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Abstract. A short overview of the theoretical and experimental works
on the polymer-colloid mixtures is given. The behaviour of a dilute
solution of linear and ring polymers in confined geometries like slit of
two parallel walls or in the solution of mesoscopic colloidal particles
of big size with different adsorbing or repelling properties in respect
to polymers is discussed. Besides, we consider the massive field theory
approach in fixed space dimensions d=3 for the investigation of the
interaction between long flexible polymers and mesoscopic colloidal
particles of big size and for the calculation of the correspondent
depletion interaction potentials and the depletion forces between con-
fining walls. The presented results indicate the interesting and non-
trivial behavior of linear and ring polymers in confined geometries and
give possibility better to understand the complexity of physical effects
arising from confinement and chain topology which plays a significant
role in the shaping of individual chromosomes and in the process of
their segregation, especially in the case of elongated bacterial cells. The
possibility of using linear and ring polymers for production of new types
of nano- and micro-electromechanical devices is analyzed.

1 Introduction

Polymer-colloid mixtures have attracted a great deal of interest during the last few
decades because of practical relevance, as well as for fundamental reasons [1–5]. In
industrial products, such as paint, food, composite materials, derived from mixing
together polymers and colloids phase stability is a question of vital importance. Thus
it is very important to determine the phase behavior of such mixtures, taking into
account the microscopic interaction between colloidal particles in polymer solutions.
During the investigation of the microscopic interactions in polymer-colloid mixtures
we can distinguish two cases which usually lead to qualitatively different effects.
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The first case is connected with the investigation of such polymer-colloid mixtures
where polymers are adsorbed on the colloidal surfaces and protect colloids from floc-
culation. In this case colloidal surfaces are maintained at large enough separations
because adsorbed polymers resist the ability to approach the other surfaces and as a
result protect against arising attraction due to the depletion effect or London-van der
Waals force and it leads to stabilization of the colloidal suspension [6,7]. The second
case is connected with investigation of a mixture of colloidal particles and nonadsorb-
ing polymers which leads to arising of the so called depletion effect [8] when polymers
are expelled from the region between two colloidal particles or between colloidal par-
ticle and a wall due to entropic reasons. It leads to an unbalanced pressure on the
outside which pushes colloidal particle to a wall or two colloidal particles towards
each other. In the latter case a key role is played by the depletion potential giving
rise to, among others, the depletion force between colloidal particles or between a
colloidal particle and a wall, respectively. The force’s magnitude is affected by the
concentration of polymer solutions and the effective size of polymer coils, as well as
the size and the shape of the confining colloidal particles and width of their separa-
tion. The improvement of the experimental technique allowed even to measure with
high accuracy the depletion force which arises between a single colloidal particle and
a wall [8–10]. Furthermore the force enters into a complex force balance with other in-
tercolloidal interactions, such as DLVO, hydration, hydrophobic interaction [4,5,11].
Therefore it is sometimes challenging to separate and quantify its contribution. An
idealized physical model for these systems was proposed some time ago by Asakura
and Oosawa [12,13] which was based on a mixture of hard spheres with different sizes
to describe the colloids dispersed in a solution of free nonadsorbing polymers playing
the role of depletants. The problem is that the common Asakura-Oosawa approxima-
tion modeling the polymer coils as hard spheres turns out to fail completely for small
particles and fails by about 10% for large particles because long polymers actually are
a flexible objects and, in general, cannot be modeled as hard spheres. In accordance
with it the approaches which take into account the polymer chain flexibility are more
effective. In the case of strongly overlapping polymer chains in semidilute solutions
the chain flexibility was taken into account in the framework of the phenomenological
scaling theory [14–16] and via the self-consistent field theory [17,18]. In the case of
sufficiently dilute polymer solutions, different polymers do not overlap and the be-
haviour of such solution can be modeled by a random walk (RW) of a single polymer
chain for ideal polymer in Θ – solvent [15,16,19,20] or self-avoiding walk (SAW) for
the case of real polymer with the excluded volume interaction (EVI) in a good sol-
vent at the temperatures above the Θ – temperature [15,16]. The situation when the
solvent temperature is below the Θ – temperature corresponds to poor solvent where
polymer coils tend to collapse [21,22]. A remarkable progress in the investigation of
the depletion interaction potentials and the depletion forces which arise in the case of
immersing the polymer solution of linear ideal and real polymer chains with the EVI
inside the slit geometry of two parallel walls was achieved in [23,24] via the dimen-
sionally regularised continuum version of the field theory with minimal subtraction
of poles in the ε – expansion for the case of two repulsive walls and in one of our
papers [25] via the massive field theory approach for the case of two repulsive walls,
two inert walls and for the mixed situation of one repulsive and the other one inert
wall. It should be mentioned, that our results obtained in [25] showed that the value of
the depletion force in the case of one repulsive and the other one inert wall is smaller
than in the case of two repulsive walls. Besides, in [25] we obtained that the depletion
force in the case of two inert walls (the walls where the adsorption threshold takes
place) becomes repulsive for the case of real polymers with the EVI in a good solvent.
This result is very important from practical reasons, because it means that in such
systems we observe reduction of the static friction and as a result such systems can
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be used for producing of new types of nano- and micro-mechanical devices. Besides,
the calculation of the depletion force was performed by numerical methods [26–28]
using the model of RW for ideal polymer at Θ – solvent and SAW for a real poly-
mer with the EVI in a good solvent confirmed inside the slit of two repulsive walls.
The validity of the universal density-force relation proposed by Joanny, Leibler and
de Gennes [14] for the different cases of a single polymer with one end (or both ends)
fixed in the half space bounded by the wall, a single chain trapped in a slit geometry
of two parallel walls, for the case of a dilute and semi-dilute solution of free polymers
in a half space and for the case of polymer in a half space containing a mesoscopic col-
loidal particle of arbitrary shape was discussed initially in [23]. The above mentioned
universal density-force relation was verified by simulation using an off-lattice bead-
spring model of a polymer chain trapped between two parallel repulsive walls [26,27]
and by the lattice Monte Carlo (MC) algorithm on a regular cubic lattice in three
dimensions [28]. In a series of our papers [29,30] the universal density-force relation
is analyzed by analogy as it was proposed by Eisenriegler [23] and the corresponding
universal amplitude ratio was obtained in the framework of the massive field theory
approach directly in fixed space dimensions d=3. It allowed us to obtain in [29,30]
the monomer density profiles of linear ideal and real polymers with the EVI in a good
solvent immersed in a slit geometry of two parallel repulsive walls, one repulsive and
the other one inert wall. Besides, the monomer density profiles of a dilute polymer
solution confined in a semi-infinite space containing the mesoscopic spherical colloidal
particle of big radius were calculated. It should be mentioned, that the interaction
of long flexible nonadsorbing linear polymers with mesoscopic colloidal particles of
big and small size and different shape was the subject a series of papers [31,32]. The
obtained results for long flexible linear polymer chains indicate that focusing on such
systems leads to universal results which are independent of microscopic details and
are free of nonuniversal model parameters and depend only on shapes of particles and
ratios of three characteristic lengths of the system such as the radius of the particle,
the polymer size, the distance between the particle and the wall or between two par-
ticles, respectively.
The other very interesting question is investigation of the influence of the polymer

