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Abstract. What do societies, the Internet, and the human brain have in
common? They are all examples of complex relational systems, whose
emerging behaviours are largely determined by the non-trivial networks
of interactions among their constituents, namely individuals, comput-
ers, or neurons, rather than only by the properties of the units them-
selves. In the last two decades, network scientists have proposed models
of increasing complexity to better understand real-world systems. Only
recently we have realised that multiplexity, i.e. the coexistence of sev-
eral types of interactions among the constituents of a complex system,
is responsible for substantial qualitative and quantitative differences in
the type and variety of behaviours that a complex system can exhibit.
As a consequence, multilayer and multiplex networks have become a
hot topic in complexity science. Here we provide an overview of some of
the measures proposed so far to characterise the structure of multiplex
networks, and a selection of models aiming at reproducing those struc-
tural properties and quantifying their statistical significance. Focusing
on a subset of relevant topics, this brief review is a quite comprehensive
introduction to the most basic tools for the analysis of multiplex net-
works observed in the real-world. The wide applicability of multiplex
networks as a framework to model complex systems in different fields,
from biology to social sciences, and the colloquial tone of the paper will
make it an interesting read for researchers working on both theoretical
and experimental analysis of networked systems.

1 Introduction

One of the most intriguing characteristic of complex systems is that most of the
collective behaviours they exhibit cannot be predicted from the knowledge of the
properties of their elementary constituents. Indeed, in the last two decades network
science has shown that in many cases, from biology to economics, the structure of the
interactions among the constituents of the system plays a fundamental role in shaping
the emergence of complex behaviours, much more important than the role played
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by the specific properties of the single units of the system [1–4]. And surprisingly,
systems as diverse as social networks, transportation systems, cities, and the human
brain were shown to share a significant number of features and a comparable structure
of interactions [5–10].
Recently, the availability of new data sets, the rediscovery of old ones and the

access to more powerful computers, has highlighted the necessity to develop a new
framework to represent networks whose units interact through more than just one
type of relations. These systems are usually called multiplex networks, and are char-
acterised by the fact that all the connections of a given type are embedded into a
distinct layer. A full description of early research on such topic can be found in [11–13].
This article provides an informal, still comprehensive handbook for the experimental
investigation of systems which can be described as multiplex networks. In the first
part we provide an overview of the most basic measures to characterise the struc-
ture of multiplex networks, focusing on the properties of nodes, edges, and layers. In
the second part we review a few models which can be used to reproduce the empir-
ical patterns observed in real-world multi-layer systems, or to assess the statistical
significance of such patterns.

2 Measures for multiplex networks

We consider a multiplex networkM consisting of N nodes and M different types of
relations, represented by M graphs, or layers. We can fully describe the structure of
the system by considering the set of adjacency matrices

M≡ A = {A[1], . . . , A[M ]}, (1)

where A[α]= {a[α]ij }, with a[α]ij =1 if i and j share a bond of type α and a[α]ij =0
otherwise [14]. When the connections among nodes are weighted, the system can
be described by a set of weighted adjacency matrices W = {W [1], . . . ,W [M ]}, with
W [α] = {w[α]ij } and w[α]ij the weight of the link between node i and j [14,15]. This
formulation implicitly assumes that each node i consists of M replicas, one at each
layer, and that a link can only connect two replicas lying on the same layer. Con-

sequently, although both A = {a[α]ij } and W = {w[α]ij } can be considered as generic
order-3 tensors, it is important to stress that node i on layer α and node i on layer
β effectively represent the same unit of the system and not two different ones. In
other words, the replicas of the same node are identified across layers. Social systems
can be naturally cast within this framework, where different layers can represent for
instance different interaction channels among the same nodes (e.g., face-to-face com-
munication, email exchange, online chat, etc.), but the different replicas are just a
mathematical representation of the same individual in each of the M contexts.
However, there are cases in which there exists some sort of communication or flow

between the replicas of the same node at different layers. A typical example is that of
multimodal transportation systems, where nodes are locations and layers represent
different transport modalities, e.g. bus, underground, trains, etc. In this case, an
accurate modelling of the system has to take into account inter-layer transitions
between the replicas of the same node at different layers, and it is more convenient

to model the structure of the system through an order-4 tensor Mj,β
i,α [16]. This

formulation makes explicit (and adjustable) the relative importance of intra-layer
and inter-layer connections [17,18]. Unless specified otherwise, in the following we will
mostly use the simpler formulation based on order-3 tensors and given in equation (1).
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2.1 Node properties

