Skip to main content
Log in

Chemical interaction and thermodynamic properties of (Cu,Ni)-Zr glass-forming alloys

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The model of ideal associative solutions was applied to analyze the influence of strong chemical interaction in (Cu,Ni)-Zr melts depending on their glass-forming ability. Within the model framework thermodynamic properties of both Ni-Zr and Cu-Zr systems in the liquid state were calculated. The formation enthalpies of intermetallic compounds of these systems were redefined by the matching procedure, taking into account the additive manifestation of chemical interaction. It was suggested that directed (covalent) interaction causes formation of associative complexes which impedes diffusion and slows down crystallization. The intensity of interparticle interaction in these alloys is found to have no decisive influence on their glass-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Royall, S.R. Williams. Phys. Rep. 560, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. N.E. Dubinin, L.D. Son, N.A. Vatolin, Defect Diffus. Forum 263, 105 (2007)

    Article  Google Scholar 

  3. L.D. Son, R.E. Ryltsev, V.E. Sidorov, J. Non-Cryst. Solids 353, 3722 (2007)

    Article  ADS  Google Scholar 

  4. N.E. Dubinin, J. Phys.: Conf. Ser. 144, 012115 (2009)

    Google Scholar 

  5. L. Zhang, E. Martinez, A. Caro, X.Y. Liu, M.J. Demkowicz, Mod. Simul. Mater. Sci. Eng. 21, 025005 (2013)

    Article  ADS  Google Scholar 

  6. N.E. Dubinin, N.A. Vatolin, V.V. Filippov, Rus. Chem. Rev. 83, 987 (2014) [erratum: Rus. Chem. Rev. 84, C01 (2015)]

    Article  Google Scholar 

  7. S.K. Yadav, S. Lamichhane, L.N. Jha, N.P. Adhikari, D. Adhikari, Phys. Chem. Liq. 54, 370 (2016)

    Article  Google Scholar 

  8. T.V. Kulikova, A.V. Mayorova, A.B. Shubin, V.A. Bykov, K.Yu. Shunyaev, Kovove Mater. 53, 133 (2015)

    Google Scholar 

  9. I. Prigogine, R. Defay, Chemical Thermodynamics (Longmans Green and Co, London, NY, Toronto, 1954)

  10. F. Sommer, Z. Metallkd. 73, 72 (1982)

    Google Scholar 

  11. K. Wasai, K. Mukai, J. Japan Inst. Met. 45, 593 (1981)

    Article  Google Scholar 

  12. K. Wasai, K. Mukai, J. Japan Inst. Met. 46, 266 (1982)

    Article  Google Scholar 

  13. T.V. Kulikova, G.K. Moiseev, K.Yu. Shunyaev, N.I. Il’inykh, V.A. Bykov, V.E. Sidorov, Russ. J. Phys. Chem. A 80, 1757 (2006)