chain topology on the depletion interaction potentials and depletion forces. In this
respect it is necessary to mention polymers with ring topology. As it was shown in a
series of the atomic force spectroscopy (AFM) experiments [33,34] biopolymers such
as DNA very often present ring topology. Such situation takes place, for example, in
the case of Escherichia coli (E.coli) bacteria with a chromosome which is not a linear
polymer, but has a ring topology [35]. The biopolymers of DNA of some viruses such
as bacteriophages λ that infect bacteria oscillate between linear and ring topology
[36,37]. The linear form of DNA is encountered in mature viruses, however inside of
the host cell DNA of phages adopts a ring topology [38]. Besides, the physical effects
arising from confinement and chain topology play a significant role in the shaping of
individual chromosomes and in the process of their segregation, especially in the case
of elongated bacterial cells [39].
Ring polymers with specified knot type were chemically synthesized a long time

ago [40]. Ring topology has an influence on the statistical mechanical properties of
polymers, for example, on scaling properties [41,42] and shape [34,43,44] because
it restrains the accessible phase space. Looking back into the history of the investi-
gation of the statistical mechanical properties of ring polymers we should mention
that an interesting point which was confirmed by numerical studies in [45] is that
longer ring polymers are usually knotted with higher frequency and complexity. In
[46] it was established, that ring polymers with more complex knots are more com-
pact and have a smaller radius of gyration and this decreases their ability to spread
out under confinement. A series of papers have been devoted to the investigation of
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ring polymers compressed or squeezed by a force in a slab [47–49]. For example, the
results of MC simulations performed in [47] suggest that the knotted ring polymers
will exert higher entropic forces on the walls of the confining slit than unknotted or
linear polymers. In [47] it was stated that the knotted ring polymers expanded as
the width of the slit increased in contrast to the behaviour of unknotted (or linear)
polymers whose size showed a plateau after a certain width of slit was reached. The
entropic force exerted on the walls arising from confinement to a slit of a knotted
ring polymer was calculated using a bead-spring model by Matthews et al. [37]. It
was found [37] that in the case of a narrow slit more complex knot types in a ring
polymer exert higher forces on the confining walls of the slit in comparison to unknot-
ted polymer chains of the same length, and for the relatively wide slits the opposite
situation takes place. As it was shown in [49], confining ring polymer to a slab results
in the loss of configurational entropy and leads to the arising of a repulsive force
which depends on the entanglements between the two walls of the confining slab. It
should be mentioned, that in [49] the profiles of critical forces which are necessary to
apply in order to overcome this entropically induced repulsion were obtained in the
framework of a new numerical approach which was the implementation of the gener-
alized atmospheric sampling (GAS) algorithm for lattice knots proposed by Rensburg
and Rechnitzer in [50]. Recently advanced MC simulation techniques [51] have been
used in order to study the effect of nanoslit confinement on topological properties
of circular model DNA, which was modeled as a semiflexible polymer chain. They
have shown that the knotting probability has strong slit width dependence. Besides,
the investigation of the influence of topological constraints on the free energy and
metric properties of an ideal ring polymers without excluded volume effects or at-
tractive interactions confined in a narrow slit were performed using off-lattice MC
simulations in [52]. It was found [52] that the scaling behavior of the confinement free
energy of a freely jointed ring and an unknotted ring polymer is the same in a narrow
slit region.
In a series of recent papers based on MC simulations [53–55] the occurrence and

behaviour of knots in polymers were studied extensively. Such, for example, in [53]
numerical simulations were used in order to show that the effective stiffening of DNA
by the nematic arrangement promotes formation of torus knots in phage capsids.
In [54] a mechanism in which two knots can pass through each other and swap po-
sitions along the DNA strand were suggested and explained. Using a combination of
the multicanonical MC algorithm and the replica – exchange method in [55] were per-
formed investigation of the influence of bending stiffness on the conformational phases
of a bead – stick polymer and obtained the corresponding pseudophase diagram for
flexible, semiflexibe and stiff polymers. Besides, in [55] was found the thermodynam-
ically stable knots and unusual transitions into these knotted phases.
The question of influence of the polymer chain topology on the depletion in-

teraction potentials and the depletion forces was investigated in a series of our
papers [56–58], where we performed the investigation of a dilute solution of ring
polymers immersed in a confined geometry like slit of two parallel walls with different
boundary conditions and in a solution of mesoscopic colloidal particles of one sort or
two sorts which can be both attractive, both repulsive for polymers or discuss the
mixed case when one sort of mesoscopic colloidal particles is attractive for ring poly-
mers and the other one is repulsive. It should be mentioned, that our investigation and
calculation of the respective depletion interaction potentials and the depletion forces
for linear and ring polymers with the EVI in a good solvent immersed in confined
geometries is based on one of the powerful analytical method: the massive field the-
ory approach in fixed space dimensions d=3 (see [25,29,30,59]) up to one-loop order,
which demonstrates quite good agreement with the results of numerical calculations
and experimental data.
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2 The thermodynamic description and the model