Differently from the traditional single-layer approach, where node properties are
described by scalar variables, node features in multiplex networks are naturally de-
scribed in vectorial terms. As an example, for each node i we consider its total number

of connections, or degree, at layer α, i.e. k
[α]
i =

∑N
j �=i a

[α]
ij , and the multilayer degree

ki= {k[1]i , . . . , k[M ]i }. A crucial empirical evidence is that in many multiplex networks
not all nodes have connections at all layers. As a consequence, a node i is defined
as active on a layer α if it is connected to at least another node at that layer, i.e. if

k
[α]
i > 0. The activity-pattern of each node can be compactly stored into the node-
activity vector

bi= {b[1]i , . . . , b[M ]i }, (2)

where b
[α]
i =1− δ0,k[α]i , i.e. b

[α]
i =1 if node i is active on layer α, and b

[α]
i = 0 otherwise.

The total activity Bi=
∑M
α=1 b

[α]
i represents the number of layers in which node i

is active, with 0 ≤ Bi ≤M [19]. It has been found that most real-world multiplex
networks are characterised by heterogeneous distributions of node activity [19], and
it has been shown that such heterogeneity might be responsible for the increased
fragility of multiplex networks to random failures [20].

Given a generic vectorial property ξi= {ξ[1]i , . . . , ξ[M ]i }, it is important to be able
to compress the information into meaningful scalar descriptors, especially for systems
composed of a large number of layers. A typical way to approach this problem is to
consider the first and the second moment of the vector ξ, accounting for its mean value
μ(ξ) (or, analogously, the sum of its components) and its variance σ2(ξ), or related
quantities. In the particular case of the degree, the total number of connections of
node i is usually called total or overlapping degree [14]

oi =
M∑

α=1

k
[α]
i (3)

while the heterogeneity of the number of neighbours of node i across the layers can
be measured through the multiplex participation coefficient [14]

Pi=
M

M − 1

[

1−
M∑

α=1

(
k
[α]
i

oi

)2
]

, (4)

where Pi = 1 when the links incident on node i are equally distributed across the
layers, and Pi = 0 when a node is only active on one layer. We note that similar
information about the heterogeneity of the distribution of a node’s connections across
layers is provided by the Shannon entropy of the normalised degree vector [14]

Hi= −
M∑

α=1

k
[α]
i

oi
ln

(
k
[α]
i

oi

)

. (5)

The pair of variables (Pi, oi) can be used to classify nodes via the so-called multi-
plex cartography [14], efficiently distinguishing multiplex hubs (high oi and high Pi),
focused hubs (high oi and low Pi), multiplex leaves (low oi and high Pi) and focused
leaves (low oi and low Pi).
A remarkable property of real-world networks is the tendency of nodes to form

triangles, a phenomenon usually known as transitivity. In single-layer networks, the
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abundance of triangles is typically measured through the average clustering coefficient

C, where C = 1
N

∑N
i=1 Ci and Ci accounts for the fraction of triads centred on node

i which are closed into triangles. In multiplex networks, triads and triangles can
effectively extend over more than one layer. We define an m-triad (m-triangle) as a
triad (triangle) which uses edges from m different layers. It is possible to define two
multiplex clustering coefficients to quantify the added value provided to transitivity
by the layered structure [14]. For each node i, the first coefficient Ci,1 is defined as
the ratio between the number of 2-triangles with a vertex in i and the number of
1-triads centred in i. In formulas:

Ci,1 =

∑
α

∑
α′ �=α

∑
j �=i,m �=i(a

[α]
ij a

[α′]
jm a

[α]
mi)

(M − 1)∑α k[α]i (k[α]i − 1)
· (6)

The second multiplex clustering coefficient Ci,2 is instead defined as the ratio between
the number of 3-triangles with node i as a vertex, and the number of 2-triads centred
in i. In formulas:

Ci,2 =

∑
α

∑
α′ �=α

∑
α′′ �=α,α′

∑
j �=i,m �=i(a

[α]
ij a

[α′′]
jm a

[α′]
mi )

(M − 2)∑α
∑
α′ �=α

∑
j �=i,m �=i(a

[α]
ij a

[α′]
mi )

. (7)

