Skip to main content
Log in

Nonlinear evolution of the interface between immiscible fluids in a micro channel subjected to an electric field

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The long wave analysis of the interface between two leaky dielectric fluids flowing in a micro channel subjected to an electric field is performed. The electric field is applied normal to the flat interface. The evolution equations for the interface position and the surface charge density are derived. The results show that the base flow prevents the interface from reaching the channel walls for the values of the parameters considered. When the strength of the base flow is diminished, it is possible to asymptotically approach the stationary base flat interface solution. At early times of instability, interface deflections for different strengths of base flow share a common shape as suggested by the linear theory, which states that the base pressure-driven flow does not affect the linear stability point. The base flow breaks the symmetry of the interface profile yielding an asymmetric pattern at steady-state. It is also found that, the amplitude of the interface deflections is decreased and the symmetry is lost when the depth ratio changes in such a way that the maximum speed at the base flow does not occur at the flat interface between the two fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75, 1004 (1999)

    Article  ADS  Google Scholar 

  2. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Nature 403, 874 (2000)

    Article  ADS  Google Scholar 

  3. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Europhys. Lett. 53, 518 (2001)

    Article  ADS  Google Scholar 

  4. M.D. Morariu, N.E. Voicu, E. Schäffer, Z. Lin, T.P. Russell, U. Steiner, Nat. Mater. 2, 48 (2003)

    Article  ADS  Google Scholar 

  5. S.A. Roberts, S. Kumar, Phys. Fluids 22, 122102 (2010)

    Article  ADS  Google Scholar 

  6. N.T. Eldabe, J. Math. Phys. 28, 2791 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Wu, S.Y. Chou, J. Non-Newton. Fluid Mech. 125, 91 (2005)

    Article  Google Scholar 

  8. G. Tomar, V. Shankar, A. Sharma, G. Biswas, J. Non-Newton. Fluid Mech. 143, 120 (2007)

    Article  Google Scholar 

  9. G. Ersoy, A.K. Uguz, Fluid Dyn. Res. 44, 031406 (2010)

    Article  ADS  Google Scholar 

  10. A. Nurocak, A.K. Uguz, Eur. Phys. J. Special Topics 219, 99 (2013)

    Article  ADS  Google Scholar 

  11. R.M. Thaokar, V. Kumaran, Phys. Fluids 17, 084104 (2005)

    Article  ADS  Google Scholar 

  12. A.O. El Moctar, N. Aubry, J. Batton, Lab Chip 3, 273 (2003)

    Article  Google Scholar 

  13. H. Lin, B.D. Storey, M.H. Oddy, C.H. Chen, J.G. Santiago, Phys. Fluids 16, 1922 (2004)

    Article  ADS  Google Scholar 

  14. I. Glasgow, J. Batton, N. Aubry, Lab Chip 4, 558 (2004)

    Article  Google Scholar 

  15. C. Chang, R. Yang, Microfluid Nanofluid 3, 501 (2007)

    Article  Google Scholar 

  16. O. Ozen, N. Aubry, D.T. Papageorgiou, P.G. Petropoulos, Phys. Rev. Lett. 96, 144501 (2006)

    Article  ADS  Google Scholar 

  17. J.F. Hoburg, J.R. Melcher, J. Fluid Mech. 73, 333 (1976)

    Article  ADS  Google Scholar 

  18. J.R. Melcher, W.J. Schwarz, Phys. Fluids 11, 2604 (1968)

    Article  ADS  Google Scholar 

  19. B.S. Tilley, P.G. Petropoulos, D.T. Papageorgiou, Phys. Fluids 13, 3547 (2001)

    Article  ADS  Google Scholar 

  20. R.V. Craster, O.K. Matar, Phys. Fluids 17, 032104 (2005)

    Article  ADS  Google Scholar 

  21. J.D. Zahn, V. Reddy, Microfluid Nanofluid 2, 399 (2006)

    Article  Google Scholar 

  22. O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Electrochim. Acta 51, 5316 (2006)

    Article  Google Scholar 

  23. A.K. Uguz, O. Ozen, N. Aubry, Phys. Fluids 20, 031702 (2008)

    Article  ADS  Google Scholar 

  24. A.K. Uguz, N. Aubry, Phys. Fluids 20, 092103 (2008)

    Article  ADS  Google Scholar 

  25. C.T. Okonski, H.C. Thacher, J. Phys. Chem-US 57, 955 (1954)

    Article  Google Scholar 

  26. S. Allan, S.G. Mason, J. Chem. Phys. 45, 267 (1962)

    Google Scholar 

  27. G.I. Taylor, Proc. R. Soc. London, Ser. 159, 299 (1966)

    Google Scholar 

  28. J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)

    Article  ADS  Google Scholar 

  29. F. Li, O. Ozen, N. Aubry, D.T. Papageorgiou, P.G. Petropoulos, J. Fluid Mech. 583, 347 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Li, T.N. Wong, N. Nguyen, Int. J. Heat Mass Trans. 55, 6994 (2012)

    Article  Google Scholar 

  31. J.R. Melcher, C.V. Smith Jr, Phys. Fluids 12, 778 (1969)

    Article  ADS  Google Scholar 

  32. K. Abdella, H. Rasmussen, J. Comput. Appl. Math. 78, 33 (1997)

    Article  MathSciNet  Google Scholar 

  33. P. Gambhire, R.M. Thaokar, Phys. Fluids 22, 064103 (2010)

    Article  ADS  Google Scholar 

  34. V. Shankar, A. Sharma, J. Colloid Interf. Sci. 274, 294 (2004)

    Article  Google Scholar 

  35. D. Papageorgiou, P. Petropoulos, J. Eng. Math. 50, 22 (2004)

    Article  Google Scholar 

  36. A. Castellanos, A. Gonzalez, IEEE Trans. Dielectr. Electr. Insul. 5, 334 (1998)

    Article  Google Scholar 

  37. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  38. L.E. Johns, R. Narayanan, Interfacial Instability (Springer-Verlag, New York, 2002)

  39. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    Article  ADS  Google Scholar 

  40. S.G. Yiantsios, B.G. Higgins, Phys. Fluids 31, 3225 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  41. L.N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000)

  42. P. Eribol, A.K. Uguz, Eur. Phys. J. Special Topics, 224, 423 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. C. Ozan or A. K. Uguz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozan, S.C., Uguz, A.K. Nonlinear evolution of the interface between immiscible fluids in a micro channel subjected to an electric field. Eur. Phys. J. Spec. Top. 226, 1207–1218 (2017). https://doi.org/10.1140/epjst/e2016-60211-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60211-5

Navigation