Skip to main content
Log in

Melting of orientational degrees of freedom

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We use calorimetry and dilatometry under hydrostatic pressure, X-ray powder diffraction and available literature data in a series of composition-related orientationally disordered (plastic) crystals to characterize both the plastic and melting transitions and investigate relationships between associated thermodynamic properties. First, general common trends are identified: (i) The temperature range of stability of the plastic phase T m -T t (where T t and T m are the plastic and melting transition temperatures, respectively) increases with increasing pressure and (ii) both the rate of this increase, d(T m -T t )/dp, and the entropy change across the plastic transition analyzed as function of the ratio T t /T m are quite independent of the particular compound. However, the dependence of the entropy change at the melting transition on T t /T m at high pressures deviates from the behavior observed at normal pressure for these and other plastic crystals. Second, we find that the usual errors associated with the estimations of second-order contributions in the Clausius-Clapeyron equation are high and thus these terms can be disregarded in practice. Instead, we successfully test the validity of the Clausius-Clapeyron equation at high pressure from direct measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Murrill and L. Breed, Thermochim. Acta 1, 239 (1970)

    Article  Google Scholar 

  2. J.-Ll. Tamarit, B. Legendre, J.M. Buisine, Mol. Cryst. Liq. Cryst. 250, 347 (1994)

    Article  Google Scholar 

  3. D.K. Benson, W. Burrows, J.D. Webb, Sol. Energy Mater. 13, 133 (1986)

    Article  Google Scholar 

  4. M. Barrio, J. Font, D.O. López, J. Muntasell, J.-Ll. Tamarit, Sol. Energy Mater. Sol. Cells, 27, 127 (1992)

    Article  Google Scholar 

  5. T. Clark, M.A. McKervey, H. Mackle, J.J. Rooney, J. Chem. Soc., Faraday Trans. 1 70, 1279 (1974)

    Article  Google Scholar 

  6. T. Clark, T. Mc. O. Knox, H. Mackle, M.A. McKervey, J. Chem. Soc., Faraday Trans. 1 73, 1224 (1977)

    Article  Google Scholar 

  7. G.J. Kabo, A.A. Kozyro, M. Frenkel, A.V. Blokhin, Mol. Cryst. Liq. Cryst. 326, 333 (1999)

    Article  Google Scholar 

  8. M.B. Charapennikau, A.V. Blokhin, A.G. Kabo, G.J. Kabo, J. Chem. Thermodyn. 35, 145 (2003)

    Article  Google Scholar 

  9. J.-Ll. Tamarit, I.B. Rietveld, M. Barrio, R. Céolin, J. Mol. Struc. 1078, 3 (2014)

    Article  ADS  Google Scholar 

  10. J. Reuter, D. Büsing, J.-Ll. Tamarit, A. Würflinger, J. Mater Chem. 7, 41 (1997)

    Article  Google Scholar 

  11. M. Barrio, P. de Oliveira, R. Céolin, D.O. López, J.-Ll. Tamarit, Chem. Mater. 14, 851 (2002)

    Article  Google Scholar 

  12. Ph. Negrier, L.C. Pardo, J. Salud, J.-Ll. Tamarit, M. Barrio, D.O. López, A. Würflinger, D. Mondieig, Chem. Mat. 14, 1921 (2002)

    Article  Google Scholar 

  13. J.-Ll. Tamarit, M. Barrio, L.C. Pardo, P. Negrier, D. Mondieig, J. Phys.: Condens. Matter. 20, 244110 (2008)

    ADS  Google Scholar 

  14. M. Barrio, J.-Ll. Tamarit, Ph. Negrier, L.C. Pardo, N. Veglio, D. Mondieig, New J. Chem. 32, 232 (2008)

    Article  Google Scholar 

  15. B. Parat, L.C. Pardo, M. Barrio, J.-Ll. Tamarit, Ph. Negrier, J. Salud, D.O. López, D. Mondieig, Chem. Mater. 17, 3359 (2005)