In a series of our papers (see [25,29,30,56–58]) the investigations of a dilute solu-
tion of linear or ring polymers confined in a slit geometry of two parallel walls and
in a solution of mesoscopic spherical colloidal particles of one sort or two different
sorts were performed. We assumed that the solution of polymers is sufficiently dilute
so that the interchain interactions and the overlapping between different polymers
can be neglected and it is sufficient to consider the behaviour of a single polymer
chain. Besides, as it was confirmed by multicanonical simulations recently [60], poly-
mers in a dilute solution confined in a spherical cavity can be considered isolated
for all temperatures larger than the aggregation temperature, which is a function of
the density. As it is known [15,16,61,62], the behaviour of long flexible polymers is
determinated by entropy and characterized by detail independence, universality and
scaling. The properties of universality and scaling also took place for critical systems
with surfaces [64,65] and can be applied for the case of polymer solution in confined
geometries [24,25,56,57,62].
It should be mentioned that in a series of our papers [25,56–58] we followed the

thermodynamic description of the problem as it was proposed in [24] and performed
at the beginning the calculations in the framework of the grand canonical ensemble
where the chemical potential μ is fixed and later obtained the results for the canonical
ensemble via the Legendre transform. We performed the investigation of a dilute
solution of linear or ring polymers immersed in the slit geometry of two parallel walls
and allowed for the exchange of polymer coils between the slit and the reservoir. In
such a situation the polymer solution in the slit is in equilibrium contact with an
equivalent solution in the reservoir outside the slit. As it was shown in [24], the free
energy of the interaction between the walls in such a grand canonical ensemble is
defined as the difference of the free energy of an ensemble where the separation of
the walls is fixed at a finite distance L and where the walls are separated infinitely
far from each other:

δF = − kBT Ñ ln
( Z‖(L)
Z‖(L→∞)

)
= − kBT Ñ

{
ln

(Z‖(L)
Z
)
− ln

(Z‖(L→∞)
Z

)}
,

(1)

where Ñ is the total amount of polymer coils in the solution and T is the tem-
perature. The Z‖(L) value is the partition function of one polymer (linear or ring)
located in a volume V containing two walls at a distance L. It should be mentioned
that we normalized the partition functions Z‖(L) and Z‖(L→∞) on the function
Z =V Ẑb, where Ẑb= IL

μ20−>
R2x
2

[ 1
μ20
] for linear polymers and Ẑb= IL

μ20−>
R2x
2

[ 12μ0 ] for

ring polymers, respectively.
Following the thermodynamic description proposed in [24,25,56,57] the corre-

sponding reduced free energy of interaction δf per unit area A=1 for the case of
linear or ring polymers confined in the slit geometry of two parallel walls after per-
forming Fourier transform in the direction parallel to the surfaces and integration
over dd−1r can be obtained:

δf =
δF

npkBT
. (2)

Here np= Ñ/V is the polymer density in the bulk solution. The reduced free energy of
interaction δf , according to equation (2), is a function of the dimension of length and
dividing it by another relevant length scale, for example, the size of polymer in bulk,
e.g. Rx yields a universal dimensionless scaling function for the depletion interaction
potential:

Θ(y)=
δf

Rx
, (3)
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where y=L/Rx is a dimensionless scaling variable. The resulting scaling function for
the depletion force between two walls induced by the polymer solution is denoted as:

Γ(y)= − d(δf)
dL

= − dΘ(y)
dy
. (4)

As it is known [62], the force exerted on the surfaces of a confining slit by polymer is

equal to the depletion force with opposite sign: K(y) = d(δf)
dL
.

In general the behavior of a single ideal (Gaussian) polymer at θ-solvent can be
described by a model of random walk (RW) and the behavior of real polymer with
the EVI for temperatures above the θ-point by a model of self-avoiding walk (SAW).
Usually in the case when the EVI between monomers becomes relevant the polymer
coils are less compact than in the case of ideal chains. As it is known, taking into
account the polymer-magnet analogy developed by de Gennes [15,16], their scaling
properties in the limit of an infinite number of steps N may be derived from a formal
n→ 0 limit of the field theoretical φ4 O(n)- vector model at its critical point. In this
case the value 1/N plays the role of a critical parameter analogous to the reduced
critical temperature in magnetic systems. In the case when the polymer solution is in
contact with solid substrates, the monomers interact with the surfaces. In a series of
papers [66–68] the extensive multicanonical MC computer simulations were used in
order to study the conformational behaviour of flexible polymers near an attractive
surfaces and the corresponding complete solubility-temperature phase diagram was
constructed and discussed. The proposed in [24,25,56–58] calculations were performed
for the case when the surfaces were impenetrable. It means that the corresponding
potential U(z) of the interaction between the monomers of a polymer chain and a wall
tends to infinity U(z)→∞ when the distance between a wall and polymer chain is less
than monomer size l. The deviation from the adsorption threshold (c ∝ (T − Ta)/Ta)
(where Ta is adsorption temperature) changes sign at the transition between the
adsorbed (the so-called normal transition, c < 0) and the nonadsorbed state (ordinary
transition, c > 0) [62,65] and it plays the role of a second critical parameter. The value
c corresponds to the adsorption energy divided by kBT (or the surface enhancement in
field theoretical treatment). The adsorption threshold for long-flexible polymers takes
place, where 1/N → 0 and c→ 0. As it was shown in [24,25,56,57], in the case when
polymer solution is confined in a slit geometry of two parallel walls the properties of
the system depend on the ratio L/ξR, where L is the the distance between two walls

and ξR=
√〈R2〉 ∼ Nν is the average end-to-end distance.

