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Abstract. We study the effect of a nearby planar wall on the propulsion
of a spherical phoretic micro-swimmer driven by reactions on its sur-
face. An asymmetric coverage of catalysts on its surface which absorb
reactants and generate products gives rise to an anisotropic interfacial
flow that propels the swimmer. We analyse the near-wall dynamics of
such a self-phoretic swimmer as a function of the asymmetric catalytic
coverage of the surface. By an analysis of the fundamental singulari-
ties of the flow and concentration or electrostatic potential gradients
generated we are able to obtain and rationalise a phase diagram of be-
haviours as a function of the characteristics of the swimmer surface.
We find a variety of possible behaviours, from “bound states” where
the swimmer remains near the wall to “scattering” or repulsive trajec-
tories in which the swimmer ends far from the wall. The formation of
some of the bound states is a purely wall-phoretic effect and cannot be
obtained by simply mapping a phoretic swimmer to a hydrodynamic
one.

1 Introduction

Active materials are condensed matter systems self-driven out of equilibrium by com-
ponents that convert stored energy into movement. They have generated much interest
in recent years, both as inspiration for a new generation of smart materials and as a
framework to understand aspects of cell motility [1–3]. Active materials exhibit inter-
esting non-equilibrium phenomena, such as swarming, pattern formation and dynamic
cluster formation [4,5]. Many of the components of active matter have come from bi-
ological systems, e.g. mixtures of cytoskeletonal polymers and motors or suspensions
of swimming micro-organisms but there has been an increasing interest on synthetic
active components which provide promise of a variety of applications from chemical
industry to biomedical sciences [6]. A paradigmatic component of this type is a syn-
thetic micro-swimmer [7–10]. However, designing synthetic micro-scale swimmers with
comparable functionality and robustness to their natural counterparts remains a chal-
lenge [9,11,12]. A good candidate for such synthetic micro-swimmers are self-phoretic
swimmers, colloidal particles with asymmetric catalytic physico-chemical properties
over their surface [7,8,13,14]. Due to the asymmetric distribution of catalyst on their
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surface, they generate or absorb chemical solutes in an asymmetric manner leading to
an asymmetric distribution of solutes in the vicinity of the colloid. The coupled asym-
metric distribution of the chemical solutes with the short-range solute-to-colloid sur-
face interaction leads to the swimmer propulsion [15]. The phoretic mechanisms which
lead to the flow can be diffusiophoretic, involving neutral solutes or electrophoretic
involving charged solute molecules. Of particular importance is the behaviour of semi-
dilute or concentrated suspensions of such particles which requires an understanding
and ability to predict their swimming behaviour in confinement.
The first step towards understanding the behaviour of swimmers in confinement

is provided by the study of their motion near planar walls. There have been a number
of recent experiments addressing this issue. A single Janus swimmer confined to a
micro channel has shown a rich dynamics with the swimmer sliding along the wall
while weakly rotating away from the wall. This reorientation continues until subse-
quent reflection from the wall [16]. Light activated phoretic colloidal swimmers have
been shown to swim only when close to a boundary surface [5]. Topographical fea-
tures such as steps on surfaces have been shown to affect directionality and motion
of swimmers near surfaces [17,18]. These suggests wall effects are a combination of
wall induced distortion both of fluid flow and of the solute gradients generated by the
swimmer.
Recent numerical work on these swimmers near walls has shown the existence of

a variety of possible behaviours of diffusiophoretic swimmers near walls including the
possibility of bound states which might “hover” or “slide” along the wall [19–23].
Explanations of the existence of these states however has tended to focus on the ef-
fect of hydrodynamic mechanisms, i.e. on the behaviour of the fluid flow generated
by swimmers near boundaries [16,19–27] making the assumption that they are the
dominant contributor to the motion. This is obviously the case for swimmers driven
by mechanical surface distortions [21,22]. However, it is not clear that this is also
true for chemically driven swimmers whose rich behaviour is not easily understood
within this framework [19,23]. Modern theoretical physics works by a synergistic in-
terplay between numerical simulations and analytic theory, each enriching the other
by providing new insights and motivation for new directions of study. In this spirit
we use these numerical simulation studies as motivation for an analytic study of self-
phoretic swimmers near walls with our goal being the disentangling of the different
physical mechanisms behind the observed behaviour. Hence, we theoretically examine
spherical self-phoretic swimmers near an infinite planar wall [28] and seek to under-
stand better the role of the solute gradient distortion on the dynamic behaviour of a
phoretic swimmer near walls. By decomposition of the solute concentration and flow
fields into their fundamental singularities we show that the balance of solute concen-
tration gradients and fluid flow can account for all the types of behaviour observed.
We find that the distortion of the local gradient of solute concentration by the wall
can be the dominant effect on both the translational and orientational dynamics. This
also allows us to rationalise some of the recent numerical results [19,20,23].
Most of this article will be concerned with describing swimmers which are not

Janus particles – i.e. with asymmetric catalytic coatings which cover more or less
than half of the spherical colloids (Janus particles we define as half-coated particles
in which the catalytic portion is equal in area to the non-catalytic portion). We find
that the asymmetry of the coating plays an essential role in the types of behaviour
seen near walls. The gross dynamical features of the behaviour described in this pa-
per in this case holds true for both self-diffusiophoretic and self-electrophoretic swim-
mers. Therefore, we will focus mainly on self-diffusiophoretic swimmers in this article.
However we will study in detail one case where one might expect self-electrophoretic
swimmers are a more natural system, i.e. constructing a half-coated Janus particle
with non-uniform mobility.
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Fig. 1. Phase diagram for a partially coated swimmer. Θ0 is the initial orientation and cosϕ
the catalyst coverage. Zero coverage corresponds to ϕ = 0, cosϕ = 1, a half-coated swim-
mer (Janus particle) corresponds to ϕ = π/2, cosϕ = 0 and full coverage corresponds to
ϕ = π, cosϕ = −1. Each of the symbols in this and other phase diagrams in this article
correspond to a fixed point of the swimmer dynamics whose stability has been checked nu-
merically for the values of the parameters indicated on the axes. Red circles correspond to
stationary ‘hovering’ states, green solid squares correspond to ‘sliding’ states where the swim-
mer stays close to and moves parallel to wall. Both the scattering – ‘reflection’ and ‘escape’,
correspond to the trivial fixed point of swimmer far away from the confining boundary where
the effects of the wall decay to zero. The trajectories of the former first take the swimmers
close to the wall before being scattered and ending up far from the wall.

By mapping the resulting dynamics into a generic dynamical system and searching
for stable stationary points, we are able to obtain a phase diagram of the stable long
time behaviour of solute producing self-diffusiophoretic swimmers, near a solid wall
as a function of their coverage and initial orientation summarised in Fig. 1. The re-
sults may be summarised as follows: (1) bound states can only be found for swimmers
whose initial orientation is pointing towards the wall, (2) for low coverage of catalyst
the swimmers tend to be reflected from the walls, (3) for intermediate coverage of
the swimmers, they form “bound states” where they swim or slide along the wall and
(4) for high catalyst coverage the sliding velocity goes to zero and they become sta-
tionary and “hover” near the wall. This is consistent with previous numerical studies
of such swimmers [19,20].

2 Diffusiophoretic swimmers

We restrict our study to spherical self-phoretic swimmers in which the hydrodynamic
flows generated are slow compared to the solute diffusion, i.e. in the limit of vanishing
Péclet number. Self-phoretic swimmers with typical sizes a = 1–2μm and moving
with propulsion speed U = 1–10μms−1 in a solution will have a Péclet number in
the range of Pe = Ua/D ∼ 10−3–10−2, where D∼10−9m2s−1 is the typical solute
diffusion coefficient. Hence, we consider the solute concentration profile to be at quasi-
steady state with the bulk. We also ignore inertia, studying the hydrodynamics in the
vanishing Reynolds number limit (i.e. Re = ρUa/η � 1 for solution mass density ρ
and dynamic viscosity η).



1846 The European Physical Journal Special Topics

(a) (b)

Fig. 2. (a) Catalytic coverage of a spherical self-phoretic swimmer. û is the swimmer sym-
metry axis, ϕ measures the coverage of the catalyst – with ϕ = 0 corresponding to zero
coverage and ϕ = π corresponding to full coverage. (b) The degrees of freedom required to
characterise the state of a swimmer near a solid wall: Θ is the swimmer (pitch) angle relative
to the wall – with Θ = 0 corresponding to parallel to the wall orientation and Θ = π/2 cor-
responding to perpendicular orientation towards the wall, r0 = (x0, y0, h) is the position of
the swimmer center relative to a resting reference frame. r is the co-moving reference frame
co-ordinates while r̃ is the rest frame co-ordinates. (U,Ωxêx) are the swimmer rigid body
translation and rotation respectively.

Hence, to leading order in Péclet number, solute molecules diffuse freely in the
fluid and can be described by a concentration field obeying the Laplace equation

∇2C(r) = 0, (1)

We consider a swimmer with azimuthal symmetry about an axis oriented along the
unit vector û (see Fig. 2(a)) a distance h from the wall and choose a coordinate system
such that the centre of the swimmer is at the origin (see Fig. 2(b)). The chemical
activity on the surface of the swimmer leads to consumption/production of the solute
with a flux (activity function) α(n̂) and the boundary condition

− Dn̂ · ∇C(r)|r=a = α(n̂), (2)

where r = |r|. The activity function is determined by the coverage of catalyst on
the swimmer. An activity function α(n̂) = S(û · n̂) where S(x) = 1, x > 0; S(x) =
0, x ≤ 0, is a half-coated (Janus) particle (ϕ = π/2 in Fig. 2(a)), while an example
of a swimmer with generic assymetric coating (ϕ > π/2 in Figure 2(a)) has

α(n̂) = Kϕ(n̂ · û); Kϕ(n̂ · û) =
{
1, cosϕ ≤ n̂ · û ≤ 1;
0, otherwise,

.