    Article  Google Scholar 

  16. R. Levit, M. Barrio, N. Veglio, J.-Ll. Tamarit, Ph. Negrier, L.C. Pardo, J. Sanchez-Marcos, D. Mondieig, J. Phys. Chem. B 112, 13916 (2008)

    Article  Google Scholar 

  17. Ph. Negrier, M. Barrio, J.-Ll. Tamarit, N. Veglio, D. Mondieig, Cryst. Growth & Des. 10, 2793 (2010)

    Article  Google Scholar 

  18. M. Woznyj, F.X. Prielmeier, H.–D. Lüdemann, Z. Naturforsch. 39a, 800 (1984)

    ADS  Google Scholar 

  19. H.G. Kreul, R. Waldinger, A. Würflinger, Z. Naturforsch. 47a, 1127 (1992)

    ADS  Google Scholar 

  20. P.F. McMillan, Nat. Mater. 6, 7 (2007)

    Article  ADS  Google Scholar 

  21. L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Nat. Mater. 6, 39 (2007)

    Article  ADS  Google Scholar 

  22. P.W. Bridgman, Phys. Rev. 6, 94 (1915)

    Article  ADS  Google Scholar 

  23. W. Wagner, A. Saul, A. Pruss, J. Phys. Chem. Ref. Data 23, 515 (1994)

    Article  ADS  Google Scholar 

  24. T. Hasebe, H. Chihara, Bull. Chem. Soc. Jpn. 59, 1141 (1986)

    Article  Google Scholar 

  25. J. Salud, M. Barrio, D.O. López, J.-Ll. Tamarit, X. Alcobé, J. Appl. Cryst. 31, 748 (1998)

    Article  Google Scholar 

  26. J. Salud, D.O. López, M. Barrio, J.-Ll. Tamarit, J. Mater. Chem. 9, 909 (1999)

    Article  Google Scholar 

  27. K. Arvidsson, E.F. Westrum.Jr., J. Chem. Thermodyn. 4, 449 (1972)

    Article  Google Scholar 

  28. K. Suenaga, T. Matsuo, H. Suga, Thermochim. Acta 163, 263 (1990)

    Article  Google Scholar 

  29. R. Landau, A. Würflinger, Rev. Sci. Instrum. 51, 533 (1980)

    Article  ADS  Google Scholar 

  30. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, UK, 1990)

  31. R. Kamae, K. Suenaga, T. Matsuo, H. Suga, J. Chem. Thermodyn. 33, 471 (2001)

    Article  Google Scholar 

  32. D. Chandra, W.-M. Chen, V. Gandikotta, D.W. Lindle, Z. Phys. Chem. 216, 1433 (2002)

    Google Scholar 

  33. S. Divi, R. Chellappa, D. Chandra, J. Chem. Thermodyn. 38, 1312 (2006)

    Article  Google Scholar 

  34. M. Jenau, J. Reuter, J.-Ll. Tamarit, A. Würflinger, J. Chem. Soc., Faraday Trans. 92, 1899 (1996)

    Article  Google Scholar 

  35. M. Rittmeier-Kettner, G.M. Schneider, Thermochim. Acta 266, 185 (1995)

    Article  Google Scholar 

  36. M. Barrio, D.O. Lopez, J.-Ll. Tamarit, Ph. Negrier, Y. Haget. J. Mater. Chem. 5, 431 (1995)

    Article  Google Scholar 

  37. J. Salud, D.O. López, M. Barrio, J.-Ll. Tamarit, H.A.J. Oonk, P. Negrier, Y. Haget, J. Solid State Chem. 133, 536 (1997)

    Article  ADS  Google Scholar 

  38. S. Urban, Z. Tomkowicz, J. Mayer, T. Waluga, Acta Phys. Pol. A48, 61 (1975)

    Google Scholar 

  39. J. Font, J. Muntasell, Mater. Res. Bull. 29, 1091 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lloveras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aznar, A., Lloveras, P., Barrio, M. et al. Melting of orientational degrees of freedom. Eur. Phys. J. Spec. Top. 226, 1017–1029 (2017). https://doi.org/10.1140/epjst/e2016-60315-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60315-4

Navigation