As was mentioned by de Gennes [15,16], the partition function Z(x,x′) of a single
polymer chain with two ends fixed at x and x′ is connected with the two-point corre-
lation function G(2)(x,x′)= 〈φ(x)φ(x′)〉 in φ4 O(n)- vector model for n-vector field
φ(x) with the components φi(x), i=1, ..., n (and x=(r, z)) via the inverse Laplace
transform μ20 → L0: Z(x,x′;N, v0)= ILμ20→L0(〈φ(x)φ(x′)〉|n→0) in the limit, where
the number n of components tends to zero. The conjugate Laplace variable L0 has
the dimension of length squared and is proportional to the total number of monomers
N of the polymer chain: L0 ∼ l2N .
The effective Ginzburg-Landau-Wilson Hamiltonian describing the system of a

dilute polymer solution confined in semi-infinite (i=1) or confined geometry of two
parallel walls (i=1, 2) is [65]:

H[φ, μ0] =
∫
ddx

{
1

2
(∇φ)2 + μ0

2

2
φ2 +

v0

4!

(
φ2
)2}

+

2∑
i=1

ci0
2

∫
dd−1rφ2, (5)

where the conjugate chemical potential μ0 is the “bare mass” in field – theoretical
treatment, v0 is the “bare coupling constant” which characterizes the strength of the
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EVI. In the case of a slit geometry the walls are located at the distance L one from
another in z- direction in such way that the surface of the bottom wall is located at
z=0 and the surface of the upper wall is located at z=L. Each of the two system
surfaces is characterized by a certain surface enhancement constant ci0 , where i=1, 2.
In the case when the ends of polymer chain x=(r, z) and x′=(r′, z′) in partition
function coincide, such partition function corresponds to the partition function of a
phantom ring polymer, i.e. a ring polymer where we perform the summation over all
possible knot structures [56–58].
The interaction between the polymer chain and the walls is implemented by the

different boundary conditions. In a series of our papers we performed investigation
for different boundary conditions. Such, for example, we performed investigation for
the case of two repulsive walls, where the segment partition function and thus the
partition function for the whole polymer tends to zero as any segment approaches
the surface of the walls. This case corresponds to the Dirichlet-Dirichlet boundary
conditions (D-D b.c.) (see also [24,25,65]):

φ(r, 0)=φ(r, L)= 0 or c1 → +∞, c2 → +∞. (6)

Besides, we performed calculations for the case of two inert walls, which corresponds to
the situation of Neumann-Neumann boundary conditions (N-N b.c.) (see also [25,65]):

∂φ(r, z)

∂z
|z=0= ∂φ(r, z)

∂z
|z=L=0 or c1=0, c2=0, (7)

and for the mixed case of one repulsive and the other one inert wall, where Dirichlet-
Neumann boundary conditions(D-N b.c.) takes place:

φ(r, 0)= 0,
∂φ(r, z)

∂z
|z=L=0 or c1 → +∞, c2=0. (8)

It should be mentioned that the term “inert” in this contents means the surface
where the adsorption threshold takes place. In fact the performed calculations are
valid for the case of wide slit limit y ≥ 1 (where y= L

Rx
), but they are not suitable to

describe the case of dimensional crossover from d to d− 1 dimensional system which
arises for y 
 1. The d− 1 dimensional system is characterized by another critical
temperature and a new critical fixed point, as it takes place, for example, in magnetic
or liquid thin films. Nevertheless, some assumptions allowed us to describe the region
of narrow slit, as it was proposed in one of our papers (see Ref. [25]). In the case
of infinitely large wall separations, the slit system decomposes into two half-space
systems.
It should be mentioned that the most common parameter in polymer physics used

for the signification of polymers size which is observable in experiments is the radius

of gyration Rg (see Refs. [61,62,69]): R
2
g =χ

2
d
R2x
2 , where χd is a universal numerical

prefactor depending on the dimension d of the system and R2x=
l2N2ν

3 (where ν is
0.5 for ideal polymers and 0.588 for real polymers with the EVI). For ideal polymers
takes place the relation: χ2d=

d
3 and for real polymers at d=3 the following takes

place [61]: χ23=0.958.

3 Dilute solution of ideal polymers in a slit geometry

Let’s consider at the beginning the case of a dilute solution of ideal polymers in a
slit geometry of two parallel walls. As it was mentioned above we are interested in
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discussion of two cases: (a) ideal linear polymer and (b) phantom ideal ring polymer
under Θ-solvent condition trapped in a slit geometry of two parallel walls situated at
a distance L one from another with different boundary conditions (see Eqs. (6)-(8)).
(a) Ideal linear polymer in a slit geometry of two parallel walls. In [25]

for the case of ideal linear polymer in a slit geometry of two parallel walls with D-D
b.c. (6) we obtained that if both c1 and c2 are positive, the depletion interaction
potential ΘDD(y) is negative and hence the walls attract each other due to the de-
pletion zones near repulsive walls. It should be mentioned, that the obtained results
for ideal linear polymer in a slit geometry of two repulsive walls are in agreement
with the previous theoretical results obtained in reference [24]. For the dimensionless
scaling function of the depletion interaction potential in the case of two inert walls,
which corresponds to N-N b.c. (7) in [25] we obtained ΘNN (y)= 0. It corresponds to
the fact that ideal chains do not loose free energy inside the slit in comparison with
free chains in unrestricted space. The entropy loss is fully regained by surface interac-
tions provided by two walls. In the case of one repulsive and the other one inert wall,
which corresponds to D-N b.c. (8) we obtained (see [25]) that ΘDD(2y)≈2ΘDN (y).
The obtained result is intuitively clear, because the depletion zone is formed only
near the lower wall, i.e. near the wall with Dirichlet b.c. The upper wall with
Neumann b.c. does not contribute at all to the induced depletion interaction. It
should be mentioned that in [25] for the case of ideal linear polymer chain confined
in a slit geometry of two parallel walls with different boundary conditions the exact
results for the dimensionless scaling functions of the depletion interaction potential
and the depletion force were obtained. Besides, in [25] the asymptotic region of wide
slit with y ≥ 1 and narrow slit with y 
 1 were discussed. In the case of two repulsive
walls and for the mixed case of one repulsive and the other one inert wall in the wide
slit region with y ≥ 1 the following results for the dimensionless scaling functions of
the depletion force in [25] were obtained, respectively:

ΓDD(y)≈− 4 erfc
(
y√
2

)
+ 8erfc

(√
2y
)
, ΓDN (y)≈− 4erfc

(√
2y
)
. (9)

The results obtained in [25] for the dimensionless scaling functions of the depletion
force are presented in Figure 1a–1c by black lines with black squares, respectively.
In the case of narrow slit with y 
 1 the asymptotic solution for the depletion force

in both the above mentioned cases simply becomes ΓDD(DN),narr(y)≈− 1 (see [25]).
These results can be understood phenomenologically. In our units the quantities Θ
and Γ were normalized to the overall polymer density np. So, the above results simply
indicate that the force is entirely induced by free chains surrounding the slit, or, in
other words, by the full bulk osmotic pressure from the outside of the slit. No chain
has remained in the slit. It is reasonable in the case of repulsive walls in the limit of
narrow slits. The above mentioned arguments were used in order to obtain the leading
contributions to the depletion effect as y → 0. We can state that in the case of very
narrow slits polymers would pay a very high entropy to stay in the slit or even enter
it. It is due to the fact that the phase space containing all possible conformations is
essentially reduced by the squeezing confinement to the size d−1

d
times its original size

(for an unconfined chain). Therefore, as it was shown in [25], the ratio of partition
function of polymer chain in the slit and the free chain partition function vanishes
strongly as y → 0. The advantage of the proposed procedure is that no expansion is
necessary in this case of narrow slit region and it should be equally valid for polymers
with the EVI.
(b) Phantom ideal ring polymer in a slit geometry of two parallel walls.

In [56,57] the dimensionless scaling functions of the depletion interaction potential
ΘR(y) and the depletion force ΓR(y) between two repulsive, two inert and for the
mixed case of one repulsive and the other one inert wall induced by the dilute solution
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of phantom ideal ring polymers in the wide slit region y ≥ 1 were obtained. The
corresponding dimensionless scaling functions of the depletion force for D-D (N-N)
b.c. and D-N b.c. are:

ΓRDD(y)= 2e
−2y2 − 8y2e−2y2 , ΓRDN (y)= − 2e−2y

2

+ 8y2e−2y
2

. (10)

We obtained that phantom ideal ring polymers due to the complexity of chain topol-
ogy and from entropical reasons prefer to escape from the space not only between
two repulsive walls but also in the case of two inert walls. As a result, the attractive
depletion force arises between the walls. As it is possible to see from equation (10),
the dimensionless scaling function of the depletion force in the case of mixed bound-
ary conditions becomes repulsive in the region y ≥ 1.
Taking into account the above mentioned arguments (see section 3(a)) in the case

of narrow slit of two repulsive walls with y → 0 the asymptotic solution for the scaling
function of the depletion force simply becomes: ΓRDD,narr(y)≈− 1 (see [56,57]). We
obtained that the scaling behaviour of the depletion force is the same for linear and
ring polymers in a narrow slit region of two parallel repulsive walls. The obtained
results for the scaling functions of the depletion force in the case of linear and ring
polymers in a narrow slit are in agreement with the results obtained in [52].

4 Dilute solution of linear and ring polymers with the EVI in
a slit geometry

As a next step let’s consider a dilute solution of linear and ring polymers with the
EVI in a good solvent immersed in a slit geometry of two parallel walls. As it is
known [15,16], in a good solvent the effects of the EVI between monomers play a
crucial role so that the polymer coils occupy large space and are less compact than in
the case of ideal polymers. The influence of the EVI on the depletion functions and
corresponding partition functions can be obtained using perturbation treatment in
the framework of the massive field theory approach in fixed space dimensions d=3
up to one-loop order approximation in the presence of confining slit geometry of
two parallel walls. In order to make the theory ultraviolet (UV) finite in RG sense
directly in d=3 space dimensions we performed the standard mass renormalization
μ20=μ

2 − δμ20 and the coupling constant renormalization v0=μv of the corresponding
correlation functions by analogy as it was proposed by Parisi [70]. Besides, in order to
remove the UV singularities of the correspondent correlation functions on the surface
the surface enhancement renormalization cj0 = cj + δcj were performed (see [25,56,
57]) by analogy as it took place in the case of semi-infinite geometry [59]. It should
be mentioned that the calculations were performed at the corresponding stable fixed
point ṽ∗=1 obtained from ressummed beta functions of the underlying bulk field
theory in the framework of one-loop approximation scheme. The obtained in [25]
results for the dimensionless scaling functions of the depletion force Γ(y) between two
repulsive walls, two inert walls and for one repulsive and the other one inert wall in the
case of a dilute solution of linear polymers with the EVI in a good solvent are presented
in Figure 1a–1c by red lines with red points, respectively. The respective results for
the dimensionless scaling function of the depletion force between two repulsive walls
in the case of a dilute solution of ring polymers with the EVI are presented in Table 1.
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Fig. 1. The dimensionless scaling functions of Γ(y) for a dilute solution of linear polymers
immersed in a slit geometry with different boundary conditions (see [25]): (a) D-D b.c.;
(b) N-N b.c.; (c) D-N b.c.