Note that Kπ/2(x) = S(x).
Furthermore, we consider the wall to be inert and impermeable to the solutes (see

Fig. 2(b))

− Dêz · ∇C(r)|z=−h = 0. (3)

Far away from the wall and the swimmer surface, the concentration of the solute takes
the bulk value C → C∞, {x, y → ±∞, z → +∞}.
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The fluid flow v is that induced by the presence of the swimmer in an otherwise
quiescent fluid governed by the Stokes equations of Re = 0, incompressible flow

η∇2v(r)−∇p(r) = 0, ∇ · v(r) = 0, (4)

where the domain of interest is the half-space (shown in Fig. (2)) and η is the viscosity
of the solvent and p the hydrostatic pressure. The flow field has the slip boundary
condition

v(r)|r=a = U+Ω× r + vs, (5)

on the swimmer surface in the co-moving frame of reference, where U,Ω are the as
yet unknown rigid body linear and angular velocities of the swimmer respectively. The
goal of this paper is to calculate the velocities U,Ω (and how they are affected by
walls). The swimmer linear and angular velocities are determined by the phoretic
slip velocity on the swimmer surface driven by the solute concentration gradients
generated by the reactions. The phoretic slip velocity vs arises due to the viscous
stresses balancing osmotic pressure (concentration) gradients in the ’thin interaction
region’. The latter is generated by the coupled asymmetric distribution of the solutes
C and their short-ranged interaction Ψ with the swimmer surface. The slip velocity
expression

vs = μ(n̂) (1− n̂n̂) · ∇C, (6)

is obtained by matching an “inner” (interaction layer) to the “outer” bulk fields,
where

μ(n̂) =
kBT

η

∫ ∞
0

ρ
(
1− e−Ψ(ρ,n̂)/kBT

)
dρ (7)

is the swimmer phoretic mobility coefficient that captures the effect of the inter-
action of the solute molecules with the swimmer surface. kB is the Boltzmann
constant and T the temperature. We also have the no-slip boundary condition on
the wall, v(r)|z=−h = 0 and vanishing hydrodynamic flow in the bulk, v → 0,
{x, y → ±∞, z → +∞}. There is also zero net body-force and torque on the
swimmer [29]. �

Π · n̂ dS = 0,
�
r × (Π · n̂) dS = 0, (8)

where Π = −p1 + η (∇v + (∇v)T ) is the hydrodynamic stress tensor and 1 is the
unit tensor.

3 Swimming in the bulk

3.1 Generic framework

The first step in our analysis is a calculation of the swimming velocity in the bulk, far
from any walls which can be approximated by solving the equations for the concen-
tration and flow fields in an infinite system. To do this, we will construct the solution
of the problem as a series expansion of the fundamental solutions of the Laplace
equation and its derivatives for the solute concentration field,

C(r) =

∞∑
l=0

(Alr−l−1 + Blrl)Pl(r̂ · û) (9)

where r = r̃−r0 is the displacement from the centre of the swimmer, r = |r|, r̂ = r/r
and Pl(x) is the Legendre polynomial of order l.
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Similarly we will construct solutions for the flow field from the fundamental solu-
tions of the Stokes equations,

G(r) · ê =
(a
r

)(
1+
rr

r2

)
· ê, (stokeslet) (10)

derivatives, such as

GD[ê1, ê2](r) = (aê1 · ∇0)G(r) · ê2, (force-dipole), (11)

GQ[ê1, ê2, ê3](r) = (aê1 · ∇0)GD[ê2, ê2](r), (force-quadrupole), (12)

and so on (with êi’s unit vectors and ∇0 = (∂x0 , ∂y0 , ∂z0), with z0 ≡ h), together with
the potential flow singular source dipole

SD[ê](r) =
(a
r

)3 (
3
rr

r2
− 1

)
· ê, (source-dipole), (13)

and its derivatives

SQ[ê1, ê2](r) = (aê1 · ∇0)SD[ê2](r), (source-quadrupole), (14)

SO[ê1, ê2, ê3](r) = (aê1 · ∇0)SQ[ê2, ê3](r), (source-octupole), (15)

where ∇0 = (∂x0 , ∂y0 , ∂z0), with z0 ≡ h.
These fundamental solutions will be used to construct series solution for the flow

field, both for the bulk (free-space) solution and subsequent image fields for swimmer
near the wall (half-space).
The rigid body motions of the swimmer in the bulk (i.e. for an isolated swimmer

far from any surface) are thus obtained using Faxén’s Laws [29]

U0 = −〈vs0〉 = −
1

4πa2

�
dS μ(n̂) ∇sC(0), (16)

Ω0 = − 3
2a
〈n̂× vs0〉 = −

3

8πa3

�
dS μ(n̂) n̂×∇sC(0), (17)

with vs0 = μ(n) (1− n̂n̂) · ∇C(0), a phoretic slip velocity, C(0), the (bulk) solute
concentration field and ∇s ≡ (1− n̂n̂) · ∇ is the surface gradient operator. The
swimmer surface average is denoted by 〈·〉 = (4πa2)−1�

(·) dS where dS is the
surface area element. In most of what follows, we consider swimmers with uniform
mobility functions μ(n) = μ = constant.

3.2 Legendre polynomial expansion

The bulk solution, C(0) of the concentration field is obtained from solving the
Laplace equation for the concentration field with boundary conditions specified by
the coverage function α(n̂). Hence we can obtain a systematic series solution for
the bulk concentration by expanding the activity function in terms of the Legendre
Polynomials,

α(n̂) =

∞∑
k=0

αkPk(û · n̂) (18)

where û defines the swimmer axis and Pk(û · n̂) are the Legendre polynomials.
The first few terms of the expansion of a generic (reaction-rate-limited activity)

coverage function are thus given by

α(n̂) = α0 + α1P1(û · n̂) + α2P2(û · n̂) + α3P3(û · n̂) + · · · , (19)
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with Pk(û · n̂), the normalised Legendre polynomials, given by

P0 = 1; P1 = û · n̂; P2 = 1
2

(
3(û · n̂)2 − 1) ; P3 = 1

2

(
5(û · n̂)3 − 3(û · n̂)) , (20)

and the coefficients

αk =

(
k +
1

2

)∫ 1
−1
d (û · n̂) α(n̂)Pk(û · n̂). (21)

Hence, the solute concentration field in the bulk is

C(0)(r) =
a

D

∞∑
k=0

αk

(k + 1)

(a
r

)k+1
Pk(û · r̂), (22)

which gives rise to a slip velocity on the surface of the swimmer:

vs0 = μ∇sC(0) =
∞∑
k=0

vsαk =

∞∑
k=0

Bk Vk (û · n̂) êθ, (23)

where∇s=(1− n̂n̂)·∇ is the surface gradient operator and we have choosen (without
loss of generality) û = ẑ = cos θêr− sin θêθ. Here to begin with, we restrict ourselves
to swimmers with uniform mobility, i.e. μ(n̂) = μ = constant.
One can then readily identify the squirming modes Bk, and the (weighted) first

order associated Legendre polynomials Vk defined as follows

Bk = −k
2

(μαk
D

)
, Vk(cos θ) =

−2
k(k + 1)

P 1k (cos θ), (24)

where P 1k is the kth degree first order associated Legendre polynomial
1.

The slip velocity in Eq. (23) is similar to a squirmer surface velocity with only
tangential squirming modes excited [30]. The squirmer is a model proposed by
Lighthill [31] of a spherical swimmer undergoing surface (mechanical) deformations
at vanishing Reynolds’ number. In effect, it is a model of a spherical swimmer with
a specified flow field on its surface. A complete solution of the flow-field in the bulk
resulting from the surface flows given in Eq. (23) has been provided by Blake [30]

v0(r) = U0 +Ω0 × ar̂ + 1
3
B1

(a
r

)3
(2P1(û · r̂) êr + V1(û · r̂) êθ)

+

∞∑
k=2

Bk

[(a
r

)k+2
−
(a
r

)k]
Pk(û · r̂) êr

+

∞∑
k=2

Bk

[
k

2

(a
r

)k+2
−
(
k

2
− 1
)(a
r

)k]
Vk(û · r̂) êθ. (25)

The slip velocity (23) together with the slip velocity mode amplitudes (24) provides
a mapping of our self-phoretic swimmer to the squirmer model. Hence, we directly
obtain the contribution of each activity mode (αk ⇔ Bk) to the fluid velocity field
1 The lth degree, mth order associated Legendre polynomial is defined as Pml (x) =
(−1)m(1− x2)m/2dmPl(x)/dxm.
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and the rigid body motion (U0,Ω0) are determined by imposing zero net force and
torque on the swimmer,

U0 =
2

3
B1û (26)

Ω0 = 0. (27)

Note that we have zero net rotation in the bulk far from the wall because of the
axisymmetry of the swimmer. With this mapping of the self-phoretic swimmer to
squirmer hydrodynamics, we see that the activity mode αk (k ≥ 1) contributes a
fluid flow of order (a/r)k and (a/r)k+2 [30,32]. To resolve the flow field to order
(a/r)3 we therefore need to keep only the first four activity modes (k = 0, 1, 2, 3). We
now consider these first four modes in detail: (and for convenience, we shall write the
flow field singularities in vector notation).