These two measures are defined respectively forM ≥ 2 andM ≥ 3, and are a natural
generalisation of the clustering coefficient to the case of multiplex networks. A related
generalisation of clustering coefficient, based on the order-4 tensorial formulation for
multiplex networks, has been suggested in reference [21].
Another characteristic property of real-world networks is the presence of hetero-

geneity in the relative importance of nodes, as measured by different notions of node
centrality [3]. A number of different approaches have been suggested to define and
compute the centrality of a node in a multiplex network. A first possibility consists
in defining the multiplex centrality as a combination of the centrality scores of each
node at the different layers. For instance, starting from the centrality vector of node i,

ci = {c[1]i , . . . , c[M ]i }, one can try to condense the information into a single scalar vari-
able, as is normally done for the degree. However, computing averages of centrality
scores across layers is not always meaningful. Indeed, a node can play different roles
on different layers, and averaging over layers will only level down such heterogeneities.
The presence of more than one layer allows to define new genuinely multiplex

centrality measures in which the role of a node explicitly depends on the structure
of the multiplex at all layers. For instance, the authors of reference [22] suggested
to compute the eigenvector centrality of nodes on each layer α as the normalised
eigenvector relative to the largest eigenvalue of

Ã[α] =

M∑

β=1

i[α,β]A[β] (8)

where I = {i[α,β]} is a given influence matrix which determines how the centrality of
layer α depends on the structure of layer β. In reference [14], instead, the authors
studied the contributions of the different layers to the centrality of the nodes by
varying the coefficients i[α] α = 1, . . . ,M of the matrix

A′ =
M∑

α=1

i[α]A[α] (9)

which is a convex combination of the adjacency matrices of the layers.
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An entire class of node centrality measures can be defined by using the properties
of random walks on multiplex networks [23,24]. A particularly interesting example
is that of multiplex PageRank centrality proposed in reference [25]. The authors of
reference [25] considered the case of a two-layer multiplex network and defined the
multiplex PageRank of the nodes in layer α = 2 as a function of the PageRank scores
of the nodes in layer α = 1. The main idea of this genuinely multiplex measure is
that, especially in social systems, nodes can leverage their centrality in one context,
such as personal relationships (represented by layer 1) to gain centrality in another
context, e.g. professional relationships (represented by layer 2).
Real-world networks often exhibit the small-world property, meaning that the

typical distance between any pair of nodes in the system scales logarithmically with
the total number of nodes. An important observation is that not all the nodes of a
system are equally important in mediating paths between other nodes, which is the
main idea between the concept of node betweenness [3]. In a multiplex system, the
reachability of a node might significantly depend on the interplay between different
layers. The added value introduced by multiplexity can be measured through the
interdependence [26,27]

λi =
1

N − 1
∑

j �=i

ψij

σij
, (10)

where ψij accounts for the number of shortest paths between i and j that use edges
in more than one layer, and σij is the total number of shortest paths between i and
j. The quantity λi takes values in the interval [0, 1], with larger values corresponding
to a higher advantage for the reachability of node i provided by the interplay of
the different layers. By averaging over all nodes we obtain the interdependence of the
multi-layer system λ = 1/N

∑
i λi. It is also possible to define a layer interdependence.

λ[α], accounting for the number of shortest paths with at least one link on layer α [28].
Finally, if one represents a multiplex network using an order-4 tensor, an entire

class of centrality measures can be obtained as natural extensions to adjacency tensors
of the corresponding measures defined on adjacency matrices [30]. For instance, the
eigenvector centrality of a node in this formalism can be computed by considering
either the eigenvectors of the order-4 tensorial representation of the multiplex or the
eigenvectors of the associated supra-adjacency matrix. An interesting application of
this class of measures, described in references [29,30], allows to define the versatility
of nodes, assigning higher centrality scores to those nodes which act as bridges among
different layers.

2.2 Layer properties

Similarly to the case of node activity, it is possible to define the activity-vector of
each layer α [19] as

d[α] = {b[α]1 , . . . , b
[α]
N }, (11)

where b
[α]
i =1 if k

[α]
i > 0, and b

[α]
i =0 otherwise. For each layer α, the total layer activ-

ity N [α]=
∑N
i=1 b

[α]
i describes the total number of nodes with at least one connection

in layer α, with 0 ≤ N [α] ≤ N . The similarity between the activity-vectors of two
layers α and β can be measured by mean of the pairwise multiplexity [19], which
accounts for the fraction of nodes of the multiplex which are active on both layers:

Q[α,β] =
1

N

N∑

i=1

b
[α]
i .b

[β]
i . (12)
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In general 0 ≤ Q[α,β] ≤ 1, with Q[α,β] = 1 when all nodes are active in both layers, and
Q[α,β] = 0 when no node is active on both layers. The similarity among the patterns
of activity in two layers can also be measured through the Hamming distance [19]

H [α,β] =

∑
i b
[α]
i (1− b[β]i ) + b[β]i (1− b[α]i )
min(N[α] +N[β],N)

