Skip to main content
Log in

Thin-film Faraday patterns in three dimensions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate the long time evolution of a thin fluid layer in three spatial dimensions located on a horizontal planar substrate. The substrate is subjected to time-periodic external vibrations in normal and in tangential direction with respect to the plane surface. The governing partial differential equation system of our model is obtained from the incompressible Navier-Stokes equations considering the limit of a thin fluid geometry and using the long wave lubrication approximation. It includes inertia and viscous friction. Numerical simulations evince the existence of persistent spatially complex surface patterns (periodic and quasiperiodic) for certain superpositions of two vertical excitations and initial conditions. Additional harmonic lateral excitations cause deformations but retain the basic structure of the patterns. Horizontal ratchet-shaped forces lead to a controllable lateral movement of the fluid. A Floquet analysis is used to determine the stability of the linearized system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Faraday, On the forms and states by fluids in contact with vibrating elastic surfaces, Philos. Trans. R. Soc. London 121, 319 (1831)

    Google Scholar 

  2. S. Douady, Experimental study of the Faraday instability, J. Fluid Mech. 221, 383 (1990)

    Article  ADS  Google Scholar 

  3. T.B. Benjamin, F. Ursell, The stability of the plane free surface of a liquid in vertical periodic motion, Proc. R. Soc. London, Ser. A 225, 505 (1954)

    Article  MATH  Google Scholar 

  4. K. Kumar, L.S. Tuckerman, Parametric instability of the interface between two fluids, J. Fluid Mech. 279, 49 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. Beyer, R. Friedrich, Faraday instability: linear analysis for viscous fluids, Phys. Rev. E 51, 1162 (1995)

    Article  ADS  Google Scholar 

  6. J. Bechhoefer, V. Ego, S. Manneville, B. Johnson, An experimental study of the onset of parametrically pumped surface waves in viscous fluids, J. Fluid Mech. 288, 325 (1995)

    Article  ADS  Google Scholar 

  7. C. Wagner, H.-W. Müller, K. Knorr, Pattern formation at the bicritical point of the Faraday instability, Phys. Rev. E 68, 066204 (2003)

    Article  ADS  Google Scholar 

  8. W.S. Edwards, S. Fauve, Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech. 278, 123 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Christiansen, P. Alstrom, M.T. Levinsen, Ordered capillary-wave states: quasicrystals, hexagons and radial waves, Phys. Rev. Lett. 68, 2157 (1992)

    Article  ADS  Google Scholar 

  10. W.S. Edwards, S. Fauve, Parametrically excited quasicrystalline surface waves, Phys. Rev. E 47, R788 (1993)

    Article  ADS  Google Scholar 

  11. Y. Ding, P. Umbanhowar, Enhanced Faraday pattern stability with three-frequency driving, Phys. Rev. E 73, 046305 (2006)

    Article  ADS  Google Scholar 

  12. P. Chen, K.-A. Wu, Subcritical bifurcations and nonlinear balloons in Faraday waves, Phys. Rev. Lett. 85, 3813 (2000)

    Article  ADS  Google Scholar 

  13. P. Chen, Nonlinear wave dynamics in Faraday instabilities, Phys. Rev. E 65, 036308 (2002)

    Article  ADS  Google Scholar 

  14. S. Ubal, M.D. Giavedoni, F.A. Saita, A numerical analysis of the influence of the liquid depth on two-dimensional Faraday waves, Phys. Fluids 15, 3099 (2003)

    Article  ADS  MATH  Google Scholar 

  15. N. Perinet, D. Juric, L.S. Tuckerman, Numerical simulation of Faraday waves, J. Fluid Mech. 635, 1 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. N. Perinet, D. Juric, L.S. Tuckerman, Alternating hexagonal and striped patterns in Faraday waves, Phys. Rev. Lett. 109, 164501 (2012)

    Article  ADS  Google Scholar 

  17. L. Kahouadji, N. Perinet, L.S. Tuckerman, S. Shin, J. Chergui, D. Juric, Numerical simulation of supersquare patterns in Faraday waves, J. Fluid Mech. 772, R2 (2015)

    Article  ADS  Google Scholar 

  18. M. Bestehorn, Q. Han, A. Oron, Nonlinear pattern formation in thin liquid films under external vibrations, Phys. Rev. E 88, 023025 (2013)

    Article  ADS  Google Scholar 

  19. M. Bestehorn, Laterally extended thin liquid films with inertia under external vibrations, Phys. Fluids 25, 114106 (2013)

    Article  ADS  Google Scholar 

  20. R.V. Craster, O.K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys. 81, 1131 (2009)

    Article  ADS  Google Scholar 

  21. N.O. Rojas, M. Argentina, E. Cerda, E. Tirapegui, Inertial lubrication theory, Phys. Rev. Lett. 104, 187801 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, S., Bestehorn, M. Thin-film Faraday patterns in three dimensions. Eur. Phys. J. Spec. Top. 226, 1253–1261 (2017). https://doi.org/10.1140/epjst/e2016-60234-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60234-4

Navigation