3.2.1 0th mode

The zeroth moment of the activity function, α0, contributes a solute monopole field
with zero flow field and hence no propulsion

C(0)α0 (r) =
α0a

D

(a
r

)
; v(0)α0 = 0. (28)

3.2.2 1st mode

The first moment of the activity function gives rise to a potential field

C(0)α1 (r) =
α1a

2D

(a
r

)2
P1(û · r̂), (29)

and generates a slip velocity on the swimmer surface;

vslipα1 =
(μα1
2D

) [
û− (n̂ · û) n̂

]
, (30)

which results in a potential flow disturbance in the form of a source-dipole

v(0)α1 (r) = −
(μα1
6D

)
SD[û](r), (31)

with a self-propulsion velocity U0 = (2/3)B1û = − (μα1/3D) û obtained from the
condition of zero net force on the swimmer. The direction of propulsion relative to the
catalytic cap is determined by the sign of the product μα1 (see Fig. 3). The swimmer
moves with its predominantly inert ’face’ at the front for sgn(μα1) = +1, while for
sgn(μα1) = −1 it moves with the catalytic cap at the front. As we shall see later,
the swimmer propulsion direction relative to the active catalytic cap has important
implications for the swimmer behaviour near a confining wall.

3.2.3 2nd mode

The second moment of the activity function gives rise to the solute field

C(0)α2 (r) =
α2a

3D

(a
r

)3
P2(û · r̂), (32)
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Fig. 3. Two possible swimming directions of the self-phoretic swimmer.

with a slip velocity on the swimmer surface;

vslipα2 =
(μα2
D

)
(n̂ · û)

[
û− (n̂ · û) n̂

]
, (33)

and this slip flow generates a flow disturbance consisting of a ‘force-dipole’ and
‘source-quadrupole’,

v(0)α2 (r) =
(μα2
D

)[1
2
GD[û, û](r) +

1

2
SQ[û, û](r)

]
, (34)

and zero contribution to the propulsion velocity.

3.2.4 3rd mode

Whereas the third moment contributes a solute field

C(0)α3 (r) =
α3a

4D

(a
r

)4
P3(û · r̂), (35)

from which follows a slip velocity

vslipα3 =

(
3μα3
8D

)[
− û+ (n̂ · û) n̂+ 5 (n̂ · û)2 û− 5 (n̂ · û)3 n̂

]
, (36)

which results in the flow field disturbance

v(0)α3 =

(
3

8

μα3

D

)[
1

3
SD[û, û](r) +

5

6
GQ[û, û, û](r)− 1

6
SO[û, û, û](r)

]
, (37)

and zero contribution to the propulsion velocity.

3.3 Solute concentration and flow field expansions

Hence for a generic reaction-rate-limited activity function, the first 4 modes of the
coverage (activity) function α(n) defined above lead to the leading order expansion
of the solute field C(0)(r), given by

C(0)(r) =
a

D

3∑
k=0

αk

k + 1

(a
r

)k+1
Pk(û · r̂) +O

(
r−5
)
, (38)
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while the flow field v(r) =
∑3
k=1 vαk , truncating at O

(
r−3
)
, equivalent to keeping

the first three leading singularities from Eqs (31,34,37);

v(0)(r) = A2 GD[û, û](r) +A1 SD[û](r) +A3 GQ[û, û, û](r) + O(r−4), (39)

and the propulsion velocities are given by

U0 = −
(μα1
3D

)
û (40)

Ω0 = 0, (41)

where the singularity strengths are given by

A1 = −μα1
3D

(
1

2
− 3
8

α3

α1

)
; A2 =

1

2

μα2

D
; A3 =

5

16

μα3

D
. (42)

3.4 Swimmer with nonuniform phoretic mobility

In the analysis above we have taken the phoretic mobility to be constant,
μ(n) = μ. However the swimmer phoretic mobility coefficient, μ (n̂) = kBT

η

∫∞
0
ρ(

1− e−Ψ(ρ,n̂)) dρ can vary if the interaction between the solute molecules and dif-
ferent parts of the swimmer surface are different (e.g. if the solute molecules have
a different interaction with the catalytic surface and the uncoated surface). In this
section, we study the effects of nonuniform phoretic mobility role on the dynamics of
a self-phoretic swimmer. For a generic mobility function μ(n̂), we can as we did above
for the catalytic coverage function, α(n̂) expand μ(n̂) in the Legendre polynomials
(see Appendix) and use it to calculate the effect of this variation on the propulsion
speed and direction. Here, for simplicity we restrict ourselves to a linear variation of
the phoretic mobility and study the leading behaviour with the first two terms,

μ(n̂) ≈ μ0 + μ1 û · n̂, μ1

μ0
� 1, (43)

approximating the mobility as (weakly) varying linearly across the surface where
μ0 and μ1 are the monopole and dipole moments of the position-dependent mobility.
Expressions for the slip velocity and the resulting rigid body motion keeping all modes
of the mobility expansion can be found in the Appendix. As can be seen from the slip
velocity and rigid body formulae in Appendix B, these two modes (μ0, μ1) are able to
capture all the qualitative features of the effects of a nonuniform phoretic mobility.
The linear variation of the phoretic mobility (dipole) gives an extra contribution to

the slip velocity vs�μ that can be written in the form of Eq. (23) using the recurrence
properties of the Legendre polynomials (see Appendix). We therefore have from the
linear variation in mobility a contribution to the propulsion velocity in the bulk of

UΔ0 μ = (2μ1/3μ0) (α2/5α1)U0, with no rotation in the bulk Ω
Δμ
0 = 0.

This implies of course a modification of the ‘source-dipole’ term of the flow
field (see Eq. (13)), however this is not the dominant contributor to the effect of
the wall on the swimmer due to its short range (quadrupolar) nature. The major
qualitative effect, however, of the dipole term in the phoretic mobility is due to the
fact that it modifies the flow structure with an additional contribution to the ‘force-
dipole’ flow field (see Eq. (11)),

v
(0)
Δμ(r) = A

Δμ
2 GD[û, û](r) +O

(
μ1

μ0
r−3
)
, (44)
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where AΔμ2 = −(1/2)BΔμ2 = (μ1α1/4D) (1 + 6α3/7α1). This has important conse-
quences on the interactions of these swimmers with the wall due to the long-range
nature of the force-dipole flow singularity. Note that combinations of the activity and

mobility higher Legendre modes (μkαl, k + l even) contribute to A
Δμ
2 . However, we

have checked numerically and found fast convergence of the higher modes, for the
experimentally relevant half-coated self-diffusiophoretic swimmer (see Appendix and
Fig. 10) explaining why keeping just the first two modes seems to work so well (see
later).

4 Swimming near a wall

4.1 Method of images

In the presence of the wall, both the solute concentration and flow are modified and
the modifications can be treated using the method of images [29]. The swimmers self-
generated flow and chemical solute fields get distorted by the wall. These distortion
effects can be represented as image (reflected) fields with sources located on the other
side of the wall and using them the resulting rigid body motions of the swimmer can
be calculated. To implement this we consider a swimmer whose centre is a distance
h from an infinite plane wall. In what follows, we fix the reference frame relative to
the wall with the wall normal n̂w = ẑ (see Fig. 2). We also choose the swimmer
symmetry axis û to lie in the plane containing the wall normal ẑ and ŷ. Hence,
due to the axisymmetry of the swimmer, the swimmer only rotates about the x-axis
(Ω = Ωxx̂). We proceed by finding corrections to the bulk velocities(

U

Ω

)
=

(
U0 +U1 + . . .

Ω0 +Ω1 + . . .

)
. (45)

This is achieved by adding singular flow and concentration fields (v(1)(r), C(1)(r))
centred behind the wall (at the image point) to impose the no-slip and the imper-
meability conditions on the wall. Furthermore since adding them means the flow
no longer satisfies the BCs on the swimmer surface, we add further singular fields
(v(2)(r), C(2)(r)), this time centred at the swimmer centre to maintain the correct
slip and constant flux BCs. This process can be iterated yielding to a power series
solution in ε = a/h.
The wall modified solute and flow fields to leading order in ε = a/h are found by

adding required image singularities (C(1),v(1)) behind the wall at r = −2hêz, and
another set of singularity fields (C(2),v(2)), at the swimmer center r = 0, to maintain
correct boundary conditions on the swimmer surface due to its finite size. Therefore,
the approximate solute and flow fields are

C(r) = C(0) + C(1) + C(2) + · · · , (46)

v(r) = v(0) + v(1) + v(2) + · · · , (47)

where (C(0),v(0)) are the bulk solutions (38, 39). The image fields for the solute and
flow fields are in the Appendix (see also [33–35]).
These leading order confining effects on both the solute and flow fields modify the

swimmer rigid body motion with a contributionUh1 ,Ω
h
1 due to the image singularities

of the fluid flow field and a contribution Ud1,Ω
d
1 from the solute field images.

U1 = U
h
1 +U

d
1 (48)

Ω1 = Ω
h
1 +Ω

d
1 . (49)
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It is worth noting that the wall-distortion of the swimmer slip velocity couples the
swimmer hydrodynamics to the effects of the wall on the solute concentration and
hence to the chemical reactions driving the motion. We can now identify different con-
tributions to the swimmer rigid body motion from both hydrodynamic and phoretic
effects. The confining effect of the no-slip wall on the flow field appears in the image
field v(1) and leads to a contribution to the rigid body motion of the swimmer,

Uh1 =

(
v(1) +

a2

6
∇2v(1)

)
r=0

, (50)

Ωh1 =
1

2

(
∇× v(1)

)
r=0
. (51)

Note that v(2) does not have any explicit effect on the rigid motions at this order.
Whereas the solid wall impermeability of the chemical solutes and the swimmer

constant flux condition distorts the solute concentration gradients in the form of
wall and swimmer reflected fields (C(1), C(2)) respectively – thereby modifying the
swimmer slip velocity. The wall and swimmer surface reflected fields induce an ad-
ditional phoretic slip velocity vs1 = μ (1− n̂n̂) · ∇

(
C(1) + C(2)

)
. Hence, applying

Faxéns Laws, these reflected fields give an additional contribution to the swimmers
rigid body motion

Ud1 = −〈vs1〉 , (52)

Ωd1 = −
3

2a
〈n̂× vs1〉 . (53)

Now, we set out to obtain expressions for these corrections as a function of the system
parameters (such as the catalytic ‘activity’) in the rest of the paper, starting with the
bulk (free space) solution valid when the swimmer is far from any confining boundary.
In the following sections, we first consider swimmers with uniform mobility before
generalising our analysis to situations with non-uniform mobility (i.e. variations in
the mobility across the swimmer surface).
We shall now consider hydrodynamic and phoretic effects to the swimmer dynam-

ics in turn.

