 

  7. G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21, 31 (1985)

    Article  Google Scholar 

  8. L. Xue, T. Wierzbicki, Eng. Fract. Mech. 75, 3276 (2008)

    Article  Google Scholar 

  9. Y. Bai, T. Wierzbicki, Eng. Fract. Mech. 135, 147 (2015)

    Article  Google Scholar 

  10. M. Weyer, An experimental and theoretical study on the effect of strain rate on ductile damage, Master’s thesis, University of Cape Town, 2016

  11. A.H. Clausen, T. Børvik, O. S. Hopperstad, A. Benallal, Mater. Sci. Eng. A 364, 260 (2004)

    Article  Google Scholar 

  12. B. Erice, F. Gálvez, D. Cendón, V. Sánchez-Gálvez, Eng. Fract. Mech. 79, 1 (2012)

    Article  Google Scholar 

  13. A.S. Khan, H. Liu, Int. J. Plast. 37, 1 (2012)

    Article  Google Scholar 

  14. C.C. Roth, D. Mohr, Int. J. Plast. 56, 19 (2014)

    Article  Google Scholar 

  15. T. Børvik, O. Hopperstad, T. Berstad, M. Langseth, Eur. J. Mech. A: Solids 20, 685 (2001)

    Article  Google Scholar 

  16. P. Verleysen, J. Peirs, Int. J. Impact Eng. 108, 370 (2017)

    Article  Google Scholar 

  17. R. Curry, G. Langdon, Int. J. Impact Eng. 102, 102 (2017)

    Article  Google Scholar 

  18. S.C.K. Yuen, G. Langdon, G. Nurick, E. Pickering, V. Balden, Int. J. Impact Eng. 46, 97 (2012)

    Article  Google Scholar 

  19. Y. Bao, T. Wierzbicki, Eng. Fract. Mech. 72, 1049 (2005)

    Article  Google Scholar 

  20. H. Zhao, Mater. Sci. Eng. A 230, 95 (1997)

    Article  Google Scholar 

  21. G.R. Johnson, W.H. Cook, inProceedings of the 7th International Symposium on Ballistics (The Hague, The Netherlands, 1983), Vol. 21, pp. 541–547

  22. P. Verleysen, B. Verhegghe, J. Degrieck, B. De Cooman,WIT Transactions on Engineering Sciences, edited by M. Alves, N. Jones, (WIT Press, 2005), pp. 549–562

  23. J. Lysmer, R.L. Kuhlemeyer, J. Eng. Mech. Div. 95, 859 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Cloete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyer, M.P., Cloete, T.J. & Govender, R.A. Strain rate and triaxiality effects on the dynamic ductile damage of DOMEX 355MC. Eur. Phys. J. Spec. Top. 227, 99–109 (2018). https://doi.org/10.1140/epjst/e2018-00068-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00068-x

Navigation