    Article  Google Scholar 

  14. A.B. Shubin, K.Yu. Shunyaev, T.V. Kulikova, Russ. Metall. 5, 364 (2008)

    Article  ADS  Google Scholar 

  15. F. Sommer, D. Choi, Z. Metallkd. 80, 263 (1989)

    Google Scholar 

  16. N. Wang, C. Li, Z. Du, F. Wang, W. Zhang, Calphad 30, 461 (2006)

    Article  Google Scholar 

  17. D.H. Kang, I.H. Jung, Intermetallics 18, 815 (2010)

    Article  Google Scholar 

  18. M.A. Turchanin, P.G. Agraval, A.R. Abdulov, Powder Metall. Met. C. 47, 428 (2008)

    Article  Google Scholar 

  19. K.J. Zeng, M. Hamalainen, H.L. Lukas, Phase Equilib. 15, 577 (1994)

    Article  Google Scholar 

  20. A. Zaitsev, N. Zaitseva, J. Alekseeva, Y. Nechaev, Phys. Chem. Chem. Phys. 4, 4185 (2003)

    Article  Google Scholar 

  21. S.H. Zhou, R.E. Napolitano, Acta Mater. 58, 2186 (2010)

    Article  Google Scholar 

  22. J. Du, B. Wen, R. Melnik, Y. Kawazoe, J. Alloys Comp. 588, 96 (2014)

    Article  Google Scholar 

  23. N. Saunders, Calphad 9, 297 (1985)

    Article  MathSciNet  Google Scholar 

  24. G. Ghosh, G.B. Olson, Acta Mater. 55, 3281 (2007)

    Article  Google Scholar 

  25. K. Yamaguchi, Y-Ch. Song, T. Yoshida, K. Itagaki, J. Alloys Comp. 452, 73 (2008)

    Article  Google Scholar 

  26. O.J. Kleppa, S. Watanabe, Metal. Trans. B 13, 391 (1982)

    Article  Google Scholar 

  27. T.P. Weihs, T.W. Barbee, M.A. Wall, J. Mater. Res. 11, 1403 (1996)

    Article  ADS  Google Scholar 

  28. Y.-M. Kim, B.-J. Lee, J. Mater. Res. 23, 1095 (2008)

    Article  ADS  Google Scholar 

  29. I. Ansara, A. Pasturel, K.H.J. Buschow, Phys. Status Solidi. 69, 447 (1982)

    Article  ADS  Google Scholar 

  30. J.C. Gachon, J. Hertz, Calphad 7, 1 (1983)

    Article  Google Scholar 

  31. M.P. Henaff, C. Colinet, A. Pasturel, K.H.J. Buschow, J. Appl. Phys. 56, 307 (1984)

    Article  ADS  Google Scholar 

  32. A.I. Zaitsev, N.E. Zaitseva, E.Kh. Shakhpazov, A.A. Kodentsov, Phys. Chem. Chem. Phys. 4, 6047 (2002)

    Article  Google Scholar 

  33. G. Ghosh, J. Mater. Res. 9, 598 (1994)

    Article  ADS  Google Scholar 

  34. J. Du, B. Wen, R. Melnik, Y. Kawazo, Intermetallics 54, 110 (2014)

    Article  Google Scholar 

  35. F.H.M. Spit, J.W. Drijver, S. Radelaar, Scripta Metall. 14, 1071 (1980)

    Article  Google Scholar 

  36. G. Moiseev, J. Leitner, J. Sestak, V. Jhukovski, Thermochim. Acta 280/281, 511 (1996)

    Article  Google Scholar 

  37. G. Moiseev, N. Vatolin, J. Thermal Analysis 54, 363 (1998)

    Article  Google Scholar 

  38. G.K. Moiseev, N.A. Vatolin, Dokl. Phys. Chem. 351, 316 (1996)

    Google Scholar 

  39. G.K. Moiseev, N.A. Vatolin, Dokl. Phys. Chem. 367, 196 (1999)

    Google Scholar 

  40. T.V. Kulikova, A.V. Majorova, K.Yu. Shunyaev, R.E. Ryltsev, Physica B 466–467, 90 (2015)

    Article  Google Scholar 

  41. H. Okamoto, J. Phase Equilib. Diff. 33, 417 (2012)

    Article  Google Scholar 

  42. N. Bochvar, O. Abdulov, T. Dobatkina, M. Kareva, O. Semenova, in Ni-Zr Binary Phase Diagram Evaluation edited by G. Effenberg (Materials Science International, Stuttgart, 2015)

  43. P.M. Robinson, M.B. Beaver, in Intermetallic compounds edited by J.H. Westbrook(Wiley, New York, 1967)

  44. M.A. Turchanin, Powder Metall. Met. Ceram. 39, 253 (1997)

    Article  Google Scholar 

  45. P. Franke, D. Neuschütz, Landolt-Börnstein – Group IV Physical Chemistry 19B4 (Springer, Berlin, 2006)

  46. N. Wang, C. Li, Z. Du, F. Wang, Calphad 31, 413 (2007)

    Article  Google Scholar 

  47. M. Rösner-Kuhn, J. Qin, K. Schaefers, U. Thiedemann, M.G. Frohberg, Int. J. Thermophys. 17, 959 (1996)

    Article  ADS  Google Scholar 

  48. L. Arpshofen, R. Lück, B. Predel, J.F. Smith, J. Phase Equilib. 12, 141 (1991)

    Article  Google Scholar 

  49. A.A. Turchaninin, I.A. Tomilin, M.A. Turchaninin, I.V. Belokonenko, P.G. Agrawal, Russ. J. Phys. Chem. A 73, 1717 (1999)

    Google Scholar 

  50. O.J. Sidorov, J.O. Esin, P.V. Gel’d, Melts Moscow 2, 181 (1989)

    Google Scholar 

  51. D. Turnbull, Contemp. Phys. 10, 473 (1969)

    Article  ADS  Google Scholar 

  52. D.R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972)

    Article  ADS  Google Scholar 

  53. J.W.P. Schmelzer, A.S. Abyzov, V.M. Fokin, C. Schick, E.D. Zanotto, J. Non-Cryst. Solids 429, 24 (2015)

    Article  ADS  Google Scholar 

  54. Ch. Tang, P. Harrowell, Nature Materials 12, 507 (2013)

    Article  ADS  Google Scholar 

  55. X.Q. Yan, Y.J. Lü, J. Chem. Phys. 143, 164503 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kulikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, T., Maiorova, A., Bykov, V. et al. Chemical interaction and thermodynamic properties of (Cu,Ni)-Zr glass-forming alloys. Eur. Phys. J. Spec. Top. 226, 1097–1106 (2017). https://doi.org/10.1140/epjst/e2016-60212-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60212-x

Navigation