4.2 Wall-induced hydrodynamic effects

The flow field image system due to the no-slip wall for our free-space solution (39)
are well known [33,34], and contributes

Uh1 = ε
2A2

[
−3
8

(
1− 3 [û⊥]2) êz + 3

4
û‖û⊥ êy

]
− ε3A1

[
1

4
û‖ + û⊥

]

+ε3A3

[
1

4
û⊥
(
7− 9[û⊥]2) êz + 1

16
û‖
(
7− 27[û⊥]2) êy

]
+O (ε4) , (54)

and angular velocity, Ωh1 = Ω
h
1 êx, of

Ωh1 = ε
3

[
−3
8

A2

a
û‖û⊥

]
+ ε4

[
3

8

A1

a
û‖ − 3

8

A3

a
û‖
(
1− 3[û⊥]2)

]
+O (ε5) , (55)

where the symmetry axis unit vector parallel and perpendicular components are û‖ =
û · êy and û⊥ = û · êz.
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(a) ˜A2 > 0 (b) ˜A1 > 0 (c) ˜A3 > 0

(d) A2 > 0 (e) A1 > 0 (f) A3 > 0

Fig. 4. (a–c) Far-field flow singularities (39), with (a) force-dipole, GD(Û0, Û0), (b) source-

dipole, SD(Û0), and (c) force-quadrupole,GQ(Û0, Û0, Û0). (d-f) Intuitive rate of reorienta-
tions near a solid no-slip wall. Different contributions to the rate of orientation as a function
of the swimmer pitch angle Θ are shown in: (d) force-dipole, GD(Û0, Û0) +G

im
D , contribu-

tion, (e) source-dipole, SD(Û0) + S
im
D , and (f) force-quadrupole, GQ(Û0, Û0, Û0) +G

im
Q .

We can get an intuitive picture of the individual flow field singularity contributions
from Fig. 4. Notably, as we shall see later when solving the swimmer dynamical
system, hydrodynamically induced bound states are determined by the signature of
A2; the coefficient of the slowest decaying force-dipole singularity which can balance
the source-dipole singularity (A1) due to the finite size of the swimmer (see Figs
4(a) and (d)).

4.3 Wall-induced phoresis

The wall distorted solute field contributes to the wall-induced-phoresis (linear transla-
tion) because of its modification of the swimmer phoretic slip velocity. This modifica-
tion of the swimmer slip velocity due to the wall couples the swimmer hydrodynamics
to the chemical effects and gives the following contributions to the swimmer rigid body
motion (see the Appendix for details):

Ud1 =
ε2

4

(μα0
D

)
êz +

3ε3

16
(U
‖
0 + 2U

⊥
0 ) +O

(
ε4
)
, (56)

Ωd1 = 0, (57)

which indicates that the distortion of the solute concentration field always enhances
the speed in the direction parallel to the wall. The leading order perpendicular contri-
bution (∼ α0ε2) is repulsive for a swimmer with sgn(μα1) = +1, and attractive for a
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swimmer with sgn(μα1) = −1. Note that, in the case where α0 = 0, the wall-induced
phoretic effect on a swimmer with uniform mobility is always speeding-up the swim-
mer translation in both parallel and perpendicular directions. Note that there is no
induced-rotation for uniform mobility swimmer.

4.4 Non-uniform mobility

Following Sect. 3.4, we restrict ourselves to a linear variation of the phoretic mobility
and study the leading behaviour due to the first two terms of the Legendre Polynomial
expansion of the mobility function, μ(n̂)

μ(n̂) ≈ μ0 + μ1 û · n̂, μ1

μ0
� 1, (58)

approximating the mobility as (weakly) varying linearly across the surface where μ0
and μ1 are the monopole and dipole moments of the position-dependent mobility.

4.4.1 Wall-induced hydrodynamic effects

As discussed above, the major qualitative effect of the dipole moment of the phoretic
mobility is due to the fact that it modifies the flow structure with an additional
contribution to the ‘force-dipole’ flow field. From Faxéns Laws, this new force-dipole
leads to a new correction to the linear translation velocity

Uh,�μ1 =
3

8
ε2 A�μ2

⎛
⎜⎜⎝

0

2 û‖û⊥

−
(
1− 3 [û⊥]2)

⎞
⎟⎟⎠+O

(
μ1

μ0
ε3
)
, (59)

and to the angular velocity, Ωh,�μ1 = Ωh,�μ1 êx, where

Ωh,�μ1 = −3
8
ε3 A�μ2 û‖û⊥ +O

(
μ1

μ0
ε4
)
. (60)

4.4.2 Wall-induced phoretic effects

In addition to flow induced wall effects above, the swimmer will also experience a
correction to the linear translation from the solute reflected fields,

Ud,�μ1 = −〈vs,Δμ1 〉, vs,Δμ1 = μ1P1(û · n) ∇s(C(1) + C(2)), (61)

which gives the additional contribution Ud,�μ1 = O
(
μ1
μ0
ε3
)
which we ignore in our

numerical integration of the swimmer dynamical equations.2

As expected and noted earlier, due to the axisymmetry of the swimmer, the vari-

ation in mobility does not result in rotation Ωd,�μ0 = 0 in the bulk, but an additional
phoretically induced angular velocity arises from the wall and swimmer surface re-
flected fields;

Ωd,�μ1 = − 3
2a
〈n̂× vs,Δμ1 〉, (62)

2 This is because we are truncating our expansions at O (ε4, μ1/μ0ε3
)

for the swimmer
translation.
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which upon substituting the reflected fields (Eqs A.1, A.2) and evaluating the integral
above, results in a correction to the angular velocity,

Ωd,�μ1 =
3

4a

(
d×Ud1

)
+O

(
μ1

μ0
ε4
)
, (63)

where the (dimensionless) mobility dipole vector d and the wall-induced phoretic
translation Ud1 which comes from the gradients of the image solute fields
(see Eq. (56)) are given by

d =
μ1

μ0
û, Ud1 =

1

4

μ0α0

D
ε2êz − 1

16

μ0α1

D
ε3(û‖ + 2û⊥). (64)

Hence, we have a contribution to the rate of re-orientation

Ωd,�μ1,x =
3

16

μ1α0

aD
ε2û‖ − 3

64

μ1α1

aD
ε3 û‖û⊥. (65)

Interestingly, we find, as noted in the numerical study of [20], this additional rate of
re-orientation can qualitatively change the dynamics of the swimmer, introducing a
bound sliding state even in the absence of the force-dipole flow field, A2 = 0.

5 The swimmer dynamical system

5.1 Generic framework

Once the swimmer velocity and angular velocity have been obtained as functions of
the distance from the wall, h, the dynamics of the swimmer can be reduced to a set
of equations for its position and orientation as a function of time. In the laboratory
frame of reference, the swimmer will follow a trajectory r0(t) ≡ (x0(t), y0(t), h(t)),
which is obtained from the kinematic equations

dr0

dt
(t) = U(t);

dû

dt
(t) = Ω× û(t). (66)

where translational and angular velocities are a sum of all the different contributions
calculated above

U = U0 +U
h
1 +U

d
1 +U

h,�μ
1 +Ud,�μ1 +O

(
μ1

μ0
ε3, ε4

)
, (67)

Ω = Ω0 +Ω
h
1 +Ω

d
1 +Ω

h,�μ
1 +Ωd,�μ1 +O

(
μ1

μ0
ε4, ε5

)
. (68)

where ε = a/h.
In the following, we define a unit vector

U0
U0
≡ −sgn (μα1) û = cosΘ êy − sinΘ êz, (69)

which implies û = −sgn(μα1) (0, cosΘ,− sinΘ), and normalise the velocity with
swimmer speed U0 = |μα1/3D|, position vector with the swimmer size a and time
with the swimmer characteristic time-scale a/U0.
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Hence we obtain the dynamical equations for the position and orientation of the
swimmer ⎛

⎜⎜⎜⎜⎝

Ẋ

Ẏ

Ḣ

Θ̇

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
Ux

Uy

Uz

−Ωx

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0
FY (H,Θ;ϕ)

FH(H,Θ;ϕ)

FΘ(H,Θ;ϕ)

⎞
⎟⎟⎠ , (70)

where the functions

FY = cosΘ−
3
(
Ã2 + Ã

�μ
2

)
8H2

sin 2Θ+
cosΘ

16H3

[
(3−4Ã1)+Ã3

(
7−27 sin2Θ)] , (71)

FH = − sinΘ + Ã0
H2
−
3
(
Ã2 + Ã

�μ
2

)
8H2

(
1− 3 sin2Θ)

+
sinΘ

8H3

[
(8Ã1 − 3)− 2Ã3

(
7− 9 sin2Θ)] , (72)

FΘ =
9

16

(
μ1α0

μ0α1

)
cosΘ

H2
− 9
64

(
μ1

μ0

)
sgn(μ0α1) sinΘ cosΘ

−
3
(
Ã2 + Ã

�μ
2

)
8H3

sinΘ cosΘ− 3Ã1
8H4

cosΘ +
3Ã3
8H4

cosΘ
(
1− 3 sin2Θ) .

