Skip to main content
Log in

Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

  • Regular Article
  • Specific Models to Tackle Fundamental Questions
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.V.D. Gucht, E. Spruijt, M. Lemmers, M.A. Cohen Stuart, J. Colloid Interface Sci. 361, 407 (2011)

    Article  Google Scholar 

  2. S.L. Perry, L. Leon, K.Q. Hoffmann, M.J. Kade, D. Priftis, K.A. Black, D. Wong, R.A. Klein, C.F. Pierce III, K.O. Margossian, J.K. Whitmer, J. Qin, J.J. de Pablo, M. Tirrell, Nat. Commun. 6, 6052 (2015)

    Article  ADS  Google Scholar 

  3. D. Priftis, N. Laugel, M. Tirrell, Langmuir 28, 15947 (2012)

    Article  Google Scholar 

  4. D. Priftis, M. Tirrell, Soft Matter 8, 9396 (2012)

    Article  ADS  Google Scholar 

  5. C.G. de Kruif, F. Weinbreck, R. de Vries, Curr. Opin. Colloid & Interface Sci. 9, 340 (2004)

    Article  Google Scholar 

  6. M. Fändrich, C.M. Dobson, EMBO J 21, 5682 (2002)

    Article  Google Scholar 

  7. W. Dzwolak, R. Ravindra, C. Nicolini, R. Jansen, R. Winter, J. Am. Chem. Soc. 126, 3762 (2004)

    Article  Google Scholar 

  8. J.-H. Fuhrhop, M. Krull, G. Büldt, Angew. Chem. Int. Ed. Engl. 26, 699 (1987)

    Article  Google Scholar 

  9. M.A. Augustin, Y. Hemar, Chem. Soc. Rev. 38, 902 (2009)

    Article  Google Scholar 

  10. A. Madene, M. Jacquot, J. Scher, S. Desobry, Inter. J. Food Sci. Technol. 41, 1 (2006)

    Article  Google Scholar 

  11. O. Azzaroni, J. Polym. Sci. A Polym. Chem. 50, 3225 (2012)

    Article  ADS  Google Scholar 

  12. R.J. Stewart, C.S. Wang, H. Shao, Adv. Colloid Interface Sci. 167, 85 (2011)

    Article  Google Scholar 

  13. D.S. Hwang, H. Zeng, A. Srivastava, D.V. Krogstad, M. Tirrell, J.N. Israelachvili, J.H. Waite, Soft Matter 6, 3232 (2010)

    Article  ADS  Google Scholar 

  14. L.K. Mann, R. Papanna, K.J. Moise Jr., R.H. Byrd, E.J. Popek, S. Kaur, S.C.G. Tseng, R.J. Stewart, Acta Biomaterialia 8, 2160 (2012)

    Article  Google Scholar 

  15. R.J. Ono, A.L.Z. Lee, W. Chin, W.S. Goh, A.Y.L. Lee, Y.Y. Yang, J.L. Hedrick, ACS Macro Lett. 4, 886 (2015)

    Article  Google Scholar 

  16. J.H. Ortony, S.-H. Choi, J.M. Spruell, J.N. Hunt, N.A. Lynd, D.V. Krogstad, V.S. Urban, C.J. Hawker, E.J. Kramer, S. Han, Chem. Sci. 5, 58 (2013)

    Article  Google Scholar 

  17. K.A. Black, D. Priftis, S.L. Perry, J. Yip, W.Y. Byun, M. Tirrell, ACS Macro Lett. 3, 1088 (2014)

    Article  Google Scholar 

  18. E.J. Chung, M. Tirrell, Adv. Healthcare Mater. 4, 2408 (2015)

    Article  Google Scholar 

  19. S. Lankalapalli, V.R.M. Kolapalli, Indian J. Pharm. Sci. 71, 481 (2009)

    Article  Google Scholar 

  20. J.H. Kim, T. Ramasamy, T.H. Tran, J.Y. Choi, H.J. Cho, C.S. Yong, J.O. Kim, Asian J. Pharm. Sci. 9, 191 (2014)

    Article  Google Scholar 

  21. R. Trivedi, U.B. Kompella, Nanomedicine (Lond) 5, 485 (2010)

    Article  Google Scholar 

  22. I.-C. Liao, A.C.A. Wan, E.K.F. Yim, K.W. Leong, J. Control Release 104, 347 (2005)

    Article  Google Scholar 

  23. C.-H. Kuo, L. Leon, E.J. Chung, R.-T. Huang, T.J. Sontag, C.A. Reardon, G.S. Getz, M. Tirrell, Y. Fang, J. Mater. Chem. B 2, 8142 (2014)

    Article  Google Scholar 

  24. E.K.F. Yim, I.-C. Liao, K.W. Leong, Tissue Eng. 13, 423 (2007)

    Article  Google Scholar 

  25. Q. Wang, J. B. Schlenoff, Macromolecules 47, 3108 (2014)

    Article  ADS  Google Scholar 

  26. C. Tapia, Z. Escobar, E. Costa, J. Sapag-Hagar, F. Valenzuela, C. Basualto, M.N. Gai, M. Yazdani-Pedram, Eur. J. Pharm. Biopharm. 57, 65 (2004)

    Article  Google Scholar 

  27. Y.P. Myer, Macromolecules 2, 624 (1969)

    Article  ADS  Google Scholar 

  28. D. Priftis, X. Xia, K.O. Margossian, S.L. Perry, L. Leon, J. Qin, J.J. de Pablo, M. Tirrell, Macromolecules 47, 3076 (2014)

    Article  ADS  Google Scholar 

  29. C. Baiz, M. Reppert, A. Tokmakoffm, Ultrafast Infrared Vibrational Spectroscopy (CRC Press, 2012)

  30. K.Q. Hoffmann, S.L. Perry, L. Leon, D. Priftis, M. Tirrell, J.J. de Pablo, Soft Matter 11, 1525 (2015)

    Article  ADS  Google Scholar 

  31. G.B. Fields, R.L. Noble, Int. J. Pept. Protein Res. 35, 161 (1990)

    Article  Google Scholar 

  32. N.J. Greenfield, G.D. Fasman, Biochemistry 8, 4108 (1969)

    Article  Google Scholar 

  33. J.T. Vivian, P.R. Callis, Biophys. J. 80, 2093 (2001)

    Article  ADS  Google Scholar 

  34. L. Richert, Y. Arntz, P. Schaaf, J.-C. Voegel, C. Picart, Surf. Sci. 570, 13 (2004)

    Article  ADS  Google Scholar 

  35. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1988)

  36. B.P. Chan, K.W. Leong, Eur. Spine J. 17, 467 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Tirrell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacalin, N., Leon, L. & Tirrell, M. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides. Eur. Phys. J. Spec. Top. 225, 1805–1815 (2016). https://doi.org/10.1140/epjst/e2016-60149-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60149-6

Navigation