Table 1. The dimensionless scaling functions of ΓRDD between two repulsive walls as function
of y=L/Rx in the case of a dilute solution of ring polymers with the EVI.

y 1.3 1.5 1.7 1.9 2.1
ideal ring −0.392 −0.178 −0.065 −0.020 −0.005
ring with EVI −0.391 −0.175 −0.064 −0.019 −0.005

5 Linear and ring polymers in a solution of mesoscopic spherical
colloidal particles

Another interesting situation arises when we have a dilute solution of linear or ring
polymers immersed in the solution of mesoscopic colloidal particles. The interaction
of long flexible nonadsorbing linear polymers with mesoscopic colloidal particles of
big or small size with different shape was the subject of investigation in a series of
papers [31,32]. The performed in [31,32] investigations for long flexible linear poly-
mers indicate that focusing on such systems leads to universal results which are in-
dependent of microscopic details and are free of nonuniversal model parameters and
depend only on shapes of particles and ratios of three characteristic lengths of the
system such as the radius of the particle, the polymer size, the distance between the
particle and the wall or between two particles, respectively. In our papers [25,56,58]
we focused our attention on the investigation of the depletion interaction and the
depletion force for two cases: (1) between a big spherical colloidal particle of radius
R and the wall; (2) between two colloidal particles of big sizes with different radii
R1 and R2 and different adsorbing or repelling properties with respect to polymers
in the solution. The interaction of a dilute solution of linear or ring polymers with
particles and walls is implemented by the corresponding boundary condition. The
difference between the forces with and without the particle (or particles) yields the
depletion interaction of the particle with the wall (or between two particles). Taking
into account the Derjaguin approximation [71], which describes the sphere of the big
colloidal particle of the radius R (with R
 L and R
 Rx) by a superposition of
immersed plates (see Figure 2a) with local distance h(ρ)= a+R−√R2 − ρ2 from
the wall, where a – is the nearest distance from the particle to the wall and ρ – is
the width of the fringe itself we performed calculations of the depletion interaction

potential Φ(ỹ)/npkBT and the depletion force
−d(Φ(ỹ)/npkBT )

dỹ
between the colloidal

particle and the wall in a dilute solution of ring polymers. It should be mentioned
that we also used some modifications of the Derjaguin approximation for the cal-
culation of the depletion interaction potential and the depletion force in the case
of two big spherical colloidal particles with different radii R1 �= R2 when Ri 
 L
and Ri 
 Rx, i=1, 2. In this case we took into account that the distance h(ρ) is
equal to: h(ρ)= a+R1 −

√
R21 − ρ2 +R2 −

√
R22 − ρ2, where a – in this case is the
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Fig. 2. The Derjaguin approximation (see [71]).

Fig. 3. The dimensionless scaling functions of ϑ(ỹ) for a dilute solution of linear polymers
immersed between the big spherical colloidal particle and the wall (or between two big
spherical colloidal particles) for the case of (a) D-D b.c.; (b) N-N b.c.; (c) D-N b.c.

nearest distance from the particle to other particle (see Fig. 2b). The depletion in-

teraction potential Φ(ỹ)/npkBT is equal to: 2πR̃R
2
x

∫∞
ỹ
dyΘ(y) with ỹ= a/Rx where

R̃=R for the case of the big spherical colloidal particle of radius R near the wall
and R̃=R1R2/(R1 +R2) for the case of two big spherical colloidal particles with
different radii R1 �= R2. Based on the results for the depletion interaction potential
Φ(ỹ)/npkBT we can calculate the depletion force for certain b.c.’s. The depletion
force between the big spherical colloidal particle and the wall (or between two big
spherical colloidal particles) has the following form [56,58]:

− d
dỹ

Φid(ỹ)

npkBT
=2πR2xR̃ϑ

id(ỹ), (11)

where ϑid(ỹ) is equal to: ±2ỹe±2ỹ2 for ideal ring polymers, where the sign “–” corre-
sponds to D-D b.c. or N-N b.c. and the sign “+” to the case of D-N b.c. The results
for the corresponding scaling functions ϑid(ỹ) for the case of a dilute solution of ideal
linear polymer chains are presented in Figure 3a–3c by black lines with black squares,
respectively. It should be mentioned that in a similar way we performed calculations
for the depletion force between the big colloidal particle and the wall (or between
two big spherical colloidal particles of different radii) induced by a dilute solution of
linear and ring polymers with the EVI in a good solvent.

The obtained results for the corresponding dimensionless scaling functions
ϑEV I(ỹ) of the depletion force in the case of linear polymer chains with the EVI
immersed between the big spherical colloidal particle and the wall (or between two
big spherical colloidal particles) with different boundary conditions are presented in
Figure 3a–3c by red lines with red points, respectively. Besides, the corresponding
results for the dimensionless scaling function of the depletion force in the case of ring
polymer with the EVI immersed between the big spherical colloidal particle and the
wall (or between two big spherical colloidal particles) with D-D b.c. are presented in
Table 2.
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Table 2. The dimensionless scaling function of ϑR(ỹ) for a dilute solution of ring polymers
immersed between the big spherical colloidal particle and the wall (or between two big
spherical colloidal particles) in the case of D-D b.c. as function of ỹ= a/Rx.

y 1.3 1.5 1.7 1.9 2.1
ideal ring −0.0885 −0.0333 −0.01050 −0.00278 −0.0006
ring with EVI −0.0873 −0.0326 −0.01025 −0.00271 −0.0006

Fig. 4. (a) The dimensionless scaling functions of ΓDD(y) for linear polymer in a slit geome-
try of two repulsive walls (see[25]) in comparison to the results obtained in [24]. (b) Compar-
ison of the analytical results obtained in [25] for the reduced canonical force and the results
obtained by MC simulations for a trapped polymer between two repulsive walls.