(73)

The dimensionless coefficients Ãi = Ai/U0, (i = 0, 2) and Ãi = −sgn (μα1)Ai/U0,
(i = 1, 3) are determined from the Legendre mode amplitudes of the activity function
(αk’s) as

Ã0 = sgn (μ0α1)
3

4

α0

α1
; Ã1 =

1

2
− 3
8

α3

α1
; (74)

Ã2 = sgn (μ0α1)
3

2

α2

α1
; Ã3 = −15

16

α3

α1
, (75)

and the dimensionless mobility variation correction Ã�μ2 = A�μ2 /U0. In the following,
we restrict our analysis to the cases where sgn(μα1) = +1, in which the swimmer
moves with its inert (or less active) ‘face’ at the front. One can easily infer the
dynamic behaviour for the sgn(μα1) = −1 case by the time reversal t → −t as time
does not enter the dynamics explicitly. We shall now consider simple examples of
self-phoretic swimmers with different combinations of catalyst coverage (activity)
and mobility and use them to obtain phase diagrams of the behaviour as a function
of coverage, mobility and initial orientation.

5.2 From steady-states to phase diagrams

5.2.1 Uniform mobility, μ = constant.

We consider a swimmer with arbitrary catalytic coverage with constant flux boundary
condition on the part of its surface covered by catalyst

α (n̂) = κ Kϕ(n̂ · û); Kϕ(n̂ · û) =
{
1, cosϕ ≤ n̂ · û ≤ 1;
0, otherwise,

(76)
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where −1 < cosϕ ≤ 1 specifies the extent of the catalyst coating (see Fig. 2). The cov-
erage function is expanded as a series in terms of the Legendre polynomials (keeping
the first 4 terms)

α0 =
1

2
κ (1− cosϕ) , α1 =

3

4
κ sin2 ϕ, (77)

α2 =
5

4
κ sin2 ϕ cosϕ, α3 = − 7

16
κ sin2 ϕ

(
1− 5 cos2 ϕ) . (78)

Therefore, the coefficients (Ai’s) are functions of the coverage only and simplify to

Ã0 =
1

2

sgn (μα1)

1 + cosϕ
; Ã1 =

1

2
+
7

32

(
1− 5 cos2 ϕ) ; (79)

Ã2 =
5

2
sgn (μα1) cosϕ; Ã3 =

35

64

(
1− 5 cos2 ϕ) . (80)

We obtain a phase diagram of swimmer behaviours by searching for steady states
of the system in which the swimmer remains at a fixed height from the wall and
with a fixed orientation. This is done by determining the stationary points (and their

stability) of the set of 2 coupled dynamical equations (Ḣ, Θ̇) = (FH , FΘ), i.e. stable
fixed points (H∗,Θ∗) such that

FH(H∗,Θ∗;ϕ) = 0, (81)

FΘ(H∗,Θ∗;ϕ) = 0. (82)

The fixed point conditions in equations (81,82) can be written as the polynomials,

0 =
√
1− q2

(
Ã2qε

3
∗ + [Ã1 − Ã3]ε4∗ − 3Ã3q2ε4∗

)
, (83)

0 = −8q +
(
8Ã0 − 3Ã2

)
ε2∗ + 9Ã2q

2ε2∗ +
(
8Ã1 − 14Ã3 − 3

)
qε3∗ + 18Ã3q

3ε3∗, (84)

where q = sin(Θ∗) and ε∗ = 1/H∗.
The phase diagrams in Fig. 5 are obtained by numerically solving the fixed point

Eqs (81,82) and looking for real solutions for which 0 < ε∗ < 1, |q| ≤ 1 and veri-
fying that they are stable. The basin of stability of each fixed point was verified by
numerically integrating the dynamical equations for H,Θ given in Eqs (70) starting
from initial angles Θ0 ∈ (−π/2, π/2) at t = 0, sweeping across the domain of Θ0 in
steps of π/50. In Fig. 5(a), we see that there is a range of parameters for which the
theory breaks down (the swimmer crashes into the wall). This is to be expected as
the multipole expansion we have performed (expressing the flow fields in terms of the
lowest order fundamental singularities) will break down when the swimmer gets too
close to the wall i.e. when ε,H ∼ 1. In Fig. 5(b,c), repulsive interactions between
the swimmer and the wall were included to regularise the swimmer motion and stop
it crashing into the wall. A Yukawa-type repulsive potential 5(σ/H)e−(σ/H) was in-
cluded in Fig. 5(b) which may arise due to hard-core repulsion between the swimmer
and wall or electrostatic double layer repulsion, where we have taken σ = 21/6. For
the phase diagram in Fig. 5(c), we added a repulsive potential 5(σ/H)4, to qual-
itatively account for the hydrodynamic lubrication forces that cannot be accessed
by our far field approximation which would also stop the swimmer crashing into
the wall. Evidently, from the phase diagrams in Figs 5(b) and (c), it is clear that
the addition of the regularising potentials does not lead to any qualitative change
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(a)

(b) with Yukawa hard-core repulsion (c) with ∼ H−4 repulsion

Fig. 5. (a) Phase diagram for a partially coated self-diffusiophoretic swimmer. Θ0 (in ra-
dians) is the initial orientation while cos(ϕ) determines the extent of the catalyst cover-
age (see Fig. 2). Θ0 = 0 corresponds to an initial orientation parallel to the wall, while
Θ0 = π/2 ≈ 1.57 is one with the propulsion direction normal to and pointing towards the
wall. Θ0 = −π/2 ≈ −1.57 corresponds to the propulsion direction normal to and pointing
away from the wall. cos(ϕ) = 0 corresponds to half catalyst coverage while cos(ϕ) = −1 cor-
responds to a fully catalytically covered colloid. All trajectories start at initial heightH0 = 2.
The numerical simulations of Uspal et al [20] predict the emergence of the stationary ‘hover-
ing’ states for catalytic coverage cos(ϕh) = −0.85 while here we predict cosϕh = −0.88. Sim-
ilarly, [20] predicts the emergence of a ‘sliding’ state for catalytic coverage cos(ϕs) = −0.35
while here we predict cosϕs = −0.32. Figures (b) and (c) are the same phase diagram with
additional repulsive potentials of Yukawa form and H−4–‘hydrodynamic’ form respectively.
These are purely to regularise the dynamics and stop the swimmer getting too close to the
wall. In obtaining the phase diagrams, the minimum allowed height is Hc = 1.05 and we
take the theory as breaking down when H ≤ Hc for any trajectory.

in the phase behaviour of the swimmers apart from shifting the phase boundaries
slightly and both have the required effect of stopping the swimmer crashing into wall.
When there are no real solutions for the fixed point in the allowed range of values

for ε∗, q, all trajectories lead to the swimmer being reflected from the wall. Stationary,
“hovering” states [19,20] are found for stable fixed points with finite positive ε∗ < 1
and q = 1(Θ∗ = π/2) as from Eqs (70), those correspond to no motion parallel to the
wall, Ẏ = 0 since from Eq. (71), FY = 0 when cosΘ = 0. Sliding states [19,20] are
found for stable fixed points with finite positive ε∗ < 1 and q < 1(Θ∗ < π/2) as from
Eqs (70), those correspond to non zero Ẏ (motion parallel to the wall while remaining
a fixed distance from it). See Fig. 6 for both the free-space (swimmer reflected from
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(a) cos ϕ = −0.33, free-space (b) cos ϕ = −0.33, sliding-state

(c) cos ϕ = −0.9, free-space (d) cos ϕ = −0.9, stationary-state

Fig. 6. Examples of sliding and stationary states, showing solute density and far-field
flow streamlines.

wall) and final bound state flow and solute fields profiles for the sliding and hovering
states.
We can understand this behaviour by examining the solutions of the fixed point

equations in a bit more detail.
First, we identify the obvious solution (i) (q, ε∗) = (0, 0) corresponding to a swim-

mer in the bulk far away from the wall (see Fig. 6(a) and (c)).
Next we can identify the solutions with the swimmer pointing directly to-

wards/away from the wall. (ii) q = ±1,H∗ > 1, such that

b3(ϕ) ε
3
∗ + b2(ϕ) ε

2
∗ − 8 = 0; q = 1, (85)

−b3(ϕ) ε3∗ + b2(ϕ) ε2∗ + 8 = 0; q = −1, (86)

where b3(ϕ) = (8Ã1 + 4Ã3 − 3), and b2(ϕ) = (8Ã0 + 6Ã2).
When q = −1, there are no real solutions for ε∗, corresponding to escape or

reflection from the wall. When q = +1, there is a range of ϕ for which there is a
non-zero ε∗ < 1 corresponding to a stationary, “hovering” state as when q = 1, Ẏ = 0
(see Fig. 6(d)).
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(iii) Finally, we may consider other fixed points for which |q| < 1. It is illuminating
to consider fixed points with |q| � 1, as then we can look for approximate solutions
in which we ignore higher powers of q in the polynomial equations. We have verified
that we can ignore terms of O(qnεm∗ ), with n+m ≥ 5, without changing qualitatively
the results from a full numerical solution of Eqs (81,82) . Then the polynomials can
be reduced to

0 ≈ Ã2qε3∗ + (Ã1 − Ã3) ε4∗, (87)

0 ≈ −8q + (8Ã0 − 3Ã2) ε2∗ + 9Ã2q2ε2∗ + (8Ã1 − 14Ã3 − 3) qε3∗, (88)

which implies qÃ2 ≈ −(Ã1 − Ã3)ε∗ and ε∗ are the roots of the polynomial
b3(ϕ) ε

3
∗ + b1(ϕ) ε∗ + b0(ϕ) = 0, (89)

where here, b3(ϕ) = (Ã1 − Ã3)(Ã1 + 5Ã3 + 3), b1(ϕ) = Ã2(8Ã0 − 3Ã2) and b0(ϕ) =
8(Ã1 − Ã3). In general, here we find a fixed point with finite ε∗ < 1 and 0 < q < 1
corresponding to a sliding bound state for a different range of coverage, ϕ to the
stationary states above (see Fig. 6 (b)).