. (13)

where H [α,β]=0 if d[α]=d[β] and H [α,β]=1 if all active nodes are active in no
more than one layer. It has been suggested that real multiplex networks are nor-
mally characterised by heterogeneous distributions of layer activity and of pairwise
multiplexity [19].
Another interesting property observed in real multiplex networks is the presence of

correlations between the degrees of the same node at different layers. This is normally
signalled by the fact that the probability P (k[α] = k1, k

[β] = k2) to find a node with
degree k1 on layer α and degree k2 on layer β does not factorise in the product
P [α](k)P [β](k) of the degree distributions of the two layers. In general, given two

layers α and β and a generic node property ξi, the correlation between ξ
[α]
i and ξ

[β]
i

can be computed using the rank correlation coefficient [19]:

ρ[α,β] =

∑
i

(
R
[α]
i −R[α]

)(
R
[β]
i −R[β]

)

√
∑
i

(
R
[α]
i −R[α]

)2∑
j

(
R
[β]
j −R[β]

)2
(14)

where R
[α]
i is the rank of node i at layer α induced by the property ξ, and R[α] =

1
N

∑
iR
[α]
i is the average rank. When the property of interest is the degree, it makes

sense to define the quantity:

k[β](k[α]) =
∑

k[β]

k[β]P (k[β]|k[α]) (15)

that is the average degree at layer β of a node having degree k[α] at layer α, and is
the multiplex homologous of the nearest-neighbours average degree function knn(k)
traditionally used to quantify degree-degree correlations in single-layer graphs [31]. An

increasing (decreasing) trend in k[β](k[α]) will signal the presence of positive (negative)
inter-layer degree correlations between layer α and layer β.
The authors of reference [32] proposed to quantify inter-layer degree correlations

by using the pairwise mutual information between the degree sequences of the two
layers:

I [α,β] =
∑

k[α]

∑

k[β]

P (k[α], k[β]) log
P (k[α], k[β])

P (k[α])P (k[β])
(16)

which is maximal when the degree sequences {k[α]i } and {k[β]i } are perfectly correlated
(or perfectly anti-correlated), and minimal when they are uncorrelated. We notice that
a similar set of quantities to measure the inter-layer assortativity has been defined
for the order-4 tensorial formulation in reference [33]. The same tensorial formalism
has also been used to analyse the spectral properties of multiplex networks [34,35].
A fundamental research question in the field of multiplex networks is to assess

whether the presence of more than one interaction layer indeed provides more infor-
mation about the structure of a system compared to a classical single-layer network
representation. In particular, it is interesting to quantify how much information is
lost (if any at all) when we aggregate some or all the layers of a multiplex network to
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obtain a lower-dimensional representation. The authors of reference [36] tackled the
problem of multiplex reducibility by drawing on an existing formal parallel between
density operators of quantum systems and Laplacian matrices of graphs, and extend-
ing the concept of Von Neumann entropy of a graph to the case of multiplex networks.
They proposed a greedy procedure, based on the estimation of the quantum Jensen-
Shannon divergence between layers, which allows to successively aggregate the most
redundant layers of a multiplex and to obtain a more compact representation which
uses the minimal number of layers while maximising the distinguishability between
the multiplex and the single-layer representation of the same system. An interest-
ing result of the paper is that different multilayer systems allow different levels of
reducibility, with man-made systems being the least reducible and biological and
social systems showing the highest levels of redundancy [36].
Interestingly, many real-world multiplex networks are far from being random com-

binations of the different layers, but their structures were found to be determined by
hidden geometric correlations [37].

2.3 Edge properties

Due to the presence of multiple layers, a pair of nodes (i, j) can be connected through
several edges. Given two layers α and β, the edge overlap of the pair (i, j) [14,38] is
defined as

o
[α,β]
ij =

a
[α]
ij + a

[β]
ij

2
, (17)

where o
[α,β]
ij =1 if i and j are connected at both layers, o

[α,β]
ij =1/2 if they are con-

nected at one layer only, and o
[α,β]
ij =0 if the two nodes are node connected. For a

generic number of layers M , the edge overlap is defined as

oij =
1

M

∑

α

a
[α]
ij . (18)

This measure can be easily extended to the whole network as

o =
2

N(N − 1)
∑

i,j �=i
oij , (19)

where the average is computed over all possible pairs of nodes [14], or instead as

ω =

∑
i

∑
j > i a

[α]
ij

M
∑
i

∑
j 1− δ0,∑α a

[α]
ij

(20)

where the average is restricted to the pairs of nodes which share at least one edge [32].
Alternative definitions for the local edge overlap on a node i and the total overlap of
two layers are suggested in [38] and respectively read

õ
[α,β]
i =

N∑

j=1

õ
[α,β]
ij =

N∑

j=1

a
[α]
ij a

[β]
ij , (21)

and
õ[α,β] =

∑

i<j

a
[α]
ij a

[β]
ij , (22)
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where õ
[α,β]
ij =1 when both layers have a link between i and j and õ

[α,β]
ij = 0 otherwise.