6 Conclusions and discussions

In [25] we performed comparison of the obtained in the framework of the massive field
theory in fixed space dimensions d=3 results for the scaling functions of the depletion
interaction potential and the depletion force for the case of two repulsive walls and
the results obtained using a dimensionally regularized continuum version of the field
theory with minimal subtraction of poles in ε=4− d expansion. As it is possible
to see from Figure 4a, the results obtained within the framework of both analytical
methods are in good quantitative agrement. The obtained analytical results indicate
that the reduction in the depletion effect due to the EVI is weaker within the massive
field theory approach as compared to the results obtained using the ε – expansion.
Besides, in [25] we obtained very good agreement of our analytical results for the
reduced canonical force LK/kBT and the results obtained by Hsu and Grasberger [28]
based on the lattice MC algorithm on a regular cubic lattice in three dimensions, as
it is possible to see on Figure 4b. In this respect we should mention that in general
case the canonical free energy can be obtained via the Legendre transform from the
grand canonical one in the thermodynamic limit (Ñ , V →∞) (for details see [25]). In
a series of papers [24,25] the good qualitative agreement between analytical results
and the experimental results [8] for the depletion interaction potential between the
spherical colloidal particle of big size immersed in the dilute solution of nonionic linear
polymer chains and the wall of the container were obtained.
The present investigations show that the scaling functions for the depletion in-

teraction potential and the depletion force between two repulsive, two inert walls or
two mixed walls induced by the dilute solution of phantom ideal ring polymers and
ring polymers with the EVI (see [56–58]) are characterized by completely different
behavior than in the case of the dilute solution of linear polymers immersed in the slit
geometry of two parallel walls (see [25]). We would like to recollect that in the case of
linear ideal polymers in confined geometry of two inert walls in [25] we obtained that
the scaling functions for the depletion interaction potential and the depletion force
were equal to zero. The obtained in [56–58] results indicate that ring polymers due to
the complexity of chain topology and from entropical reasons prefer to escape from
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Fig. 5. The ratio KRDD(L)/K
lin
DD(L) of the force for phantom ideal ring polymers and the

force for ideal linear polymers in the slit geometry of two parallel repulsive walls as function
of the distance L (in l units) between the walls for different values of Rg (see [56,57]).

the space not only between two repulsive walls but also in the case of two inert walls.
As a result, the attractive depletion force arises which decreases as the width of slit
increases. Besides, the depletion force between one repulsive and the other one inert
wall induced by the dilute solution of ideal ring polymers becomes repulsive in the
region y ≥ 1. The similar behaviour was observed for binary liquid mixture confined
in the slit geometry of two parallel walls with mixed boundary conditions as it was
shown in [72]. Such behaviour of the dilute solution of phantom ideal ring polymers
in confined geometries of two parallel walls with mixed boundary conditions can be
used for the production of new types of micro- and nano- electromechanical devices,
because it allows to reduce the static friction in such systems.
In order to compare our results with the results obtained in the framework of

other methods we performed calculations of the ratio KRDD(L)/K
lin
DD(L) of the en-

tropically induced force for phantom ideal ring polymers KRDD and the corresponding
force for ideal linear polymers KlinDD in the slit geometry of two parallel repulsive
walls as function of the distance L (in l units) between the walls for different val-
ues of the radius of gyration Rg (see Fig. 5). The calculations presented in Figure 5
were performed for different values of radius of gyrations [37]: Rg(121)= 6.9± 0.01[l],
Rg(91)= 7.28± 0.01[l], and Rg(61)= 7.78± 0.01[l] which correspond to the ring poly-
mers with different knot types: 121; 91; 61, where Cp− is a standard notation [73],
where C denotes the minimum number of crossings in any projection on a plane and
p– is used in order to distinguish knot types with the same C. We observed that in
the wide slit region ring polymers with less complex knot types (with bigger radius of
gyration) in a ring topology exert higher forces on the confining repulsive walls at the
same length L. As it is possible to see from Figure 5 our results for the ratio of the
resulting entropic forces KRDD(L)/K

lin
DD(L) are in good qualitative agreement with

the previous results obtained by Matthews et al. (see Fig. 2 in [37]) in the framework
of bead-spring model. The difference between our results and the results obtained by
Matthews et al. arises due to the fact that in [37] calculations were performed for
relatively short polymers with polymer length of order N ∼ 300 units for different
values of the radius of gyration.
Taking into account the Derjaguin approximation [71] we obtained the results for

the depletion interaction potential and the depletion force for the dilute solution of
ring polymers immersed in the solution of mesoscopic spherical colloidal particles.
We performed investigation of the depletion effect for mesoscopic colloidal particles
with different radii and different adsorbing or repelling properties with respect to ring
polymers in the solution. As it is possible to see from the obtained in equation (11) and
Table 2 results the absolute value of the depletion force between the spherical colloidal
particle and the wall is bigger than for the case of two spherical colloidal particles.
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This feature is universal and does not depend on the boundary condition type. In the
case when two colloidal particles have the same radius, the corresponding depletion
force is twice smaller than for the case of the particle near the wall. The further
theoretical and experimental investigations of the dilute and semidilute solutions of
linear and ring polymers with the EVI immersed in the slit geometry of two inert
walls or mixed walls is the task of great interest which is under consideration.

This work in part was supported by grant P − 22/29.07.2014 under a bilateral agreement
between the PAS and the BAS (Z.U. and H.Ch.).

References

1. L.A. Lyon, A. Fernandez-Nieves, Ann. Rev. Phys. Chem. 63, 25 (2012)
2. M. Fuchs, K.S. Schweizer, J. Phys. Condensed Matter 14, R239 (2002)
3. X. Chen, J. Cai, H. Liu, Y. Hu, Mol. Simul. 32, 877 (2006)
4. T. Cosgrove, Colloid Science Principles, Methods and Applications (Wiley, 2010)
5. N.W. Lekkerkerker Henk, R. Tuinier, Colloids and the Depletion Interaction, Lecture
Notes in Physics 833 (Springer, Netherlands, 2011)

6. D.H. Napper, Polymeric Stabilization of Colloidal Dispersions (Academic, New York,
1983)

7. B.L. Carvalho et al., Macromolecules 26, 4632 (1993)
8. D. Rudhardt, C. Bechinger, P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)
9. R. Verma, J.C. Crocker, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 81, 4004 (1998)
10. Y.N. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K.B. Shintaku,
S. Toride, H. Sekino, K. Kabuto, I. Nishio, Phys. Rev. Lett. 78, 3963 (1997)