The key observation here is that b1(ϕ) (or equivalently Ã2) determines the exis-
tence of the fixed points. Therefore, here it is the effect of the wall on the fluid flow

that is responsible for the swimmer bound states since Ã2 is the force-dipole flow field
strength.
For all the state points evaluated in the phase diagrams, all the trajectories start

at initial height H0 = 2. It is noteworthy that these self-diffusiophoretic swimmers
all have very small (near zero) escape angles (i.e only starting orientations pointing
towards the wall lead to bound states).
We can study the transitions from one region of the phase diagram to another

by the motion of the complex solutions (roots) ε∗ of the Eqs (81,82) which move,
divide and coalesce on the complex plane as the catalytic coverage of the swimmer,
cosϕ is varied (see Figs 7(a) and 7(b)). Recall that the coverage increases as cosϕ
decreases (see Fig. 2). The transition from the reflected state to the sliding state is
illustrated in Fig. 7(a) as two complex solutions for ε∗ (or equivalently H∗) coalesce
to form two real solutions one of which is stable and the other unstable. Similarly we
observe the transition from the stationary state as the coverage is decreased (cosϕ
increased), illustrated in Fig. 7(b) as three real roots, initially one stable and two
unstable rearrange the positions on the complex plane. A stable root and one of the
unstable roots coalesce to form two complex roots, while the other unstable root
becomes stable. The two positive stable and ustable roots (fixed points) coalesce to
form two complex roots.

5.2.2 Janus swimmer with non-uniform mobility

While the phase behaviour above suggests that half-coated (i.e. Janus with
cosϕ = 0) particles with uniform phoretic mobilities are always reflected from the
wall, an interesting case in which Janus particles can form bound states in the vicinity
of the wall is found when they have a mobility that varies as a function of position
along the surface [20].
Hence, we now consider a half-coated self-diffusiophoretic swimmer with different

mobilities on its two halves (see Fig. 8),

μ(n̂) = μ̄+�μKπ
2
(û · n̂), Kπ

2
(n̂ · û) =

{
1, 0 ≤ n̂ · û ≤ 1;
0, otherwise,

(90)
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(a)

(b)

Fig. 7. (a) Roots of the cubic Eq. (89) predicting a bifurcation at catalytic coverage corre-
sponding to cosϕ1 = −0.18 (indicated on the plot atH2), where two positive real fixed points
emerge. The arrows indicates direction of increasing coverage, ϕ, starting from cosϕ = 0
(half coverage). This corresponds to the transition from the ‘wall reflection and escape’
behaviour to stable ‘sliding’ along the wall. (b) Roots of the cubic Eq. (85). The arrows
indicates direction of decreasing coverage, ϕ, starting from cosϕ = −0.9. A bifurcation hap-
pens at cosϕ2 = −0.85 (indicated on the plot at H4), with the two real roots coalescing
and two complex roots emerge. This corresponds to the transition from stationary ‘hovering’
behaviour to the trajectories hitting the wall. H1 and H3 are the positions of the negative
fixed points when the bifurcation happens. Red solid circles correspond to sliding state fixed
points, blue crosses correspond to the saddle fixed points, black dots are the (unphysical)
negative fixed points located behind the wall, while black stars represent the pair of complex
fixed points. Note to simplify the swimmer dynamics, we have imposed ε∗ > 0 (rather than
H∗ > 1) to study the motion of the fixed points on the complex plane.

where the even modes of its Legendre expansion vanish (μl = 0, l �= 0 even) and the
first few mode amplitudes are

μ0 = μ̄+
1

2
� μ, μ1 =

3

4
� μ, μ3 = − 7

16
Δμ, · · · (91)



1864 The European Physical Journal Special Topics

(a) (b)

Fig. 8. (a) Janus swimmer with different mobilities on the two hemispheres and (b) showing
the alignment tendency of the mobility dipole vector d with the perpendicular component

of the wall-induced phoresis
(

Ud1
)⊥
. In figure (b), we choose μ1 ∼ �μ < 0 and α0 < 0 (sink

of solute molecules).

While, the reaction-limited activity function (76), has Legendre mode amplitudes
(αk’s) that are similarly evaluated to be

α0 =
1

2
κ, α1 =

3

4
κ, α2 = 0, α3 = − 7

16
κ, · · · (92)

Hence, the dimensionless strengths of the hydrodynamic flow singularities are

Ã0 =
1

2
; Ã1 =

23

32
; Ã2 = 0; Ã3 =

35

64
, (93)

from Eqs (79, 80). Whereas, from the slip velocity induced by nonuniform mobility

and the definition of BΔμk in Appendix B,

ÃΔμ1 = 0; ÃΔμ2 =
3

16
sgn (μ0α1)

(�μ
μ0

)
; ÃΔμ3 = 0, (94)

since BΔμ1 = 0 and BΔμ3 = 0. Therefore, giving these parameters to the dynamical
system (70), we can now solve for the swimmer trajectory near the planar wall. As
before, we obtain the phase diagram (see Fig. 9) by determining the stable fixed
points of the dynamics as a function of (1) the initial orientation and (2) the relative
variation in mobility across the swimmer surface. We find stable bound sliding states
for 0 < Δμ/μ0 < 1, where swimmers stay at a fixed height and orientation relative to
the wall (see Fig. 9). This is a distinctive feature of the diffusiophoretic mechanism:
the re-orientation of the mobility dipole (μ1) is proportional to the net consumption or
production of the chemical solutes (α0). Comparing these results with the numerical
simulations of Uspal et al [20] for the same half-coated Janus swimmer with different
mobilities on its hemispheres, we find good agreement with our results. This together
with the analysis in the Appendix, suggests that the mobility dipole may be sufficient
to capture not only qualitative but quantitative effects of some phoretic mobility
variation patterns.
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(a)

(b) with Yukawa hard-core repulsion (c) with ∼ H−4 ‘hydrodynamic’ repulsion

Fig. 9. (a) Phase diagram for the Half-coated self-diffusiophoretic swimmer with variable
mobility. Θ0 (in radians) is the initial orientation while Δμ/ 〈μ〉 (where 〈μ〉 = μ0) is the
mobility variation parameter. Θ0 = 0 is the parallel to the wall orientation, while Θ0 = π/2 ≈
1.57 is the propulsion directly towards the wall. Θ0 = −π/2 ≈ −1.57 is the motion directly
away from the wall. Figures (b) and (c) is the same phase diagram with added Yukawa and
H−4–‘hydrodynamic’ repulsive potentials respectively. This is to regularise the dynamics
and stop the swimmer getting too close to the wall. In obtaining the phase diagrams, the
mininum allowed height is H = 1.05.

5.2.3 Self-electrophoretic swimmer with varying zeta potential

It would be quite difficult to experimentally obtain a varying mobility for neutral
solutes interacting with a surface via short range interactions (this would require
a different interaction with the catalyst coated region than with the uncoated hemi-
sphere). However, a nonuniform mobility arises quite naturally in a self-electrophoretic
swimmer which has a different zeta potential on the catalyst coated half from the un-
coated hemisphere (see Appendix C). We follow the framework for phoretic swimmers
outlined in Golestanian et al. [7] and refer the reader to the work of Anderson [36]
on phoretic particles with nonuniform mobility. Here, we consider a half-coated self-
electrophoretic swimmer with different mobilities on its hemispheres

μ(n̂) = μ̄+�μKπ
2
(û · n̂), Kπ

2
(n̂ · û) =

{
1, 0 ≤ n̂ · û ≤ 1;
0, otherwise,

(95)
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Fig. 10. Convergence of the contribution to the second squirming mode amplitude BΔµ2 of
from the position dependent mobility slip velocity for a half-coated selfdiffusiophoretic swim-
mer (see the Appendix B for the definition of BΔµ2 ). Each of the mobility μ and activity α are
Legendre expansions are truncated at mode N . i.e {μ0, μ1, · · · , μN} and {α0, α1, · · · , αN}.

where the Legendre expansion of the mobility function is as outlined in the previous
section. The swimmer is driven by asymmetric flux of ionic-solutes and an activity
function (cation flux) [10]

α(n̂) = κ (1− 2 û · n̂)Kπ
2
(û · n̂), (96)

where κ is a characteristic flux [10]. Hence, as above the activity function can be
expanded in terms of the Legendre polynomials with amplitudes:

α0 = 0, α1 = −κ
4
, α2 = −5

8
κ, α3 = − 7

16
κ, (97)

and the dimensionless strengths of the hydodynamic field singularities are therefore

Ã0 = 0, Ã1 = − 5
32
, Ã2 =

15

4
sgn(μ0α1), Ã3 = −105

64
. (98)

Thereby, solving the dynamical system (70) with these new coefficients (98), we find no
dynamical attractor for the parameter range considered (−1 < �μ/μ0 < 1). Rather,
many of the initial orientations that took the swimmer close to wall eventually go
so close to the wall, that the theoretical approach taken here breaks down. However,
upon adding the repulsive potentials (discussed earlier) to stop the swimmer getting
too close to the wall, all these trajectories are reflected from the wall.