In the same spirit, a similar measure of edge correlations is the so-called multiplex-
ity [39], defined as

m[α,β] =
2
∑
i < j min(a

[α]
ij a

[β]
ij )

K [α] +K [β]
(23)

where K [α] (K [β]) is the total number of edges at layer α(β). Notice that m[α,β] takes
values in the range [0, 1].
A somehow dual quantity is the so-called edge intersection index,

INT =M

∑N
i,j=1minα

{
a
[1]
ij , a

[2]
ij , . . . , a

[M ]
ij

}

∑M
α=1

∑N
i,j=1 a

[α]
ij

(24)

which measures the probability of finding a pair of nodes that is connected by an
edge on all the M layers of the multiplex [36].
An alternative characterisation of edge correlations can be based on the condi-

tional probability to find a link at layer α given the presence of an edge between the
same nodes at layer β [14]

P (a
[α]
ij |a[β]ij ) =

∑
ij a

[α]
ij a

[β]
ij

∑
ij a

[β]
ij

· (25)

If layer β has weighted edges, it is also possible to look at the conditional probability

Pw(a
[α]
ij |w[β]ij ) to have a link at layer α given its weight on layer β. If Pw shows an

increasing trend as a function of w, this phenomenon goes under the name of edge
reinforcement, since a stronger link on one layer implies a higher chance to find the
same edge on a different layer [14].

2.4 Mesoscale properties

Complex networks are usually characterised by non-trivial structural patterns not
only at the level of single-node properties but also, and more importantly, at the level
of sub-graphs. A lot of attention has been devoted to the analysis of statistically sig-
nificant sub-graphs in single-layer networks, also known as motifs. It has been found
that a few specific sub-graphs are over-represented in real systems compared to their
abundance in equivalent networks obtained by randomising the original graph [40,41].
Due to the additional level of richness provided by the layered structure of multiplex
networks, the multilink, i.e. the organisation of the edges between the same pair of
nodes (i, j) across the M layers, is the most basic motif [15,38]. Similarly, m-triads
and m-triangles used for the definition of node clustering coefficients are multiplex
motifs [14]. The problem of isomorphisms in multi-layer is studied in reference [42].
A general classification in three levels of higher-order motifs is presented in
reference [43]: at the first level connected subgraphs are distinguished according to
their number of nodes; at the second level different patterns are classified on the
aggregated network and eventually, at the third level, the exact multiplex connectiv-
ity pattern is identified. Such approach has been used for the analysis of two-layer
networks based on structural and functional connectivity in the human brain [43].
Another remarkable feature of networked systems is the tendency of their units to

cluster together in tightly-knit groups, giving rise to non-trivial community structures.
Communities are also observed in multiplex networks, even if there is not to date
an agreed definition of what a multiplex community is [44]. Some of the efforts in
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the characterisation of the communities of a multiplex have been focused on the
quantification of the similarities in the community structure observed at different
layers. In general, given two layers α and β and their partitions in communities Pα
and Pβ , their similarity can be measured through the normalised mutual information
(NMI) [45,46]

NMI(Pα,Pβ) =
−2∑Mαm=1

∑Mβ
m′=1Nmm′ log

(
Nmm′N
NmNm′

)

∑Mα
m=1Nm log

(
Nm
N

)
+
∑Mβ
m′=1Nm′ log

(
Nm′
N

) (26)

where Nmm′ is the number of nodes in common between communitym of partition Pα
and community m′ of partition Pβ , while Nm and Nm′ are respectively the number
nodes in the two communities m and m′. We note that such measure was originally
suggested to compare the community structure obtained on the same single-layer
networks from different algorithms. A different similarity measure is suggested in
reference [47], in terms of the possibility to infer the community structure at layer α
using information about the community structure at layer β.
The information about the decomposition in communities of different layers can

be combined together to define a multilayer partition in communities. A classical
approach is that described in reference [44], which proposed a generalisation of the
concept of modularity to multiplex, multi-slice, and temporal networks. Among the
genuinely multiplex methods to extract the community decomposition of a system we
find particularly interesting the approach proposed in reference [45], which extends
the Infomap algorithm [48], based on the minimisation of the description length of a
partition in communities, to the case of multiplex networks.