11. R.A. Curtis, L. Lue, Curr. Opin. Colloid Interface Sci. 20, 19 (2015)
12. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)
13. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958)
14. J.F. Joanny, L. Leibler, P.G. de Gennes, J. Polym. Sci. 17, 1073 (1979)
15. P.G. de Gennes, Phys. Lett. A 38, 339 (1972)
16. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press,
New York, 1979)

17. T. Odijk, Macromolecules 29, 1842 (1996)
18. T. Odijk, J. Chem. Phys. 106, 3402 (1996)
19. J.F. Joanny, J. Phys. (France) 49, 1981 (1988)
20. R. Lipowsky, Europhys. Lett. 30, 197 (1995)
21. C.E. Cordeiro, J. Phys. Chem. Solids 60, 1645 (1999)
22. Y. Singh, S. Kumar, D. Giri, J. Phys. A 32, L407 (1999)
23. E. Eisenriegler, Phys. Rev. E 55, 3116 (1997)
24. F. Schlesener, A. Hanke, R. Klimpel, S. Dietrich, Phys. Rev. E 63, 041803 (2001)
25. D. Romeis, Z. Usatenko, Phys. Rev. E 80, 041802 (2009)
26. A. Milchev, K. Binder, Eur. Phys. J. B 3, 477 (1998)
27. A. Milchev, K. Binder, Eur. Phys. J. B 13, 607 (2000)
28. H.P. Hsu, P. Grasberger, J. Chem. Phys. 120, 2034 (2004)
29. Z. Usatenko, J. Chem. Phys. 134, 024119 (2011)
30. Z. Usatenko, J. Mol. Liq. 164, 59 (2011)
31. A. Bringer, E. Eisenriegler, F. Schlesener, A. Hanke, Eur. Phys. J. B 11, 101 (1999)
32. A. Hanke, E. Eisenriegler, S. Dietrich, Phys. Rev. E 59, 6853 (1999)
33. J. Marek et al., Cytometry Part A 63A, 87 (2005)
34. G. Witz, K. Rechendorff, J. Adamcik, G. Dietler, Phys. Rev. Lett. 106, 248301 (2011)
35. J. Berg, J. Tymoczko L. Stryer, Biochemistry, 5th edn. (New Yok, W.H. Freeman and
Co., 2002)

36. J. Arsuaga, M. Vazquez, S. Trigueros, D.W. Sumners, J. Roca, Proc. Natl. Acad. Sci.
U.S.A. 99, 5373 (2002)



Recent Advances in Phase Transitions and Critical Phenomena 665

37. R. Matthews, A.A. Louis, J.M. Yeomans, Mol. Phys. 109, 1289 (2011)
38. R.V. Miller, Sci. Am. 278, 66 (1998)
39. S. Jun, B. Mulder, Proc. Natl. Acad. Sci. U.S.A. 103, 12388 (2006)
40. C.O. Dietrich-Buchecker, J.P. Sauvage, Angew. Chem. Int. Edn. Engl. 28, 189 (1989)
41. A. Dobay et al., Proc. Natl. Acad. Sci. U.S.A. 100, 5611 (2003)
42. E. Ercolini et al., Phys. Rev. Lett. 98, 058102 (2007)
43. K. Alim, E. Frey, Phys. Rev. Lett. 99, 198102 (2007)
44. E.J. Rawdon et al., Macromolecules 41, 8281 (2008)
45. E.J. Janse van Rensburg, S.G. Whittington, J. Phys. A: Math. Gen. 23, 3573 (1990)
46. S. Quake, Phys. Rev. Lett. 73, 3317 (1994)
47. E.J. Janse van Rensburg, J. Stat. Mech. P03001 (2007)
48. E.J. Janse van Rensburg, E. Orlandini, M.C. Tesi, S.G. Whittington, J. Phys. A: Math.
Theor. 41, 015003 (2008)

49. D. Gasumova, E.J. Janse van Rensburg, A. Rechnitzer, J. Stat. Mech. P09004 (2012)
50. E.J. Janse van Rensburg, A. Rechnitzer, J. Phys. A: Math. Theor. 42, 335001 (2009)
51. C. Micheletti, E. Orlandini, Macromolecules 45, 2113 (2012)
52. B. Li, Z.Y. Sun, L.J. An, Z.G. Wang, Macromolecules 48, 8675 (2015)
53. D. Reith, P. Cifra, A. Stasiak, P. Virnau, Nucleic Acids Res. 40, 5129 (2012)
54. B. Trefz, J. Siebert, P. Virnau, Proc. Natl. Acad. Sci. USA 111, 7948 (2014)
55. M. Marenz, W. Janke, Phys. Rev. Lett. 116, 128301 (2016)
56. Z. Usatenko, J. Halun, P. Kuterba, Condens. Matter Phys. 19, 43602 (2016)
57. Z. Usatenko, J. Halun, J. Stat. Mech. AA5285 (2016)
58. Z. Usatenko, P. Kuterba, H. Chamati, J. Halun, J. Phys. Conf. Ser. (2016)
59. H.W. Diehl, M. Shpot, Nucl. Phys. B 528, 595 (1998)
60. J. Zierenberg, M. Mueller, P. Schierz, M. Marenz, W. Janke, J. Chem. Phys. 141, 114908
(2016)

61. J. des Cloizeaux, G. Jannink, Polymers in Solution (Oxford, Clarendon Press, 1990)
62. E. Eisenriegler, Polymers Near Surfaces (World Scientific Publishing, Singapore, 1993)
63. E. Orlandini, S. Whittington, Rev. Mod. Phys. 79, 611 (2007)
64. K. Binder, in Phase Transitions and Critical Phenomena, edited by C. Domb,
J.L. Lebowitz, vol. 8 (Academic Press, London, 1983)

65. H.W. Diehl, in Phase Transitions and Critical Phenomena, edited by C. Domb,
J.L. Lebowitz , vol. 10 (Academic Press, London 1986)

66. M. Bachmann, W. Janke, Phys. Rev. Lett. 95, 058102 (2005)
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