6 Discussion

Motivated by recent experiments and numerical simulations, we have studied theoret-
ically the dynamics of spherical self-phoretic swimmers near walls. By decomposition
of the solute concentration and flow fields into their fundamental singularities we
show that the balance of solute concentration gradients and fluid flow can account
for all the types of behaviour observed.
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We find that the distortion of the local gradient of chemical solute concentra-
tion by the wall could dominate both the translational and orientational dynam-
ics depending on the physico-chemical properties of the swimmer surface. This has
important consequences for predicting propulsion behaviour of self-diffusiophoretic
swimmers in confinement. In agreement with recent simulations [20], we find that
self-phoretic swimmers possessing varying surface phoretic mobilities can establish
stable bound states. This is a purely wall-phoretic effect and cannot be obtained by
simply mapping a phoretic swimmer to the widely studied hydrodynamic squirmer
models. Therefore, this distinctive behaviour distinguishes the self-phoretic swimmer
from swimmers self-driven by mechanical conformations such as squirmers.
To understand the essential ingredients required to describe the behaviour of

phoretic swimmers near walls, it is important to reduce the complex dynamics and
focus on the fundamental building blocks of the swimmer flow and solute concen-
tration gradients. Our approach to the study of these systems is to reduce the dy-
namics to the leading flow and solute concentration singularities and the effects of
the wall in a systematic expansion in the reciprocal distance from the wall, h−1.
Strictly speaking such far-field expansions converge quickly only when the distance
from the wall, h is much greater than the radius of the particles, a. Therefore one
expects only qualitative agreement if h becomes comparable to but greater than a.
Given these limitations, we have restricted our analysis to regimes where h/a > 1
looking for qualitative agreement with the experiments or detailed simulations. Re-
stricting ourselves by this condition, we are able to reproduce all the features of phase
diagrams of the behaviours of the swimmers found in recent extensive numerical sim-
ulations of this system [20].
By mapping the resulting dynamics into a generic dynamical system and searching

for stable stationary points, we are able to obtain phase diagrams of the behaviour
of the asymmetrically coated catalytic self-phoretic swimmers, near a solid wall as a
function of their coverage and initial orientation.
Comparing our results with the detailed numerical study of the same system by

Uspal et al [20], we found a phase diagram with identical topology and upon closer
inspection of the positions of the phase boundaries, we find quantitative agreement
with the simulations for a significant range of the space of parameters (the catalyst
coverage and the nonuniform mobility). This surprising almost quantitative agreement
of the analytical theory with the simulations suggests that the series we are calculating
converges much faster than expected – the reasons for which are not yet clear.
The results may be summarised as follows: (1) bound states can only be found for

swimmers whose initial orientation is pointing towards the wall, (2) for low coverage
of catalyst the swimmers tend to be reflected from the walls, (3) for intermediate
coverage of the swimmers, they form “bound states” where they swim or slide along
the wall and (4) for high catalyst coverage the sliding velocity goes to zero and they
become stationary and “hover” near the wall.
It is noteworthy that the mechanism by which a self-phoretic swimmer is reflected

by the wall is remarkably different to that of a (purely hydrodynamic) squirmer.
While the reflection of a squirmer by a hard planar wall proceeds by a retardation
of the squirmer propulsion parallel to the wall combined with a re-orientation of its
swimming direction away from the wall, the self-phoretic swimmer has its propulsion
parallel to the wall enhanced and ‘bounces’ off the wall (without physical contact).
This has its origin in the orientation-independent long-ranged phoretic repulsion in-
duced by the chemical gradients – which depends on whether the swimmer is net
source or sink of the solutes.
Finally, we address the consequences of nonuniform phoretic mobility. With only

the simplifying approximation of linear variation of the phoretic mobility across the
surface (a mobility dipole of strength μ1), we found the existence of ‘bound states’
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of the swimmer near the the wall due to phoretic effects rather than hydrodynamics.
The detailed numerical study by Uspal et al [20] of a half-coated swimmer with
variable phoretic mobility observed such bound states in the vicinity of the wall in
surprisingly good agreement with the phase behaviour reported in the text (Fig. 9).
The stabilisation mechanism of these states proceeds with the (surface averaged)
mobility dipole rotating towards the wall in response to the image/reflected solute
fields due to both the wall and swimmer surface. The dipole induced rotation for the
swimmer moving with its inert face at the front is towards the wall for μ1/μ0 positive.
As a result, the main effect of the mobility dipole to the swimmer dynamics is similar
to the electrostatic charge-dipole interaction – where here the charge is the image
source/sink of solutes placed behind the wall at the image point and the dipole is the
surface averaged mobility dipole. Interestingly, this rate of re-orientation is rather
long-ranged – with inverse square decay (r−2), since the leading order image solute
field is a monopole (r−1). This could have important consequences for the collective
behaviour of these swimmers.
In conclusion, we have identified and isolated the different contributions of the

solute concentration field and fluid flow to self-phoretic swimmer dynamics and pro-
vided a mapping of the self-phoretic flow field in the bulk (far from walls) to the
flow fields of the squirmer model. However, we also point out an important difference
between the self-phoretic swimmer and the squirmer model, that is, the dependence
of the surface slip velocity on the local solute gradient which can be strongly affected
by walls or any interaction which causes a distortion of the solute concentration field.
To illustrate our approach, we have considered a number of examples of swimmers
with different physico-chemical properties and obtained phase diagrams varying the
swimmer surface activity and mobility which shows very good agreement with full
numerical simulations of the same systems.

Appendix: Fundamental singularities of the image system

A.1 Solute field images

The impermeability of the wall is imposed by adding C(1), a concentration field with
a singularity at an image point behind the wall so that the solute flux through the
wall is identically zero, −Dêz ·

(∇C(0) +∇C(1))
z=−h = 0. This has the form,

C(1)(r) =
α0a

D

( a
r′
)
+
α1a

2D

( a
r′
)2
r̂′ · (û‖ − û⊥)

+
α2a

3D

( a
r′
)3
(3
[
û · r̂′]2 − 1) +O([r′]−4), (A.1)

where r′ = r + 2hêz, û‖ = û · êyêy and û⊥ = û · êzêz. Furthermore, we
keep the correct constant flux boundary condition on the swimmer surface by
adding C(2), a concentration field that is singular at the swimmer center to impose
−Dn̂ · (∇C(1) +∇C(2))

r=a
= 0. This gives rise to the field, C(2), given by

C(2)(r) = −ε
2

8

(α0a
D

)(a
r

)2
êz · r̂ + ε

3

32

(α1a
D

)(a
r

)2
(û‖ + 2û⊥) · r̂

+
ε3

24

(α0a
D

)(a
r

)3 (
3(êz · r̂)2 − 1

)
+O (ε4; r−4) . (A.2)
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A.2 Flow field images

From the fundamental singular solutions of the Stokes equation,

G(r) · ê =
(a
r

)(
1+
rr

r2

)
· ê, SD(r) · ê =

(a
r

)3 (
3
rr

r2
− 1

)
· ê, (A.3)

we construct the image flow field as a superposition of the singular flows,

GD[ê1, ê2](r) = (aê1 · ∇0)G(r) · ê2, SD[ê](r) = SD(r) · ê, (A.4)

and their derivatives

SQ[ê1, ê2] = (aê1 · ∇0)SD[ê2], (A.5)

SO[ê1, ê2, ê3] = (aê1 · ∇0)SQ[ê2, ê3], (A.6)

GQ[ê1, ê2, ê3] = (aê1 · ∇0)GD[ê2, ê3], (A.7)

GO[ê1, ê2, ê3, ê4] = (aê1 · ∇0)GQ[ê2, ê3, ê4], (A.8)

where êi are some unit vectors. The leading terms in the far-field expansion of the
swimmer generated flow field in the bulk far from a wall are,

v(0)(r) = A2GD[û, û](r) +A1SD[û](r) +A3GQ[û, û, û](r), (A.9)

which have an image system

v(1)(r) = A2G
im
D [û, û](r

′) +A1SimD [û](r
′) +A3GimQ [û, û, û](r

′), (A.10)

where r′ = r + 2hêz and the image fields near a no-slip wall, (GimD ,S
im
D ,G

im
Q ), can

be found in [33–35]. The force-dipole image field is

GimD (r
′)=

(
û⊥
)2 [−GD(êz, êz)+4HSD(êz)+2HGQ(êz, êz, êz)− 2H2SQ(êz, êz)

]

+û⊥û‖
[
GD(êy, êz) +GD(êz, êy)

−4HSD(êy)− 4HGQ(êy, êz, êz) + 4H2SQ(êy, êz)
]

+
(
û‖
)2 [
−GD(êy, êy) + 2HGQ(êy, êy, êz)− 2H2SQ(êy, êy)

]
. (A.11)

where H = h/a. The image system for the source-dipole flow field is

SimD (r
′) = û⊥

[
− 3SD(êz)− 2GQ(êz, êz, êz) + 2HSQ(êz, êz)

]

+û‖
[
SD(êy) + 2GQ(êy, êz, êz)− 2HSQ(êy, êz)

]
. (A.12)
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While that of the force-quadrupole is

GimQ (r
′) =

(
û⊥
)3 [
3GQ(êz, êz, êz) + 4SD(êz)− 2HGO(êz, êz, êz, êz)

−8HSQ(êz, êz) + 2H2SO(êz, êz, êz)
]

+
(
û⊥
)2
û‖
[
−GQ(êz, êz, êy)− 6GQ(êy, êz, êz)− 4SD(êy)

+6HGO(êy, êz, êz, êz) + 16HSQ(êy, êz)− 6H2SO(êy, êz, êz)
]

+û⊥(û‖)2
[
3GQ(êy, êy, êz) + 2GQ(êz, êy, êy)

−6HGO(êy, êy, êz, êz)− 8HSQ(êy, êy) + 6H2SO(êy, êy, êz)
]

+(û‖)3
[
−GQ(êy, êy, êy)

+2HGO(êy, êy, êy, êz)− 2H2SO(êy, êy, êy)
]
. (A.13)

A.3 Rigid body motions

Rigid body corrections are found using Faxén’s Laws [29]