3 Models of multiplex networks

The characterisation of the structure of a network is normally accompanied by a
modelling effort aiming at quantifying how special or peculiar are the observed pat-
terns, e.g. in terms of how probable is to find them in an appropriately chosen family
of random graphs, and which are the mechanisms that determine their appearance.
In the following we review a few classes of models of multiplex networks, namely
the canonical and microcanonical ensembles, other static models aiming at reproduc-
ing real-world patterns of node and layer activity, and models of growing multiplex
networks.

3.1 Canonical and microcanonical ensemble

A standard approach to study the structure of a given network is to quantify how
probable is to observe a network with similar properties in an appropriately defined
ensemble of random graphs whose elements satisfy certain constraints. For instance,
it is a well-known fact that graphs with power-law degree distributions are extremely
rare in the classical Erdös-Renyi random graph ensemble, where each pair of nodes are
connected with a given probability p. As a consequence, the hypothesis that power-
law degree distributions arise as a result of a uniform distribution of edges across the
nodes can be safely rejected, and we can conclude that some other mechanism should
be at work in the formation of graphs with heterogeneous degree sequences.
An ensemble of graphs is determined by a set of constraints that its elements

should satisfy. According to the type of constraints, we can identify at least two
classes of random network ensembles, namely canonical ensembles, where each graph
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of the ensemble satisfies the set of constrains on average (soft constraints), and
microcanonical ensembles, where each graph satisfies all the constraints exactly
(hard constraints). It is possible to define a sequence of canonical and microcanonical
ensembles of multiplex networks [38], where the constraints are just the average
degree at each of the M layers, or the degree distribution of each layer, or the degree
distribution together with the distribution of edge overlap, and so on.
Each multiplex networks ensemble is defined by providing the probability P (A)

for each of the possible configuration of multiplex networks A which satisfy the con-
straints. Starting from P (A), the Shannon entropy of the ensemble is defined as

S = −
∑

M
P (M) lnP (M) (27)

reference [38].
For the special case of uncorrelated multiplex networks, we have

〈a[α]ij a[β]ij 〉 = 〈a[α]ij 〉〈a[β]ij 〉 (28)

the probability P (M)≡P (A) can be factorised into the probability of observing each
single layer, i.e.

P (A) =

M∏

α=1

P [α](A[α]). (29)

In this particular case, the entropy of the multiplex ensemble reads

S =

M∑

α=1

S[α] = −
M∑

α=1

P [α](A[α]) ln(P [α](A[α])). (30)

In the following we focus on the canonical – indicated by C – and microcanonical –
denoted by MC – ensembles of multiplex networks. Let us assume that we have T
soft constraints such that

∑

A

P (M)Fμ(M) = Cμ (31)

where μ = 1, . . . , T , and Fμ(M) describes how such constraints are imposed on the
network, such as the degree of each node of the network at each layer α, or the total
number of edges K [α] for α = 1, . . . ,M . The probability PC(M) of observing the
multiplex M can be obtained by maximising the entropy S under the given set of
constraints. By solving the optimisation problem one obtains:

PC(M) = 1

ZC
exp

[

−
∑

μ

λμFμ(M)
]

(32)

where ZC is the partition function of the canonical multiplex ensemble and the values
of the Lagrangian multipliers λμ are obtained by satisfying equation (31) imposing
such functional form for PC(M). In the canonical multiplex ensembles we have:

S =
∑

μ

λμCμ + lnZc. (33)



Nonlinearity, Nonequilibrium and Complexity 411

Conversely, in the microcanonical multiplex ensemble each multiplex configuration
compatible with the hard constraints has the same probability

PMC(M) = 1

ZMC

T∏

μ=1

δ[Fμ(M), Cμ] (34)

where δ is the Kronecker delta function and ZMC =
∑
A

∏T
μ=1 δ[Fμ(M), Cμ] is the

microcanonical partition function, accounting for the number of multiplex networks
satisfying the T hard constraints Fμ(M)=Cμ. By defining the entropy of these en-
sembles as NΣ, such entropy reads

NΣ =
∑

A

PMC(M) lnPMC(M) = lnZMC (35)

where Σ is the Gibbs entropy of the multiplex ensemble. It can be shown that the
Gibbs entropy Σ is related to the corresponding Shannon entropy S byNΣ = S −NΩ,
where Ω is the logarithm of the probability that in the related canonical multiplex
ensemble the hard constraints Fμ(M) are satisfied.
The author of reference [38] provided an exhaustive explanation of how the

entropy and the partition function can be computed in different classes of multi-
plex networks with increasingly stringent sets of constraints, both for the canonical
and for the microcanonical ensembles. The same approach has been generalised to
a number of more complicated structures, including spatial multiplex networks [49]
and multiplex networks with heterogeneous activities of the nodes [20]. The Authors
of reference [50] study the canonical ensemble of the overlapping networks generated
by merging different layers, where information on the connection between nodes is
only accessible at the aggregated level.

