Skip to main content
Log in

Abstract

The Kuramoto model has become a paradigm to describe the dynamics of nonlinear oscillator under the influence of external perturbations, both deterministic and stochastic. It is based on the idea to describe the oscillator dynamics by a scalar differential equation, that defines the time evolution for the phase of the oscillator. Starting from a phase and amplitude description of noisy oscillators, we discuss the reduction to a phase oscillator model, analogous to the Kuramoto model. The model derived shows that the phase noise problem is a drift-diffusion process. Even in the case where the expected amplitude remains unchanged, the unavoidable amplitude fluctuations do change the expected frequency, and the frequency shift depends on the amplitude variance. We discuss different degrees of approximation, yielding increasingly accurate phase reduced descriptions of noisy oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Lax, Phys. Rev. 160, 290 (1967)

    Article  ADS  Google Scholar 

  2. F.X. Kärtner, Int. J. Circ. Theor. Appl. 18, 485 (1990)

    Article  Google Scholar 

  3. A. Demir, A. Mehrotra, J. Roychowdhury, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 57, 655 (2000)

    Article  Google Scholar 

  4. M. Bonnin, F. Corinto, IEEE Trans. Circ. Syst. I: Regul. Pap. 60, 2104 (2013)

    Google Scholar 

  5. P. Maffezzoni, D. D’Amore, Int. J. Circ. Theor. Appl. 40, 999 (2012)

    Article  Google Scholar 

  6. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 2003)

  7. J.A. Acebròn, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  8. X. Lai, J. Roychowdhury, IEEE Trans. Microw. Theor. Technol. 52, 2251 (2004)

    Article  ADS  Google Scholar 

  9. P. Maffezzoni, IEEE Trans. Circ. Syst. I: Regul. Pap. 55, 1297 (2008)

    MathSciNet  Google Scholar 

  10. T. Nagashima, X. Wei, H. Tanaka, H. Sekiya, IEEE Trans. Circ. Syst. I: Regul. Pap. 61, 2904 (2014)

    Google Scholar 

  11. F.C. Hoppensteadt, E.M. Izhikevich, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 48, 133 (2001)

    Article  Google Scholar 

  12. M. Bonnin, F. Corinto, M. Gilli, IEEE Trans. Circ. Syst. I: Regul. Pap. 55, 1671 (2008)

  13. P. Maffezzoni, IEEE Trans. Circ. Syst. I: Regul. Pap. 57, 654 (2010)

    MathSciNet  Google Scholar 

  14. T. Djurhuus, V. Krozer, J. Vidkjær, T.K. Johansen, IEEE Trans. Circ. Syst. I: Regul. Pap. 56, 1373 (2009)

  15. E.M. Izhikevich, Dynamical systems in neuroscience (MIT Press, Cambridge, 2007)

  16. A. Guillamon, G. Huguet, SIAM J. Appl. Dyn. Syst. 8, 1005 (2009)

  17. H. Ahmed, R. Ushirobira, D. Efimov, J. Theor. Biol. 387, 206 (2015)

    Article  Google Scholar 

  18. K. Yoshimura, K. Arai, Phys. Rev. Lett. 101, 154101 (2008)

    Article  ADS  Google Scholar 

  19. M. Bonnin, F. Corinto, IEEE Trans. Circ. Syst. II: Express Briefs 61, 158 (2014)

    Google Scholar 

  20. M. Bonnin, F.L. Traversa, F. Bonani, IEEE Trans. Circ. Syst. II: Express Briefs 63, 698 (2016)

    Google Scholar 

  21. M. Bonnin, Int. J. Circ. Theor. Appl. 45, 636 (2017)

    Article  Google Scholar 

  22. B. Øksendal, Stochastic Differential Equations (Springer, New York, 2003)

  23. J. Guckenheimer, J. Math. Biol. 1, 259 (1975)

    Article  Google Scholar 

  24. A. Kimiaeifar, A.R. Saidi, G.H. Bagheri, M. Rahimpour, D.G. Domairry, Chaos Solitons Fractals 42, 2660 (2009)

    Article  ADS  Google Scholar 

  25. M. Bonnin, F. Corinto, M. Gilli, IEEE Trans. Circ. Syst. II 59, 638 (2012)

    Google Scholar 

  26. C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bonnin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnin, M. Phase oscillator model for noisy oscillators. Eur. Phys. J. Spec. Top. 226, 3227–3237 (2017). https://doi.org/10.1140/epjst/e2016-60319-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60319-0

Navigation