U1 = v
(1)(0) +

a2

6
(∇2v(1))r=0 − 〈vs1〉 , (A.14)

Ω1 =
1

2
(∇× v(1))r=0 − 3

2a
〈n̂× vs1〉 , (A.15)

where 〈·〉 = (4πa2)−1�
(·)dS denotes an average over the swimmer surface, vs1 =

∇s
(
C(1) + C(2)

)
is the slip velocity induced by the solute concentration field distor-

tions due to the wall, and ∇s ≡ (1− n̂n̂) · ∇ is the surface gradient operator. We
identify the different contributions due to the distortion of the swimmer generated
fluid flow by the wall (Uh1 ,Ω

h
1 ) of

Uh1 =

(
v(1) +

a2

6
∇2v(1)

)
r=0

, (A.16)

Ωh1 =
1

2
(∇× v(1))r=0, (A.17)

and from the chemical solute gradient distortion, (Ud1,Ω
d
1)

Ud1 = −〈vs1〉 , (A.18)

Ωd1 = −
3

2a
〈n̂× vs1〉 . (A.19)

B Details of calculations for swimmers with nonuniform mobility

It is possible for the phoretic field whose gradient drives the swimmer motion to
interact differently with different parts of the swimmer surface – leading to a position
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dependent (on the swimmer surface) phoretic mobility. We can perform Legendre
polynomial expansion of the mobility

μ(n̂) = μ0 +
∞∑
l=1

μlPl(û · n̂). (B.1)

A nonuniform mobility corresponds to μl �= 0, l > 0 so we can obtain the effect of the
nonuniform mobility by studying the higher order modes of the mobility expansion.
These higher order modes μl (l ≥ 1) give rise to additional contributions to the
swimmer propulsion in the bulk far from the wall,

UΔμ0 = −〈vs,Δμ0 〉, (B.2)

ΩΔμ0 = − 3
2a
〈n̂× vs,Δμ0 〉, (B.3)

where the additional slip velocity due to the position-dependent phoretic mobility

is given by vs,Δμ0 =
∑∞
k=1B

Δμ
k Vk(û · n̂) êθ and the modes amplitudes (using the

Wigner-3j symbol [37]) are

BΔμk =

(
k +
1

2

) ∞∑
n=1

∞∑
q=1

(μnαq
D

)√ (k − 1)!(q + 1)!
(k + 1)!(q − 1)!

(
n q k
0 0 0

)(
n q k
0 1 −1

)
. (B.4)

(
j1 j2 j3
m1 m2 m3

)
is the Wigner-3j symbol. These hydrodynamically excited modes,BΔμk ,

by the position-dependent mobility were obtained by expressing the product P 0nP
1
q as

a sum of associated Legendre polynomials P 1k [37]. This extra slip velocity v
s,Δμ
0 can

qualitatively modify the swimmer disturbance flow field (by introducing a force-dipole

flow field with amplitude BΔμ2 �= 0 even for coverage functions for which α2 = 0 which
imply B2 = 0).
In addition, when near the no-slip wall, the modified flow and solute fields will

induce rigid body motions,

UΔμ1 = v
(1)
Δμ(0) +

a2

6
(∇2v(1)Δμ)r=0 − 〈vs,Δμ1 〉, (B.5)

ΩΔμ1 =
1

2
(∇× v(1)Δμ)r=0 −

3

2a
〈n̂× vs,Δμ1 〉, (B.6)

where vs,Δμ1 =
∑∞
l=1 μlPl(û · n̂)∇s

(
C(1) + C(2)

)
and v

(1)
Δμ is the modification of the

swimmer flow field that ensures the nonslip boundary condition, v
(0)
Δμ + v

(1)
Δμ = 0 on

the wall (z = 0).
We can as above separate the two distinct contributions from hydrodynamics

UΔμ,h1 = v
(1)
Δμ(0) +

a2

6
(∇2v(1)Δμ)r=0, (B.7)

ΩΔμ,h1 =
1

2
(∇× v(1)Δμ)r=0, (B.8)

and the phoretic effects

UΔμ,d1 = −〈vs,Δμ1 〉, (B.9)

ΩΔμ,d1 = − 3
2a
〈n̂× vs,Δμ1 〉. (B.10)
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Notably, the swimmer nonuniform phoretic mobility introduces a long-ranged rate of

re-orientation interaction (ΩΔμ,d1 ∼ ε2) with the wall

aΩΔμ,d1 ∼ −〈n̂ μ(n̂)〉 × (∇C(1))r=0 +O
(
Δμ

μ0
ε3
)
, (B.11)

where we identify 〈n̂ μ(n̂)〉 as the mobility dipole vector, and from the first term in
the Taylor expansion of wall-induced modification of the solute field (A.1);

(∇C(1))r=0 = −ε
2

4

α0

D
êz +

ε3

16

α1

D
(û‖ + 2û⊥). (B.12)

This long-ranged phoretically induced re-orientation interaction is the main ingredi-
ent for establishing a swimmer-wall bound state for a self-diffusiophoretic swimmer
with position dependent mobility. It dominates the leading order hydrodynamic con-

tribution (Ωh1 +Ω
Δμ,h
1 ∼ ε3).

C Varying mobility from electrophoresis with varying zeta potential

It would be quite difficult to obtain a varying mobility for neutral solutes interacting
with a surface via short range interactions (this would require a different interaction
with the catalyst coated region than with the uncoated hemisphere). However, a
nonuniform mobility arises quite naturally in a self-electrophoretic swimmer which has
a different zeta potential on the catalyst coated half from the uncoated hemisphere.
We thus outline the calculation of the slip velocity for this case below.
We consider a self-electrophoretic swimmer where the ionic concentrations Ci,

outside the double-layer satisfy the leading order electroneutrality condition [38]

∑
i∈ions

ziCi = 0, (C.1)

arising from the Poisson equation. The ionic solute concentrations Ci coupled to the
electric potential Φ obey the steady state Nernst-Planck equations

∇ · Ji = 0, Ji = −Di
(
∇Ci + ezi

kBT
Ci∇Φ

)
. (C.2)

where zi, Di are the valency and diffusivity of the i’th ionic specie, kB the Boltzmann
constant and T the temperature. The electric potential and concentration fields are
to satisfy the flux boundary conditions

n̂ · Ji|r=a = Ji, (C.3)

with Ji the i’th ion flux on the swimmer surface specified by the chemical reaction
stoichiometry and a the swimmer radius. Hence, from the above Eqs (C.1,C.2,C.3),
and for aJe/DeC∞ � 1, with C∞ the bulk ionic strength and Je the characteristic
ionic flux, the linearised equations satisfy

∇2Φ = 0; − εn̂ · ∇Φ|r=a = σe(n̂), Φ(r →∞) = 0, (C.4)

∇2Ce = 0; −De n̂ · ∇Ce|r=a = αe(n̂), Ce(r →∞) = 0, (C.5)

where Ce = Ccat+Cani is the sum of the cations (cat) and anions (ani) concentrations.
Likewise, the maxwell stresses (∼ ∇2Φ∇Φ) disappear in the Stokes equations since
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they are quadratic in the small parameter aJe/DeC∞ � 1. The intrinsically non-
equilibrium surface charge distribution, σe, and the net ionic solute number flux, αe,
are sustained by the chemical activity on the swimmer surface such that

σe(n̂) =
εkBT

eC∞

(Jcat
Dcat

− Jani
Dani

)
, (C.6)

αe(n̂) = De

(Jcat
Dcat

+
Jani
Dani

)
. (C.7)

where De = DcatDani/(Dcat + Dani). We expect the electrolytic cycle to involve
electrons been conducted through the swimmer and the released cations migrating
to complete the reaction from ’cathodic’ to ’anodic’ sites. This implies Jani = 0.
Therefore, the concentration and electric pontential fields are equivalent (up to a
constant),

Ce

C∞
=
eΦ

kBT
. (C.8)

Hence, the associated phoretic slip flow due to the charged chemical solutes diffusion
and electro-migration is

vslipe = (1− n̂n̂) ·
(
εζ

η
∇Φ+ 4ε

η

(
kBT

e

)2
ln

(
cosh

eζ

4kBT

) ∇Ce
C∞

)
, (C.9)

can be expressed solely in terms of either Φ or Ce. The first term is the electrophoretic
part∼ ∇Φ while the second term is the chemi-phoretic part∼ ∇Ce. Now, substituting
for Φ using (C.8), the slip velocity takes the simple form

vslipe = μe(n̂) (1− n̂n̂) · ∇Ce, (C.10)

where μe(n̂) is the phoretic mobility [15],

μe(n̂) =
εζ(n̂)

ηC∞
+
4ε

ηC∞

(
kBT

e

)2
ln

(
cosh

eζ(n̂)

4kBT

)
, (C.11)

with ζ the zeta potential on the swimmer surface which could be nonuniform (e.g
swimmer made of materials of different specific adsorption to the ions),

ζ(n̂) =
2kBT

e
sinh−1

(
2πlBσ0(n̂)

eκ

)
. (C.12)

σ0 is the surface charge density (at the slip-plane) in the absence of the chemical
reaction. lB is the Bjerrum length, κ

−1 is the Debye-length and e the electronic
charge. Note that the steady state assumption imposes the constraint∫

swimmer
σe(n̂) dS = 0, (C.13)

since the swimmer taken with the interfacial double-layer is not a global source/sink
of electrical charges.
Therefore, the ionic solute concentration field of the self-electrophoretic swimmer
obeys

∇2Ce = 0, (C.14)

− Den̂ · ∇Ce|r=a = αe(n̂), Ce(r →∞)→ C∞ (C.15)

and imply the slip velocity vslip = μe(n̂) (1− n̂n̂) · ∇Ce which are equivalent to the
self-diffusiophoretic swimmer governing equations with a varying mobility.
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