3.2 Models of node and layer activity

The concept of node and layer activity is peculiar to multilayer networks, and it
is interesting to assess whether simple models can give account for the observed
heterogeneous distributions of node and layer activities. In the following we provide
a brief review of some null models proposed so far to quantify the peculiarity of given
distributions of node and layer activities.
Let us consider two layers α and β with N [α] and N [β] active nodes respectively.

If initially the two layers have no active nodes and we then sample uniformly at
random from {1, 2, 3, . . . , N} N [α] nodes on layer α and N [β] nodes on layer β and we
activate them, then the probability that m of them are active at both layers follows
a hypergeometric distribution

p(m;N,N [α], N [β])=

(
N [α]

m

)(
N−N [α]
N [β]−m

)

(
N
N [β]

) , (36)

according to which the expected number of nodes active at both layers is equal to
N [α]N [β]/N , the expected pairwise multiplexity is

Q̃[α,β]=
N [α]N [β]

N2
(37)

and the expected Hamming distance reads

H̃ [α,β]=

∑N [β]
m=0(N

[α] +N [β] − 2m)× p(m;N,N [α], N [β])
min(N,N[α] +N[β])

· (38)
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This is the simplest model of node activation and is known as the hypergeometric
model [19]. However, the authors of reference [19] have shown that the distribution
of pairwise multiplexity and pairwise Hamming distance in real-world multiplex net-
works is not compatible with those given in equation (37) and equation (38).
Let us now consider the problem of constructing a multiplex networks with a fixed

number of layers M , a fixed number of nodes N which are active on at least one of
the M layers, and where each node i has an assigned node activity Bi, which is for
instance set equal to the node activity observed in the real network. By sampling
for each node one of the

(
M
Bi

)
vectors of node-activity with Bi non-zero entries, the

distribution of the total node activity of the original system is kept fixed, whereas the
correlations in the layer activity and the distribution of the node-activity vectors are
not preserved. Moreover, in such a model all layers have the same expected number
of active nodes:

Ñ [α]=
1

M

∑

i

Bi. (39)

This model is known as the multi-activity deterministic model [19]. A variation of the
model is constructed by activating node i in each layer α with probability B̄i = Bi/M ,
so that the expected activity of each layer stays the same but the original node-activity
distribution is not preserved. This model is known as the multi-activity stochastic
model [19].
Finally, it is possible to construct a model for a 2-layer multiplex network where

the degree distributions of each layer is kept fixed, and where one can control the edge
overlap ω by rewiring a certain fraction r of the edges. The model was introduced in
reference [51]. For simplicity, let us assume that the two layers have the same number
of edges K [α]=K [β]=K. If we start from two identical networks, we have maximum
edge overlap ω = 1. If we now keep fixed the structure of one of the two layers, and
rewire one of the edges of the other layer, the number of links present in both layers
decreases by one unit, while the number of those present in only one of the two layers
increases by two units. Consequently, if we rewire a fraction r of the K edges of the
second layer in such a way that each rewire decreases the number of edges existing
on both layers, we obtain:

ω=
(1− r)K
(1 + r)K

=
(1− r)
(1 + r)

· (40)

By inverting such relation, we find that a given overlap ω corresponds to a rewire
r equal to r=(1− ω)/(1 + ω). In practice, this model allows to obtain a prescribed
value of edge overlap by rewiring a certain fraction r of the edges in one of the two
layers.

3.3 Growth models of multiplex networks

In this section we review a few growth models for multiplex networks. The most
simple example of this class is a model of layer-growth, aimed at explaining the fat-
tail distribution of layer activity observed in empirical data [19]. The model works
as follows. We start at time t0=0 with a multiplex with M0 layers and N nodes. At
each time t, a new layer α joins the network with N [α] nodes to be activated, where
N [α] can be observed from the data-set we are attempting to reproduce. Each node
i has then a probability to be active on that layer at time t equal to:

pi(t) = A+Bi(t), (41)
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where Bi(t) is the number of layers where node i is already active and A > 0 is a
constant that allows the activation of nodes not yet active in the multiplex. When
the number of layers in the model increases, the distribution of layer activity P (N [α])
approaches a power law.
Another important class of growth models is that where not layers, but individual

nodes join sequentially the network, for instance by connecting to preexisting vertices
on possibly different layers. In such regard, it is clear that the specific shape of the
attachment function determines the long-term statistical properties of the final mul-
tiplex graph. In single-layer networks, a particularly well-studied case is the so-called
preferential attachment, where nodes choose to attach to older vertices depending on
a function (in the simplest case linear) of their degree k. In a multiplex network the

degree of each node j is a vector and the probability Π
[α]
i→j that a new node i attaches

to j on a given layer α in general depends on all its components. In formula:

Π
[α]
i→j =

F
[α]
j (kj)

∑
� F
[α]
� (k�)

· (42)

The most simple class of preferential attachment models is obtained by considering

linear attachment kernels, i.e. by setting F
[α]
j as a convex combination of the degrees

of node j at all the layers [27,52]. The interesting result is that linear attachment
kernels produce multiplex networks whose layers have power-law degree distributions,
but where inter-layer degree correlations are always positive, meaning that a hub
on one layer is also a hub on the other layer as well. This is due to the fact that
the expected final degree of a node on a certain layer is determined solely by the
time at which it joins the network [27]. A generalisation of the closed-form solutions
for the joint degree distribution of heterogeneously growing multiplex networks with
arbitrary number of layers and arbitrary times can be found in [53].
A more interesting class of multiplex networks is obtained by considering non-

linear attachment kernels. The authors of reference [54] started from the case of
multiplex networks with two layers, using the attachment kernel:

F
[1]
j ∝

(
k
[1]
j

)b1 (
k
[2]
j

)b2
(43)

where b1, b2 ∈R. By tuning the relative values of the exponents b1 and b2, one can
obtain multiplex networks where each layer has either an exponential, a power-law,
or a condensed degree distribution (where super-hubs with extensive degrees appear).
Moreover, with non-linearity it is possible to get non only positive inter-layer degree
correlations as in the case of the linear model, but also null and negative correlations
that have been observed in real-world systems [19]. In the same work the authors
suggested several possible generalisations of the model to the case of multiplex net-
works with M ≤ 2 layers. An interesting model of multiplex network growth which
takes into account weighted links, aimed at reproducing the structure of some layered
social networks, can be found in reference [55].
Simple preferential attachment models, while able to reproduce some empirical

patterns such as inter-layer degree correlations, do not allow to construct multiplex
networks with strong community structure. More sophisticated models able to pro-
duce tunable intra-layer and inter-layer community structure have been suggested,
based on intra-layer and inter-layer triadic closure mechanisms on 2-layer multi-
plexes [46]. In that model a node i arrives and selects one of the layers at random,
and a node n1 in that layer as its first neighbour. The following m− 1 links on the
same layer will be to a neighbour of n1 with probability p, or to a uniformly sampled
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node in the same layer with probability 1− p. Once m links have been created on the
first layer, node i starts creating links on the other layer. In particular, the first edge
on the other layer is created with probability p∗ to one of the nodes already selected
in the previous layer, and to a node sampled uniformly at random with probability
1− p∗. The remaining links on the second layer are placed again with probability p
and 1− p. In this model, the value of the parameter p determines the strength of
communities on each layer, with higher values of p corresponding to tighter commu-
nities, while p∗ tunes the extent of overlap (i.e., number of shared nodes) between
communities in different layers. Interestingly, the model was able to reproduce some
of salient characteristics of multiplex collaboration networks.
We note here that multiplex networks with given community structure can also

be generated through stochastic block models [56], and that in some cases aggregated
networks can be better fitted by multilayer block models, hinting at the existence of
different levels in the considered data [57].

4 Conclusions

Networks are responsible for the emergence of a variety of complex behaviours in
social, economical, technological and biological systems, and multilayer networks are
the last frontier of research in this field. The theory of multiplex networks has already
proven quite successful in modelling the structure of intrinsically multidimensional
relational systems, showing at the same time that the presence of more than a single
type of interaction is responsible for new levels of complexity. The advances made
in this field in the last few years are definitely encouraging, and there are still a lot
of open problems to address in depth and many questions still waiting to be asked.
We strongly believe that multiplex networks are an extremely active and interesting
area of research, and we really hope that this brief review will contribute to spur
the curiosity of researchers who are interested in studying the structure of real-world
systems.
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30. A. Solé-Ribalta, M. De Domenico, S. Gómez, A. Arenas, Proceedings of the 2014 ACM
conference on Web Science (2014), pp. 149–155

31. R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)
32. L. Lacasa, V. Nicosia, V. Latora, Sci. Rep. 5, 15508 (2015)
33. G. Ferraz de Arruda, E. Cozzo, Y. Moreno, F.A. Rodrigues, Physica D 323, 5 (2016)
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